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Abstract. In an edge computing environment, edge servers are deployed
at base stations to offer highly accessible computing capacities and ser-
vices to nearby users. Data caching is thus extremely important in edge
computing environments to reduce service latency. The optimal data
caching strategy in the edge computing environment will minimize the
data caching cost while maximizing the reduction in service latency. In
this paper, we formulate this edge data caching (EDC) problem as a con-
strained optimization problem (COP), prove that the EDC problem is
NP-complete, propose an optimal approach named IPEDC to solve the
EDC problem using the Integer Programming technique, and provide a
heuristic algorithm named LGEDC to find near-optimal solutions. We
have evaluated our approaches on a real-world data set and a synthesized
data set. The results demonstrate that IPEDC and LGEDC significantly
outperform two representative baseline approaches.
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1 Introduction
Over the last decade, the world has witnessed an exponential growth of mobile
traffic over the internet, which is predicted to expand by 1,000 times over the
coming decade with a huge increase in Internet of Things (IoT) connected devices
[1]. The enormous network traffic load often causes network congestion that
significantly impacts users’ quality of experience, especially service latency. To
attack this challenge, edge computing, a new distributed computing paradigm,
has emerged to allow computing capacities such as CPUs, memory and storage
to be distributed to edge servers at the edge of the cloud [2]. Each edge server is
powered by one or more physical servers and deployed at base stations that are
geographically close to users. Mobile and IoT app vendors can hire computing
capacities on edge servers so that they can host their services to offer their app
users low service latency [3]. Such services are referred to as edge services in the
remainder of this paper.
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As an increasing number of mobile devices start to access edge services,
a large proportion of the rapidly growing mobile traffic will go through edge
servers. Enormous data will be transmitted by edge servers. Caching data, es-
pecially popular data such as viral videos and photos from Facebook, on edge
servers will minimize the latency in users’ data retrieval. Users can retrieve data
from a nearby edge server instead of retrieving it from the cloud if the data is
cached on that edge server. This is especially important for latency-sensitive ap-
plications, e.g., gaming, navigation, augmented reality, etc. Popular data often
accounts for a large percentage of the mobile traffic data over the internet. Thus,
caching popular data on edge servers can significantly reduce the traffic load on
the internet backbone. It is expected to reduce mobile traffic data by 35% [4].
From an app vendor’s perspective, it can also considerably reduce data transfer
costs by decreasing the volume of data transferred from the cloud to its users.

Given a piece of popular data, a straightforward solution is to cache it on all
the edge servers in a particular area for nearby app users to access. This way,
the latency in all app users’ data retrieval can be minimized. However, based on
the pay-as-you-go pricing model, the app vendor will need to hire substantial
resources on edge servers for caching the data. This incurs excessive caching
cost and is impractical for most, if not all, app vendors. Thus, from an app
vendor’s perspective, it is critical to find an optimal data caching strategy that
minimizes the caching cost incurred while guaranteeing the low latency in its
users’ data retrieval. We refer to this data caching problem in the edge computing
environment as an edge data caching (EDC) problem. While existing research
investigates data caching in the edge computing environment from either the
network infrastructure providers or users’ perspectives, we make the first attempt
to study the EDC problem based on graph from the app vendor’s perspective.

In this work, we make the following major contributions:

– We model and formulate the EDC problem as a constrained optimization
problem (COP) from the app vendor’s perspective.

– We prove that the EDC problem is NP-complete based on the minimum
dominating set problem.

– We develop an optimal approach named IPEDC for solving the EDC problem
with the Integer Programming technique.

– We develop a heuristic approach named LGEDC for finding near-optimal
solutions to the EDC problem efficiently in large-scale scenarios.

– We evaluate our approaches against two representative baseline approaches
with experiments conducted on both real-world data and synthesized data.

The rest of paper is organized as follows. Section 2 motivates this research
with an example. Section 3 discusses our approaches for solving the EDC prob-
lem. Section 4 evaluates the approaches experimentally. Section 5 reviews the
related work. Section 6 concludes this paper and points out future work.

2 Motivating Example

Video services accounted for 54 percent of the total internet traffic in 2017 and
the ratio is expected to grow to 79 percent by 2022 [5]. Thus, a representative
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example of data cached on edge servers is video data. App vendors such as
YouTube currently store their video data on their servers in the cloud. When
a video goes viral over the internet, a large number of mobile YouTube users
make requests for it. This creates immense pressure on the service in the cloud.
Caching this piece of data on edge servers, especially in areas with high user
density, brings it closer to the users and reduces the latency of data retrieval.

In an edge computing environment, edge servers can communicate with their
neighbor edge servers and share their computing capacities and storage via high-
speed links [6] (server adjacency constraint). This allows workloads in a partic-
ular area to be balanced across the edge servers covering that area [6]. Thus, the
edge servers in a particular area can be modeled as a graph where a node repre-
sents an edge server and an edge represents the link between two edge servers.
Moreover, the coverage areas of adjacent edge servers often intersect to avoid
blank areas not covered by any edge servers. A user in the intersection area can
connect to one of the edge servers covering this user (server coverage constraint).

Fig. 1: An example EDC scenario

Fig. 1 presents an example area with six edge servers, i.e., {v1, ..., v6}, each
covering a specific geographic area. The number next to each edge server is the
number of app users covered by that edge server. Let us assume a YouTube video
goes viral and it is predicted that a large number of mobile YouTube users in
this area will request this video. Please note that there is a large body of research
work available on the prediction of popular videos [7] and thus in this research we
assume that the number of mobile YouTube users who will request this popular
video can be predicted. From YouTube’s perspective, caching this video on all
the edge servers can easily accommodate all the mobile YouTube users in this
area. However, it is usually not cost-effective considering that YouTube will pay
for the resources on the edge servers hired for caching the data, e.g., storage and
bandwidth. Thus, the data caching strategy must minimize the data caching
cost and ensure that all the app users in this area can retrieve the video from
one of the edge servers. This edge data caching (EDC) problem is inherently a
constrained optimization problem (COP).

The data caching cost and data retrieval latency can be evaluated using a
variety of metrics. A user’s data retrieval latency consists of two components: the
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latency between the user and its nearby edge server, and the latency between
edge servers. As the first component is very small and not influenced by the
data caching strategy, it is not considered in the formulation of the data caching
strategy. To quantify the optimization objective and constraints in the COP in
a generic manner, we measure the data caching cost using the number of cached
data replicas and the data retrieval latency using the number of hops, i.e., links
between edge servers. For example, the cost of caching the video on all the six
edge servers in Fig. 1 is 6. The server adjacency constraint requires that all the
users must be able to retrieve the data from an edge server less than two hops. For
example, this constraint holds for the u in the top left corner if the video is cached
on v1, v2 or v4 and it does not hold if the video is only cached on v3, v5 and/or
v6. The rationale behind this constraint is that edge servers can communicate
with their neighbor edge servers, but they are not designed or linked to route
(potentially large) data across multiple hops. Based on the generic metrics for
data caching cost and data retrieval latency, specific pricing policies and latency
models can be integrated into our COP model. For example, knowing the size of
the data to be cached and the prices for the storage and bandwidth for caching
the data, the data cache cost can be calculated based on the number of cached
data replicas.

There might be multiple caching strategies that minimize the data caching
cost while fulfilling the latency constraint for every app user. Different edge
servers usually cover different numbers of app users, depending on the user den-
sity in their coverage areas. Thus, one of those caching strategies is to maximize
the total latency reduction across all the covered app users. From YouTube’s
perspective, the other optimization objective is thus to maximize the benefit
produced by the cached data replicas, which is measured by the total reduction
in data retrieval latency for all the app users.

The model and approach proposed in this research are generic and applicable
to various apps. Thus, data are cached on edge servers in whole and we do not
consider the situation where data can be partially cached, e.g., video segments.
In addition, the scale of the EDC problem in the real-world scenarios can be
much larger than the example presented in Fig. 1. Finding an optimal solution
to a large-scale EDC problem is not trivial.

3 Our Approach

3.1 Definitions
In this research, the n edge servers in a particular area are modeled as a graph.
For each edge server vi, the graph has a corresponding node. For each pair
of linked edge servers (vi, vj), the graph has a corresponding edge et. We use
G(V,E) to represent the graph, where V is the set of nodes in G and E is the set
of edges in G. In the remainder of this paper, we will speak inter-changeably of an
edge server and its corresponding node in graph G, denoted as v. The notations
adopted in the paper are summarized in Table 1.

As discussed in Section 2, we formulate the EDC problem in a generic manner
by measuring the data retrieval latency by the number of hops between edge
servers and the data caching cost by the number of cached data replicas.
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Compared with cloud’s virtually unlimited computing capacities, an edge
server usually has limited computing capacities due to its size limit [8, 9]. At
runtime, many app vendors will need to hire the computing capacities for hosting
their services and caching their data for their own app users. Thus, an app vendor
is unlikely to hire a huge amount of computing capacities on an edge server for
caching a lot of its data. It is more cost-effective for most, if not all, app vendors
to cache the most popular data on edge servers to serve its nearby users. Thus,
in this paper, we investigate the scenarios where data is processed and cached
individually. The model and the approaches proposed will build the foundation
for more sophisticated edge caching scenarios, e.g., caching multiple data.

Table 1: Summary of Notations

Notation Description

bu the maximum benefit for user u
bu,j the benefit of caching replica on server vj for app user u
CU the set of users covered by the selected edge server set S
cui the set of users covered by edge server vi
di,j the distance from server vi to server vj
dT the threshold of distance
du the minimum distance from app user u to retrieve replica
E = {e1, e2, ..., em} finite set of links between edge servers
G the graph presenting a particular area
R = {r1, r2, ..., rn} the set of binary variables indicating cache replicas on edge

servers
S the set of selected servers to cache data replica
U = {u1, u2, ..., uk} finite set of users
V = {v1, v2, ..., vn} finite set of edge servers

Given a piece of data and a set of edge servers vi (1 ≤ i ≤ n), a data caching
strategy is a vector R =< r1, ..., rn >, where ri (1 ≤ i ≤ n) denotes whether the
data is cached on edge server vi:

ri =

{
0 if data is not cached on edge server vi

1 if data is cached on edge server vi
(1)

In graph G, the distance between two nodes vi and vj is the number of hops
on the shortest path between them. Thus, given an app user u, its data retrieval
latency is measured by the number of hops between the edge server covering u
and the nearest edge server with the data in its cache.

du = min{di,j , rj = 1, vj ∈ V },∀u ∈ Ui (2)

The main objective of edge data caching is to ensure a low data retrieval
latency for app users. Thus, R must fulfill the latency constraint - every app
user must be able to retrieve the data from an edge server within a certain
number of hops:

du < dT ,∀u ∈ Ui (3)

As discussed in Section 2, each edge server can only communicate with its
neighbors. Thus, there is dT = 2. However, this can be relaxed, e.g., dT = 3, 4, ...,
if the high latency incurred is considered acceptable by the app vendor and new
techniques enable data to be transmitted through multiple edge servers rapidly.
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To evaluate and compare different data caching strategies, we use the con-
cept of data caching benefit, which is calculated based on the reduction in data
retrieval latency measured by the number of hops reduced by cached data. The
caching benefit produced by caching data on vj for user u covered by vi denoted
by bu,j , is calculated as follows:

bu,j =

{
0 if di,j ≥ dT

dT − di,j if di,j < dT
(4)

In the edge computing environment, an app user u ∈ U might be covered by
multiple edge servers. App user u can retrieve the data from any of those edge
servers that have the data in the cache. Thus, the data caching benefit produced
by the data caching strategy for an app user u is:

bu = max{rj ∗ bu,j , vj ∈ V } (5)

From the app vendor’s perspective, one of the optimization objectives is to
minimize the data caching cost incurred by R and measured by the number of
cached data replicas:

minimize cost(R) (6)

The second optimization objective is to maximize the data caching benefit,
measured by the total reduction in all users’ data retrieval latency produced by
R based on (5):

maximize benefit(R) (7)

3.2 Edge Data Caching Optimal Model

The EDC problem can be modeled as a constrained optimization problem (COP).
One of the two optimization objectives can be prioritized over the other with
the Lexicographic Goal Programming technique, depending on the app vendor’s
preference.

A COP consists of a finite set of variables X = x1, , xn, with domain D1, ..., Dn

listing the possible values for each variable in X, and a set of constraints C =
c1, c2, , ct over X. A solution to a COP is an assignment of a value to each vari-
able in X from its domain such that all constraints in C are satisfied. The COP
model for the EDC problem is formally expressed as follows.

For a graph G = (V,E), where V = {v1, .., vn, } and E = {e1, ..., em}, there
are a set of variables R = {r1, .., rn}, where D(ri) = {0, 1},∀i ∈ {1, ..., n}, ri
being 1 if the a data replica is cached on the ith node, 0 otherwise. The constraints
for the COP model are:

bu = max(ri ∗ bu,i),∀u ∈ {1, ..., k},∀i ∈ {1, ..., n} (8)

1 ≤ bu ≤ 2,∀u ∈ {1, ..., k} (9)

Constraint family (8) is converted from (5). It ensures that every app user
will always retrieve the data from the nearest edge server. Constraint family (9)
enforces the latency constraint to ensure that every app user can retrieve the
data from an edger server within 2 hops.

There might be multiple solutions fulfilling (8) and (9). In Fig. 2(a) and Fig.
2(b), two possible data caching strategies are R1 = {0, 1, 1, 1, 0, 0}, which caches
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(a) Strategy R1 (b) Strategy R2 (c) Strategy R3

Fig. 2: Example Data Caching Strategies
the data on v1, v2, and v3 and R2 = {1, 0, 0, 0, 0, 1}, which caches the data on v1
and v6. Both R1 and R2 fulfill (8) and (9). However, R2 caches two data replicas,
incurring a lower data caching cost than R1. Thus, the below objective function
that minimizes the total number of data replicas cached over G is included in
the COP model to capture the app vendor’s first optimization objective:

min

n∑
i=1

ri (10)

The app vendor’s second optimization objective also needs to be captured
by the COP model. Let us assume two solutions as demonstrated in Fig. 2(b)
and Fig. 2(c), R2 = {1, 0, 0, 0, 0, 1}, which caches the data on v1 and v6, and
R3 = {0, 1, 0, 1, 0, 0}, which caches the data on v2 and v4, both fulfilling the
latency constraint and achieving the app vendor’s first optimization objective.
However, compared with v1 and v6, v2 and v4 cover more app users, 39 versus 13
in total. Thus, R3 allows more app users to retrieve the data from edge servers
directly. Thus, from the app vendor’s perspective, R3 produces more caching
benefits than R2 at the same data caching cost. The below objective function
that maximizes the data caching benefits of all app users based on (5) is included
in the COP model to capture the app vendor’s second optimization objective:

max

k∑
u=1

bu (11)

Integer Programming problem solvers, e.g., IBM CPLEX Optimizer5 and
Gurobi6, can be employed to solve the above COP. The optimal solution is the
data strategy that achieves both (10) and (11) while fulfilling (8) and (9). In
this paper, objective (10) (minimize the total number of data replicas) is prior-
itized over objective (11) (maximize the data caching benefits) as an example
for discussion. In real-world applications, objective (11) can be given a higher
priority than (10) if the app vendor is willing to minimize its app users’ latency
at a high data caching cost.

Given multiple data to be cached over time, multiple COPs need to be solved
to find one data caching strategy for each piece of data. Those COPs share the
same G. Thus, the shortest distance between every two nodes in G can be pre-
computed offline to facilitate rapid calculation of (2) as well as app users’ cache
benefits (5) at runtime.

5 https://www.ibm.com/analytics/cplex-optimizer
6 http://www.gurobi.com/
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3.3 Problem Hardness

In this section, we demonstrate that the COP of EDC isNP-complete by proving
the following theorems.

Theorem 1. The COP of EDC is in NP.
Proof. As there are (nk + k) constraints in total, any solution to the COP can
be validated in polynomial time by checking whether the solution satisfies the
constraint group (8) and (9). Thus, the COP of EDC is in NP.

Theorem 2. The COP of EDC is NP-complete.
Proof. To prove this problem is NP-complete, we introduce the minimum dom-
inating set problem (MDS). MDS problem is known to be NP-complete. Given
an undirected graph G = (V,E), where |V | = n and |E| = m. The metrics Cn,n

presents the connection between vertices. Ci,j = 1 if vi and vj are connected,
otherwise Ci,j = 0. The formulation is displayed below:

object : min

n∑
i=1

vi (12a)

s.t. : vi ∈ {0, 1}, i = {1, .., n} (12b)
n∑

j=1

Ci,j ≥ 1,∀i ∈ {1, ..., n} (12c)

Now we prove that the minimum dominating set problem can be reduced to
an instance of the EDC problem. The reduction is done in two steps: 1) let each
edge server cover only one app user; 2) let each app user be covered by only
one edge server. Due to the reduction, objective (8) can be ignored because the
total user benefits are always the same with the same number of servers selected
for caching this data. Given an instance MDS(v, e, Cn,n), we can construct an
instance EDC(r, e, Bn,k) with the reduction above in polynomial time while
|r| = |v| and n = k, where Bn,k is the benefit matrix from (4). In this case, any
solution s satisfying objective (12a) and constraint (12b) also satisfies objective
(10). Moreover, the constraint (12c) means that for each vertex vi not in the
solution s, there exists at least one neighbour of vi in s. From this point, user
u covered by vertex vi can obtain benefit bu ≥ 1. Thus, if the solution s fulfills
constraint (12c), it also fulfills constraints (8) and (9). Therefore, the COP of
EDC is reducible from MDS and it is NP-complete.

3.4 A Near-Optimal Algorithm

Finding the optimal solution to the NP-complete EDC problem is intractable in
large-scale scenarios. Thus, this section proposes a heuristic algorithm for finding
a near-optimal solution to large-scale EDC problems efficiently.

A naive and straightforward heuristic is to always cache data on the edge
server with the most app users. However, selecting an edge server with many
neighbor edge servers allows the app users covered by those neighbor edge servers
to retrieve cached data within one hop. Based on this heuristic, we present a link-
oriented greedy algorithm, namely LGEDC, that always selects the node with
the most edges in G to cache the data. The pseudo code is presented in Algorithm
1. In the worst-case scenario, LGEDC selects no more than n edge servers, while
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the computational complexity of the function selectMaximumEdgsServer is
O(n). Thus, the computational complexity of LGEDC is O(n2).

EDC problem has two objectives (10) and (11). Here, we select the prior-
itized objective (10) (minimize the total number of data replicas) to calculate
the approximation ratio of LGEDC. The approximation ratio can be calculated
based on Theorem 3.

Theorem 3. LGEDC is O(n)-approximation.

Proof. Let us assume that the optimal solution OPT selects k edge servers to
cache data. Fig. 3 presents a worst-case EDC scenario, where n edge servers are
linked as a circle and each edge server covers its own group of distinct app users.
In this case, Algorithm 1 will select v1, v2, ..., vn−2 to cache data, as the app users
in vn covered by vn can be served by v1, the app users covered by vn−1 can be
served by vn−2. The solution S of LGEDC selects at most n− 2 edge servers to

cache data. Thus, there is |S|
|OPT | = n−2

k , and LGEDC is O(n)-approximation.

Algorithm 1 LGEDC Algorithm

1: Initialization:
2: CU, S ← ∅
3: End of initialization
4: repeat
5: v ← selectMaximumEdgesServer()
6: S ← S ∪ {v}
7: CU ← CU ∪ cui

8: until CU = U Fig. 3: The worst-case in LGEDC

4 Experimental Evaluation

We conducted two sets of experiments to evaluate the performance of IPEDC
and LGEDC. The COP discussed in Section 3 is solved with IBM’s CPLEX
Optimizer. All the experiments are conducted on a machine equipped with Intel
Core i7-8550 processor (8 CPUs, 1.8GHz) and 8GB RAM, running Windows 10.

4.1 Baseline Approaches

In these experiments, we evaluate the performance of our approaches against two
representative baseline approaches, namely Random and Greedy-Covered-Users:

– Random: This approach randomly selects edge servers, one after another, to
cache data until the latency constraint (3) is fulfilled.

– Greedy-Covered-Users (GU): This approach always selects the edge server
that covers the most app users to cache data until the latency constraint (3)
is fulfilled.

4.2 Experimental Settings

Data Sets: Two sets of experiments are conducted, one on the public real-world
EUA data set7 [2] and the other on a synthetic data set. The latter is synthesized
to simulate more general EDC scenarios. In the experiments on the synthesized

7 https://github.com/swinedge/eua-dataset
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data set, a certain number of edge servers are randomly distributed within a
particular area with app users generated also randomly. In the experiments,
edges are randomly generated according to the edge density to ensure the graph
is connected.

Parameter Settings: To comprehensively evaluate IPEDC and LGEDC,
we vary two parameters in the experiments to simulate different EDC scenarios,
as presented in Table 2. This way, we can also evaluate how the changes in the
parameters impact the performance of our approaches. Every time a parameter
varies, the experiment is repeated 100 times and the results are averaged:

– The number of edge servers (n). This parameter impacts the size of graph
G and varies from 10 to 40 in steps of 10.

– Edge density (d). In the second set of experiment,s given n edge servers in a
particular area, a total of e edges are generated randomly according to the
edge density calculated with d = e/n. This parameter impacts the density
of graph G and varies from 1 to 3 in steps of 0.5.

Performance Metrics: Four metrics are used in the experiments for the
evaluation, three for effectiveness and one for efficiency: (1) Data Caching Cost
cost, the lower the better; (2) Data Caching Benefit benefit, the higher the
better; (3) Benefit per Data Replica bpr, the higher the better; (4) Computation
Overhead time, the lower the better.

According to (11), cost is calculated by summing the benefits of all app users.
Thus, to stabilize the impact of the number of app users, we always select or
generate a total of 100 app users in the experiments set #2.

Table 2: Parameter Settings

Number of Edge Servers Edge Density Data Set

Set #1 10, 20, 30, 40 1 Real-World
Set #2.1 10, 20, 30, 40 1 Synthetic
Set #2.2 10 1, 1.5, 2, 2.5, 3 Synthetic

4.3 Experimental Results

The results of the experiments are shown in Fig. 4, Fig. 5 and Fig. 6, corre-
sponding to Set #1, #2.1 and #2.2.

Effectiveness: Fig. 4 presents the results of experiment set #1. Overall, of all
the four approaches, IPEDC achieves the highest benefit per replica at
the lowest data caching cost, while LGEDC is the second lowest in cost
with the second highest in benefit per data replica. Fig. 4(b) shows that
IPEDC achieves the lowest data caching benefit. In the experiments, objective
(10) is prioritized over (11). With the priority to minimize the data caching cost,
retrieving data from edge servers via one hop is more preferable. Thus, IPEDC
will aim for a solution that barely fulfills (9), i.e., a solution that suffices to allow
the most users to retrieve data from edge servers via one hop. Fig. 4(a) shows
that the average data caching costs achieved by IPEDC and LGEDC
are much lower than other two approaches, 7.71 for IPEDC and 14.43
for LGEDC versus 19.44 for GU and 19.14 for Random. Fig. 4(a) also shows
that, as the number of edge servers increases from 10 to 40, the data caching
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cost achieved by IPEDC increases from 3.48 to 11.14 on average, much slower
than LGEDC (5.01 to 24.01), Random (6.78 to 31.98) and GU (6.57 to 32.7).
Fig. 4(b) shows that the increase in the number of edge servers will increase the
data caching benefits achieved by all four approaches, from 497.13 to 1164.28
for IPEDC, 530.30 to 1289.99 for LGEDC, 612.17 to 1397.02 for GU and 579.48
to 1368.11 for Random. Fig. 1(c) demonstrates the significant advantage
of IPEDC over the other approaches in achieving cost-effective data
caching strategies. On average, it outperforms LGEDC by 54.54%, GU by
84.09% and Random by 90.83%. As the number of edge servers increases, the
benefits per replica achieved by all approaches decrease. The increase in the
number of edge servers deployed in a specific area increases the connectivity
between the edge servers. This increases app users’ chances of retrieving data
via one hop, which lowers the average benefit produced by each data replica.

(a) cost vs. n (b) benefit vs. n (c) bpr vs. n (d) time vs. n

Fig. 4: Experiment Set #1

(a) cost vs. n (b) benefit vs. n (c) bpr vs. n (d) time vs. n

Fig. 5: Experiment Set #2.1

(a) cost vs. d (b) benefit vs. d (c) bpr vs. d (d) time vs. d

Fig. 6: Experiment Set #2.2

Fig. 5 depicts the results from experiment Set # 2.1. Overall, IPEDC
achieves the highest data per replica at the lowest data caching cost
again. Its advantage over the other approaches is significant. In this set of ex-
periments, the edge servers are set up in a similar way as Set #1. Therefore, the
results shown in Fig. 5(a) are similar to those shown in Fig. 4. However, Fig. 5(b)
shows that the data caching benefit does not increase with the increase in
the number of edge servers. The reason is that, unlike experiment Set #1, the
number of app users in experiment Set #2.1 does not increase. Thus, the data
caching benefit does not increase accumulatively as in Fig. 4(b). This is also the
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same reason for the rapid decrease in the benefit per data replica demonstrated
in Fig. 5(c).

Fig. 6 shows the results in experiment Set #2.2 where the graph density
varies. In terms of the average data caching cost and benefit per data replica,
IPEDC outperforms the other approaches with large margins, 44.17%
against LGEDC, 55.81% against GU and 56.77% against Random on average
in data caching cost, 45.85% against LGEDC, 83.25% against GU and 89.30%
against Random on average in benefit per data replica. Interestingly, Fig. 6
shows that the edge density impacts the approaches in a very different
way from the number of edge servers. Fig. 6(a) shows that as the edge density
increases from 1.0 to 3.0, the data caching cost achieved by IPEDC decreases
from 2.92 to 1.47. This is because the increase in the edge density allows each
edge server to be linked to more edge servers. This increases the app users’
chances of retrieving data from edge servers via one hop. IPEDC does not need
to cache as many data replicas to ensure that all app users are served by edge
servers within one hop. As a result, the average data caching cost decreases. For
the same reason, the data caching benefit decreases, as demonstrated in Fig.
6(b). The increase in the connectivity between edge servers also allows more app
users to be able to retrieve data via one hop. As a result, the benefit per data
replica increases, as demonstrated in Fig. 6(c), from 52.84 to 96.60 for IPEDC,
from 32.70 to 75.25 for LGEDC, from 29.82 to 57.46 for GU and from 27.74 to
52.73 for Random.

Overall, IPEDC significantly and consistently outperforms all other
approaches, with LGEDC second, in formulating cost-effective data caching
strategies, especially in EDC scenarios where edge servers are highly connected.

Efficiency: Fig. 4(d), Fig. 5(d) and Fig. 6(d) present the average computation
times taken by the four approaches to find a solution to the EDC problem. We
can see in Fig. 4(d) and Fig. 5(d) that the computation overhead of IPEDC
increases rapidly when the number of edge servers increases. When there are 40
edge servers to consider, IPEDC takes 1-2 seconds to find the optimal solution in
Fig. 4(d). This excessive computation overhead is inevitable in large-scale EDC
scenarios because IPEDC tries to find the optimal solution to the NP-complete
EDC problem. Thus, IPEDC is suitable for solving EDC problems with
reasonable sizes, while LGEDC is suitable for solving large-scale EDC
problems. The results in Fig. 6(d) indicates that IPEDC is also very efficient
in EDC scenarios where edge servers are highly connected.

4.4 Threats to Validity

Construct Validity. The major threat to construct validity is the two baseline
approaches used for comparison. Due to the innovation of the EDC problem
in the edge computing environment, we chose two basic naive approaches as
baselines in our evaluation. As those baseline approaches are relatively simple,
IPEDC and LGEDC tend to achieve better experimental results. Thus, there
is a threat that the comparison does not suffice to comprehensively evaluate
IPEDC and LGEDC. To minimize this threat in the experiments, we changed
two parameters, as presented in Table 2, to simulate various EDC scenarios.
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In this way, we could evaluate our approaches by not only comparison to the
baseline approaches, but also demonstrate how the changes in the parameters
impact the performance of the approaches.

External Validity. The major threat to external validity is whether IPEDC
and LGEDC can be generalized and applied in other application scenarios in the
edge computing environment. To tackle this threat, we measure the performance
of our approaches in a generic way - using the number of reduced hops for
effectiveness evaluation and the number of data replicas for efficiency evaluation.
In this way, the results of the evaluation can be interpreted based on specific
models of data retrieval latency and data caching cost. In addition, we ran the
experiments on a real-world data set and a synthetic data set. We also varied
two parameters to vary the size and the complexity of the EDC problem. This
way, the representativeness and comprehensiveness of the evaluation are ensured.
The above measures allowed us to ensure that the results were generalized, which
reduced the threat to external validity.

Conclusion Validity. The main threat to conclusion validity is the lack
of statistical tests, e.g., chi-square tests. We could have conducted chi-square
tests to draw conclusions. However, we ran the experiment for 100 times in
experiments and averaged the results each time we changed a parameter. This
led to a large number of test cases, which tend to result in a small p-value in
the chi-square tests and lower the practical significance of the test results [10].
For example, in experiment Set 2, there were a total of 1,300 runs. This number
is not even close to the number of observation samples that concern Lin et al.
in [10]. Thus, the threat to the conclusion validity due to the lack of statistical
tests might be high but not significant.

5 Related Work
Edge computing is an extension of cloud computing with distributed computing
resources and services at the edge of the cloud [11]. With the deployment of edge
servers, the problem of computation offloading arises. It has been well studied
with consideration of edge servers’ energy efficiency [12], offloading cost [13] and
so forth.

In the last few years, researchers have been investigating the challenges raised
by data caching in the edge computing environment. Conventional approaches
for data caching are not suitable in the edge computing environment and cannot
be applied directly. Thus, new ideas and techniques are being proposed and in-
vestigated. An optimal auction mechanism was introduced in [14] that considers
the data retrieval and delivery costs. The authors showed computationally effi-
cient approaches for calculating the optimal decisions of cache allocation and user
pays. Halalai et al. [15] proposed Agar, a caching system, from the erasure-coded
perspective. They designed Agar based on a dynamic programming algorithm
for optimally caching data chunks with consideration of data popularity and
network latency.

Instead of data caching optimization across edge servers, some researchers
study how to integrate edge servers’ internal caches and external caches. In [16],
the authors proposed Cachier, a system that minimizes data retrieval latency
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by coordinating the loading balance between edge servers and the cloud in a
dynamical manner. The authors of [17] integrated in-network caching and edge
caching to guarantee the quality of time-sensitive multimedia transmissions over
the 5G wireless network. They also provided three hierarchical edge caching
mechanisms, including a random hierarchical caching approach, a proactive hi-
erarchical caching approach and a game-theory-based hierarchical caching ap-
proach. Zhang et al. [18] proposed an architecture to enhance edge caching by
using computation resources of edge servers. They presented a caching scheme
by implementing smart vehicles as edge servers to provide external caches.

To the best of our knowledge, our work is the first attempt to solve the Edge
Data Caching (EDC) problem from the app vendor’ perspective in the edge
computing environment. We also realistically and innovatively solve the EDC
problem in a generic manner to minimize the data caching cost and maximum the
data caching benefit with the server coverage constraint and the server adjacency
constraint.

6 Conclusion
In this paper, we formulated the new Edge Data Caching (EDC) problem in the
edge computing environment as a constrained optimization problem from the
app vendor’s perspective. To find an optimal solution, we proposed IPEDC, an
approach based on the Integer Programming technique with two optimization
objectives: 1) to minimize the data caching cost measured by the number of
cached data replicas; and 2) to maximum the data caching benefit measured by
the total reduction in app users’ data retrieval latency. However, we also proved
that the EDC problem is NP-complete. We then provided a heuristic approach
named LGEDC for finding near-optimal solutions to the EDC problem. We
conducted extensive experiments based on a real-world data set and a synthetic
data set to evaluate the performance of IPEDC and LGEDC in different EDC
scenarios. The results demonstrate that IPEDC significantly outperforms all
other approaches in formulating cost-effective EDC solutions, while LGEDC
solves large-scale EDC problems efficiently.

This research has established the foundation for the EDC problem and opened
up a number of research directions. In our future work, we will first consider the
problem of caching multiple data at the same time for an app vendor. Other
issues that can be investigated include data popularity, security constraints, etc.
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