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Abstract. Intelligent APIs, such as Google Cloud Vision or Amazon Rekog-
nition, are becoming evermore pervasive and easily accessible to developers to
build applications. Because of the stochastic nature that machine learning entails
and disparate datasets used in their training, the output from different APIs varies
over time, with low reliability in some cases when compared against each other.
Merging multiple unreliable API responses from multiple vendors may increase
the reliability of the overall response, and thus the reliability of the intelligent
end-product. We introduce a novel methodology – inspired by the proportional
representation used in electoral systems – to merge outputs of different intelli-
gent computer vision APIs provided by multiple vendors. Experiments show that
our method outperforms both naive merge methods and traditional proportional
representation methods by 0.015 F-measure.

Keywords: Application programming interfaces · Web services · Data integra-
tion · Artificial intelligence · Supervised learning

1 Introduction

With the introduction of intelligent web services that make machine learning (ML)
more accessible to developers [8, 20], we have seen a large growth of intelligent ap-
plications built using such APIs [5, 14]. For example, consider the advances made in
computer vision, where objects are localised within an image and labelled with associ-
ated categories. Cloud-based computer vision APIs (e.g., [1–3, 6, 10, 11, 15, 23]) utilise
machine-learning techniques to achieve image recognition via a remote black-box ap-
proach, thereby reducing the overhead for application developers to understand how to
implement intelligent systems from scratch. Furthermore, as the processing and train-
ing of the machine-learnt algorithms is offloaded to the cloud, developers send simply
send RESTful API requests to do the recognition, making it more accessible to them.
There are, however, inherit differences and drawbacks between traditional APIs and
intelligent APIs, which we describe with the motivating scenario below.
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1.1 Motivating Scenario: Intelligent APIs vs Traditional APIs

An application developer, Tom, wishes to develop a social media Android and iOS app
that catalogues photos of him and his friends, common objects in the photo, and gen-
erates brief descriptions in the photo (e.g., all photos with his husky dog, all photos
on a sunny day etc.). Tom comes from a typical software engineering background with
little knowledge of computer vision and its underlying concepts. He knows that intelli-
gent computer vision web APIs are far more accessible than building a computer vision
engine from scratch, and opts for building his app using these cloud services instead.

Based on his experiences using similar cloud services, Tom would expect con-
sistency of the results from the same API and different APIs that provide the same
(or similar) functionality. As an analogy, when Tom writes the Java substring method
"doggy".substring(0, 2), he expects it to be the same result as the Swift equiva-
lent "doggy".prefix(3). Each and every time he interacts with the substring method
using either API, he gets "dog" as the response. This is because Tom is used to deter-
ministic, rule-driven APIs that drive the implementation behind the substring method.

Tom’s deterministic mindset results in three key differentials between a traditional
API and intelligent API:

(1) Given similar input, results differ between similar intelligent APIs. When Tom
interacts with intelligent APIs, he is not aware that each API provider trains their
own, unique ML model, both with disparate methods and datasets. These intelligent
APIs are, therefore, nondeterministic and data-driven; input images—even if they
contain the same conceptual objects—often output different results. Contrast this to
the substring method of traditional APIs; regardless of what programming language
or string library is used, the same response is expected by developers.

(2) Intelligent responses are not certain. When Tom interprets the response object
of an intelligent API, he finds that there is a ‘confidence’ value or ‘score’. This is
because the ML models that power intelligent APIs are inherently probabilistic and
stochastic; any insight they produce is purely statistical and associational [18]. Un-
like the substring example, where the rule-driven implementation provides certainty
to the results, this is not guaranteed for intelligent APIs. For example, a picture of
a husky breed of dog is misclassified as a wolf. This could be due to adversarial
examples [22] that ‘trick’ the model into misclassifying images when they are fully
decipherable to humans. It is well-studied that such adversarial examples exist in
the real world unintentionally [4, 12, 19].

(3) Intelligent APIs evolve over time. Tom may find that responses to processing an
image may change over time; the labels he processes in testing may evolve and
therefore differ to when in production. In traditional APIs, evolution in responses is
slower, generally well-communicated, and usually rare (Tom would always expect
"dog" to be returned in the substring example). This has many implications on
software systems that depend on these APIs, such as confidence in the output and
portability of the solution. Currently, if Tom switches from one API provider to
another, or if he doesn’t regularly test his app in production, he may begin to see a
very different set of labels and confidence levels.
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1.2 Research Motivation

These drawbacks bring difficulties to the intended API users like Tom. We identify a
gap in the software engineering literature regarding such drawbacks, including: lack of
best practices in using intelligent APIs; assessing and improving the reliability of APIs
for their use in end-products; evaluating which API is suitable for different developer
and application needs; and how to mitigate risk associated with these APIs. We focus
on improving reliability of intelligent APIs for use in end-products. The key research
questions in this paper are:

RQ1: Is it possible to improve reliability by merging multiple intelligent API results?
RQ2: Are there better algorithms for merging these results than currently in use?

Previous attempts at overcoming low reliability include triple-modular redundancy
[13]. This method uses three modules and decides output using majority rule. However,
in intelligent APIs, it is difficult to apply majority rule: these APIs respond with a list of
labels and corresponding scores. Moreover, disparate APIs ordinarily output different
results. These differences makes it hard to apply majority rule because type of outputs
are complex and disparate APIs output different result for the same input. Merging
search results is another technique to improve reliability [21]. It normalises scores of
different databases using a centralised sample database. Normalising scores makes it
possible to merge search results into a single ranked list. However, search responses are
disjoint, whereas they are not in the context of most intelligent APIs.

In this paper, we introduce a novel method to merge responses of intelligent APIs,
using image recognition APIs as our motivating example. Section 2 describes naive
merging methods and requirements. Section 3 gives insights into the structure of labels.
Section 4 introduces our method of merging computer vision labels. Section 5 compares
precision and recall for each method. Section 6 presents conclusions and future work.

2 Merging API Responses

Image recognition APIs have similar interfaces: they receive a single input (image)
and respond with a list of labels and associated confidence scores. Similarly, other
supervised-AI-based APIs do the same (e.g. detecting emotions from text and natu-
ral language processing [9, 24]. It is difficult to apply majority rule on such disparate,
complex outputs. While the outputs by multiple AI-based API endpoints is different
and complex, the general format of the output is the same: it follows a list of labels and
associated scores.

2.1 API Façade Pattern

To merge responses from multiple APIs, we introduce the notion of an API façade. It
is similar to a metasearch engine, but differs in their external endpoints. The façade
accepts the input from one API endpoint (the façade endpoint), propagates that input
to all user registered concrete (external) API endpoints simultaneously, then ‘merges’
outputs from these concrete endpoints before sending this merged response to the API
user. We demonstrate this process in fig. 1.
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Fig. 1. The user sends a request to the façade; this request is propagated to the relevant APIs.
Responses are merged by the façade and returned back to the user.

Although the model introduces more time and cost overhead, both can be mitigated
by caching results. On the other hand, the façade pattern provides the following benefits:

– Easy to modify: It requires only small modifications to applications, e.g. changing
each concrete endpoint URL.

– Easy to customise: It merges results from disparate concrete APIs according to
user’s preference.

– Improves reliability: It enhances reliability of the overall returned result by merg-
ing results from different endpoints.

2.2 Merge Operations

The API façade is applicable to many use cases. However, this paper focuses on APIs
that output a list of labels and scores, as is the case for many image recognition APIs.
Merge operations involve the mapping of multiple lists and associated scores, produced
by multiple APIs, to just one list. For instance, an image recognition API receives a bowl
of fruit as the input image and outputs [[apple, 0.9], [banana, 0.8]], where
the first item is the label and the second item is the score. Similarly, another computer
vision API outputs [[apple, 0.7], [cherry, 0.8]] for the same image. Merge
operations, therefore, merges these two lists into just one.

Naive ways of merging results could make use of max, min, and average operations
on the confidence scores. For example: (i) max merges results to [[apple, 0.9],

[banana, 0.8], [cherry, 0.8]]; (ii) min merges results to [[apple, 0.7]; (iii)
average merges results to [[apple, 0.8], [banana, 0.4], [cherry, 0.4]]. How-
ever, object labels in the results are natural language words in many cases; thus, max,
min, and average operations do not exploit label semantics – the conceptual meanings
of these labels – when conducting label merging. To improve the quality of the merged
results, we consider the meaning of these labels, as we describe below.

2.3 Merging Operators for Labels

Merge operations on labels are n-ary operations that map Rn to R, where Ri = {(li j,si j)}
is a response from endpoint i, and contains pairs of labels (li j) and scores (si j). Merge
operations on labels have the following properties:
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– Identity defines that merging single response should output same response. That is
R = merge(R) is always true.

– Commutativity defines that the order of operands should not change the result. That
is merge(R1,R2) = merge(R2,R1) is always true.

– Reflexivity defines that merging multiple same responses should output same re-
sponse. That is R = merge(R,R) is always true.

– Additivity defines that, for a specific label, the merged response should have higher
or equal score for the label if a concrete endpoint has a higher score. Let R =
merge(R1,R2) and R′ = merge(R′

1,R2) be merged responses. R1 and R′
1 are same,

except R′
1 has a higher score for label lx than R1. The additive score property re-

quires that R′ score for lx should be greater than or equal to R score for lx.

Max, min, and average operations in section 2.2 follow each of these rules as all
operations calculate the score by applying these operations on each score.

3 Graph of Labels

Image recognition APIs typically return a lists of labels (in most cases, an English word
or words) and associated scores. Lexical databases, such as WordNet [16], can therefore
be used to describe the ontology behind these labels’ meanings. Figure 2 is an example
of graph of labels and synsets. A synset is a grouped set of synonyms for the input word.
We label red nodes as labels from Endpoint 1, yellow nodes as labels from Endpoint
2, and blue nodes as synsets. As actual graphs are usually more complex, fig. 2 is a
simplified graph to illustrate the usage of associating labels from two concrete sources
to synsets.

3.1 Labels and synsets

The number of labels depends on input images and concrete API endpoints used. Ta-
ble 1 and fig. 3 show how many labels are returned from Google Cloud Vision [6],
Amazon Rekogition [1] and Microsoft Azure Computer Vision [15] image recognition
APIs, using 1,000 images from Open Images Dataset V4 [7] Image-Level Labels set.

Table 1. Number of labels

Endpoint Average number of labels Has synset No synset
Amazon 11.42±7.52 10.74±7.10 (94.0%) 0.66±0.87
Google 8.77±2.15 6.36±2.22 (72.5%) 2.41±1.93
Microsoft 5.39±3.29 5.26±3.32 (97.6%) 0.14±0.37

Labels from Amazon and Microsoft tend to have corresponding synsets. That means
these endpoints return common words that are found in WordNet. On the other hand,
Google’s labels have less corresponding synsets. Examples of labels without corre-
sponding synsets are car models and dog breeds. Google tries to identify objects in
greater detail.
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Fig. 2. Graph of labels from two concrete endpoints (red and yellow) and their associated synsets
to related both words.
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Fig. 3. Number of labels responded from our input dataset to three concrete APIs assessed.

3.2 Connected Components

A connected component (CC) is a subgraph in which there are paths between any two
nodes. In graphs of labels and synsets, CCs are clusters of labels and synsets with
similar meanings. For instance, there are two CCs in fig. 2. CC 1 in fig. 2 has beverage,
dessert, chocolate, hot chocolate, drink, and food labels from the red first endpoint and
coffee, hot chocolate, drink, caffeine, and tea labels from the yellow second endpoint.
Therefore, these labels are related to drinks. On the other hand, CC 2 in fig. 2 has cup
and coffee cup labels from the first red endpoint and cup, coffee cup, and tableware
labels from the yellow second endpoint. These labels are, therefore, related to cups.

Figure 4 shows a distribution of number of CCs for 1,000-image label detections
on Amazon, Google, and Microsoft APIs. The average number of CCs is 9.36± 3.49.
The smaller number of CCs means that most of labels have similar meanings, while the
larger number means that the labels are more disparate.

4 API Results Merging Algorithm

Our proposed algorithm to merge labels consists of four parts: (1) mapping labels to
synsets, (2) deciding the total number of labels, (3) allocating the number of labels to
CCs, and (4) selecting labels from CCs.

4.1 Mapping Labels to Synsets

Labels in responses are words in natural language and do not identify their intended
meanings. For instance, a label orange may represent the fruit, the colour, or the name
of the longest river in South Africa. To identify the actual meanings behind a label,
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Fig. 4. Number of connected components

the façade enumerates all synsets corresponding to labels. It then finds the most likely
synsets for labels by traversing WordNet links. For instance, if an API endpoint outputs
the orange and lemon labels, the façade regards orange as the fruit. If an API endpoint
outputs orange and nile labels, the façade regards orange as the river.

4.2 Deciding Total Number of Labels

The number of labels in responses from endpoints vary as described in section 3.1. The
façade decides the number of merged labels using the numbers of labels from endpoints.
A simple equation about number of labels is established.

min
i
(|Ri|)≤

Σi|Ri|
n

≤ max
i
(|Ri|)≤ Σi|Ri|

Where |R| is number of labels and scores in response, and n is number of endpoints.
In case of naive operations in section 2.2, equations following are true.

|mergemax(R1, . . . ,Rn)| ≤ min
i
(|Ri|)

max
i
(|Ri|)≤|mergemin(R1, . . . ,Rn)| ≤ Σi|Ri|

max
i
(|Ri|)≤|mergeaverage(R1, . . . ,Rn)| ≤ Σi|Ri|

The proposal uses bΣi|Ri|/nc to conform the necessary condition in section 4.3.

4.3 Allocating Number of Labels to Connected Components

The graph of labels and synsets is then divided into several CCs. The façade decides
how many labels are allocated for each CC. In fig. 5, there are three CCs. Square-shaped
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nodes are labels in responses from endpoints. Text within these label nodes describe
which endpoint outputs the label and score, for instance, “L-1a, 0.9” is label a from
endpoint 1 with a score 0.9. Circle-shaped nodes represent synsets, where the edges
between the label and synset nodes are the relationships between them. Edges between
synsets are links in WordNet.

L-1a, 0.9

L-1b, 0.8

L-1c, 0.7

L-2a, 0.9

L-2b, 0.8

L-2c, 0.7

Fig. 5. Allocation to connected components.

Allegorically, allocating the number of labels to CCs is similar to proportional rep-
resentation in a political voting system, where CCs are the political parties and labels
are the votes to a party. Several allocation algorithms are introduced in proportional rep-
resentation, for instance, D’Hondt method and Hare-Niemeyer method [17]. However,
there are differences from proportional representation in a political parties context. For
label merging, labels have scores and origin endpoints. This information may improve
the allocation algorithm. For instance, CCs supported with more endpoints should have
a higher allocation than CCs with fewer endpoints, and CCs with higher scores should
have a higher allocation than CCs with lower scores. We introduce an algorithm to
allocate number of labels to CCs. This allocates more to a CC with more supporting
endpoints and higher scores. The steps of the algorithm are:

1. Sort scores separately for each endpoint.
2. If all CCs have an empty score array or more, remove one, and go to step 2.
3. Select highest score for each endpoint. Calculate product of highest scores.
4. A CC with the highest product score receives an allocation. This CC removes every

first element from score array.
5. If requested number of allocation has been done, quit allocation. Otherwise, go to

step 2.

Tables 2 to 5 are examples of allocation iterations. In table 2, the façade sorts scores
separately for each endpoint. For instance, the first CC in fig. 5 has scores of 0.9 and
0.8 from endpoint 1 and 0.9 from endpoint 2. All CCs have a non-empty score array or
more, so the façade skips step 2. The façade then picks the highest scores for each end-
point and CC. CC 1 has the largest product of highest scores and receives an allocation.
In table 3, the first CC removes every first score in its array as it received an allocation
in table 2. In this iteration, the second CC has largest product of scores and receives an
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allocation. In table 4, the second CC removes every first score in its array. At step 2,
all the three CCs have an empty array. The façade removes one empty array from each
CC. In table 5, the first CC receives an allocation. The algorithm is applicable if total
number of allocation is less than or equal to maxi(|Ri|) as scores are removed in step 2.
The condition is a necessary condition.

Table 2. Allocation iteration 1

Scores Highest Product Allocated
[0.9, 0.8], [0.9] [0.9, 0.9] 0.81 0+1
[0.7], [0.8] [0.7, 0.8] 0.56 0
[], [0.7] [NA, 0.7] NA 0

Table 3. Allocation iteration 2

Scores Highest Product Allocated
[0.8], [] [0.8, NA] NA 1
[0.7], [0.8] [0.7, 0.8] 0.56 0+1
[], [0.7] [NA, 0.7] NA 0

Table 4. Allocation iteration 3

Scores Highest Product Allocated
[0.8], [] 1
[], [] 1
[], [0.7] 0

Table 5. Allocation iteration 4

Scores Highest Product Allocated
[0.8] [0.8] 0.8 1+1
[] [NA] NA 1
[0.7] [0.7] 0.7 0

4.4 Selecting Labels from CCs

For each CC, the façade applies average operator in section 2.2, and takes labels with
n-highest scores up to allocation in section 4.3.

4.5 Conformance to properties

Section 2.3 defines four properties: identity, commutativity, reflexivity, and additivity.
Our proposed method conforms to these properties: identity: the method outputs same
result if there is one response; commutativity: the method does not care about ordering
of operands; reflexivity: the allocations to CCs are same to number of labels in CCs;
and additivity: increases in score increases or does not change the allocation to the
corresponding CC.

5 Evaluation

5.1 Evaluation Method

To evaluate the merge methods, we merged image label detection results from three
representative image analysis API endpoints and compared these merged results against
human-verified labels. Images and human-verified labels are sourced from 1,000 randomly-
sampled images from Open Images Dataset V4 [7] Image-Level Labels test set.

The first three rows in table 7 are the evaluation of original responses from each
API endpoint. Precision, recall, and F-measure in table 7 do not reflect actual values:
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for instance, it appears that Google performs best at first glance, but this is mainly
because of Google’s label is similar to that of the Open Images Dataset label set.

The Open Images Dataset V4 uses 19,995 classes for labelling and human-verified
labels for the 1,000 images of the test set contain 8,878 of these classes. Table 6 shows
the correspondence between each APIs’ labels and the Open Images Dataset classes.
For instance, Amazon outputs 11,416 labels in total for 1,000 images. There are 1,409
unique labels in 11,416 labels. 1,111 labels out of 1,409 can be found in Open Images
Dataset classes. Amazon’s labels matches to Open Images Dataset classes at 78.9%
ratio, while Google has an outstanding matched percentage of 94.1%. This high match
is likely due to the Open Images Dataset also being provided by Google. An endpoint
with higher matched percentage has a more similar label set to the Open Images Dataset
classes. However, a higher matched percentage does not mean imply better quality of
an API endpoint; it will increase apparent precision, recall, and F-measure only.

The true and false positive (TP/FP) label averages as well as the TP/FP ratio is
shown in table 7. Where the TP/FP ratio is larger, the scores are more reliable. It is
possible to increase the TP/FP ratio intentionally by adding more false labels with low
scores. On the other hand, it is impossible to increase F-measure intentionally, because
increasing precision will decrease recall, and vice versa. Hence, the importance of the
F-measure statistic is critical here.

Let RA, RG, and RM be responses from Amazon, Google, and Microsoft, respec-
tively. There are four sets of operands, i.e., (RA,RG), (RG,RM), (RM,RA), and (RA,RG,RM).
Table 7 shows evaluation of each operands set. Table 8 shows averages of four operands
sets. Figure 6 shows comparison of F-measure of methods.

Fig. 6. F-measure comparison

5.2 Naive Operators

Results of min, max, and average operators are shown in tables 7 and 8 and fig. 6.
The min operator is similar to union operator of set operations, and outputs all labels



12 T. Ohtake et al.

Table 6. Matching to human-verified labels

Endpoint Total Unique Matched Matched %
Amazon 11,416 1,409 1,111 78.9
Google 8,766 2,644 2,487 94.1
Microsoft 5,392 746 470 63.0

Table 7. Evaluation result

Operands Operator Precision Recall F-measure TP average FP average TP/FP ratio
A 0.217 0.282 0.246 0.848±0.165 0.695±0.185 1.220
G 0.474 0.465 0.469 0.834±0.121 0.741±0.132 1.126
M 0.263 0.164 0.202 0.858±0.217 0.716±0.306 1.198
A, G Min 0.771 0.194 0.310 0.805±0.142 0.673±0.141 1.197
A, G Max 0.280 0.572 0.376 0.850±0.136 0.712±0.171 1.193
A, G Average 0.280 0.572 0.376 0.546±0.225 0.368±0.114 1.485
A, G D’Hondt 0.350 0.389 0.369 0.713±0.249 0.518±0.202 1.377
A, G Hare-Niemeyer 0.344 0.384 0.363 0.723±0.242 0.527±0.199 1.371
A, G Proposal 0.380 0.423 0.401 0.706±0.239 0.559±0.190 1.262
G, M Min 0.789 0.142 0.240 0.794±0.209 0.726±0.210 1.093
G, M Max 0.357 0.521 0.424 0.749±0.135 0.729±0.231 1.165
G, M Average 0.357 0.521 0.424 0.504±0.201 0.375±0.141 1.342
G, M D’Hondt 0.444 0.344 0.388 0.696±0.250 0.551±0.254 1.262
G, M Hare-Niemeyer 0.477 0.375 0.420 0.696±0.242 0.591±0.226 1.179
G, M Proposal 0.414 0.424 0.419 0.682±0.238 0.597±0.209 1.143
M, A Min 0.693 0.143 0.237 0.822±0.201 0.664±0.242 1.239
M, A Max 0.185 0.318 0.234 0.863±0.178 0.703±0.229 1.228
M, A Average 0.185 0.318 0.234 0.589±0.262 0.364±0.144 1.616
M, A D’Hondt 0.271 0.254 0.262 0.737±0.261 0.527±0.223 1.397
M, A Hare-Niemeyer 0.260 0.245 0.253 0.755±0.251 0.538±0.218 1.402
M, A Proposal 0.257 0.242 0.250 0.769±0.244 0.571±0.205 1.337
A, G, M Min 0.866 0.126 0.220 0.774±0.196 0.644±0.219 1.202
A, G, M Max 0.241 0.587 0.342 0.857±0.142 0.714±0.210 1.201
A, G, M Average 0.241 0.587 0.342 0.432±0.233 0.253±0.106 1.712
A, G, M D’Hondt 0.375 0.352 0.363 0.678±0.266 0.455±0.208 1.492
A, G, M Hare-Niemeyer 0.362 0.340 0.351 0.693±0.260 0.444±0.216 1.559
A, G, M Proposal 0.380 0.357 0.368 0.684±0.259 0.484±0.200 1.414

Table 8. Average of evaluation result

Operator Precision Recall F-measure TP/FP ratio
Min 0.780 0.151 0.252 1.183
Max 0.266 0.500 0.344 1.197
Average 0.266 0.500 0.344 1.539
D’Hondt 0.361 0.335 0.346 1.382
Hare-Niemeyer 0.361 0.336 0.347 1.378
Proposal 0.257 0.242 0.360 1.289
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of operands. The precision of the min operator is always greater than any precision
of operands, and the recall is always lesser than any precision of operands. Max and
average operators are similar to intersection operator of set operations. Both operators
output intersection of labels of operands. There is no clear relation to precision and
recall of operands. Since both operators have same precision, recall, and F-measure,
fig. 6 groups them into one. The average operator performs well on TP/FP ratio. Most
of same labels from multiple endpoints are true positives. In any cases of four operand
sets, all naive operators’ F-measures are between F-measures of operands. None of
naive operators improve results by merging responses from multiple endpoints.

5.3 Traditional Proportional Representation Operators

There are many existing allocation algorithms [17] in proportional representation, e.g.,
D’Hondt and Hare-Niemeyer methods. These methods may be replacements of those
in section 4.3. Other steps, i.e. sections 4.1, 4.2 and 4.4, are same as for our proposed
technique. Tables 7 and 8 and fig. 6 show result of these traditional proportional repre-
sentation algorithms. Averages of F-measures by traditional proportional representation
operators are almost equal to that of max and average operators. It is worth noting that
merging M and A results in a better F-measure than each F-measure of M and A indi-
vidually. Because endpoints M and A are not biased to human-verified labels, situations
in the real world should, therefore, be similar to the case of M and A. So, RQ1 is true.

5.4 New Proposed Label Merge Technique

As shown in table 8, our proposed new method performs best in F-measure. Instead,
TP/FP ratio is less than average, D’Hondt, and Hare-Niemeyer. As described in sec-
tion 5.1, we argue that F-measure as more important than TP/FP ratio in this case.
Therefore, RQ2 is true. Shown in table 7, our proposed new method improves the re-
sults when merging M and A non-biased endpoints. It is similar to traditional propor-
tional representation operators, but performs less well than them. However, it performs
better on other operand sets, and performs best on overall as shown in fig. 6.

5.5 Performance

We used AWS EC2 m5.large instance (2 vCPUs, 2.5 GHz Intel Xeon, 8 GiB RAM);
Amazon Linux 2 AMI (HVM), SSD Volume Type; Node.js 8.12.0. It takes 0.370 sec-
onds to merge responses from three endpoints. Computational complexity of the al-
gorithm in section 4.3 is O(n2), where n is total number of labels in responses. The
estimation assumes that the number of endpoints is a constant. Complexity of step 1 in
section 4.3 is O(n logn), because the worst case is that all n labels are from one single
endpoint and all n labels are in one CC. Complexity of step 2 to 5 is O(n2) because
number of CCs is less than or equal to n and number of iterations are less than or equal
to n. As table 1 shows, the averaged total number of three endpoints is 25.58. Most of
time for merging is consumed by looking up WordNet synsets (section 4.1). The API
façade calls APIs on actual endpoints in parallel. It takes about 5 seconds, which is
much longer than 0.370 seconds taken for the merging of responses.
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6 Conclusions and Future Work

In this paper, we propose a method to merge responses from intelligent APIs. Our
method merges API responses better than naive operators and other proportional repre-
sentation methods (i.e., D’Hondt and Hare-Niemeyer). The average of F-measure of our
method marks 0.360; the next best method, Hare-Niemeyer, marks 0.347. Our method
and other proportional representation methods are able to improve the F-measure from
original responses in some cases. Merging non-biased responses results in 0.250 of F-
measure, while original responses have an F-measure between 0.246 and 0.242. Users
can improve their applications’ precision by small modification, e.g. changing endpoint
URL from API endpoints to façades. Performance impact by applying façades is small,
because overhead in façades is much smaller than API invocation. The proposal method
conforms identity, commutativity, reflexivity, and additivity properties. These properties
are advisable for integrating multiple responses.

Our idea of a proportional representation approach can be applied to other intelli-
gent APIs. If response type is a list of entity and score, and if there is a way to group
entities, a proposal algorithm can be applied. The opposite approach is to improve re-
sults by inferring labels. Our current approach picks some of the labels returned by
endpoints. intelligent APIs are not only based on supervised machine learning. Thus
to cover a wide range of intelligent APIs, it is necessary to classify and analyse APIs,
and establish a method to improve results by merging. Currently graph structures of
labels and synsets (fig. 2) are not considered when merging results. Propagating scores
from labels could be used, losing the additivity property but improving results for users.
There are many ways to propagate scores. For instance, setting propagation factors for
each link type would improve merging and could be customised for users’ preferences.
It would be possible to generate an API façade automatically. APIs with same func-
tionality have same or similar signatures. Machine-readable API documentation, for
instance, OpenAPI Specification, will help a generator to build an API façade.
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