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Abstract. In edge computing, edge servers are placed in close proximity
to end-users. App vendors can deploy their services on edge servers to
reduce network latency experienced by their app users. The edge user
allocation (EUA) problem challenges service providers with the objective
to maximize the number of allocated app users with hired computing
resources on edge servers while ensuring their fixed quality of service
(QoS), e.g., the amount of computing resources allocated to an app user.
In this paper, we take a step forward to consider dynamic QoS levels for
app users, which generalizes but further complicates the EUA problem,
turning it into a dynamic QoS EUA problem. This enables flexible levels
of quality of experience (QoE) for app users. We propose an optimal
approach for finding a solution that maximizes app users’ overall QoE.
We also propose a heuristic approach for quickly finding sub-optimal
solutions to large-scale instances of the dynamic QoS EUA problem.
Experiments are conducted on a real-world dataset to demonstrate the
effectiveness and efficiency of our approaches against a baseline approach
and the state of the art.

Keywords: Resource allocation · Edge computing · Quality of Service
· Quality of Experience · User allocation

1 Introduction

Mobile and Internet-of-Things (IoT) devices, including mobile phones, wear-
ables, sensors, etc., have become extremely popular in modern society [4]. The
rapid growth of those devices have increased the variety and sophistication of
software applications and services such as facial recognition [21], interactive gam-
ing [6], real-time, large-scale warehouse management [7], etc. Those applications
usually require intensive processing power and high energy consumption. Due to
the limited computing capabilities and battery power of mobile and IoT devices,
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a lot of computing tasks are offloaded to app vendors’ servers in the cloud. How-
ever, as the number of connected devices is skyrocketing with the continuously
increasing network traffic and computational workloads, app vendors are facing
the challenge of maintaining a low-latency connection to their users.

Edge computing – sometimes often referred to as fog computing – has been
introduced to address the latency issue that often occurs in the cloud computing
environment [3]. A usual edge computing deployment scenario involves numer-
ous edge servers deployed in a distributed manner, normally near cellular base
stations [16]. This network architecture significantly reduces end-to-end latency
thanks to the close proximity of edge servers to end-users. The coverage areas of
nearby edge servers usually partially overlap to avoid non-serviceable areas – the
areas in which users cannot offload tasks to any edge server. A user located in the
overlapping area can connect to one of the edge servers covering them (proximity
constraint) that has sufficient computing resources (resource constraint) such as
CPU, storage, bandwidth, or memory. Compared to a cloud data-center server,
a typical edge server has very limited computing resources, hence the need for
an effective and efficient resource allocation strategy.
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Fig. 1: Quality of Experience - Quality of Service correlation

Naturally, edge computing is immensely dynamic and heterogeneous. Users
using the same service have various computing needs and thus require different
levels of quality of service (QoS), or computational requirements, ranging from
low to high. Tasks with high complexity, e.g. high-definition graphic rendering,
eventually consume more computing resources in an edge server. A user’s satis-
faction, or quality of experience (QoE), varies along with different levels of QoS.
Many researchers have found that there is a quantitative correlation between
QoS and QoE, as visualized in Fig. 1 [2, 8, 15]. At one point, e.g. W3, the user
satisfaction tends to converge so that the QoE remains virtually unchanged at
the highest level regardless of how high the QoS level is.

Consider a typical game streaming service for example, gaming video frames
are rendered on the game vendor’s servers then streamed to player’s devices.
For the majority of players, there is no perceptible difference between 1080p and
1440p video resolution on a mobile device, or even between 1080p and UHD
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from a distance farther than 1.5x the screen height regardless of the screen
size [17]. Servicing a 1440p or UHD video certainly consumes more resources
(bandwidth, processing power), which might be unnecessary since most players
are likely to be satisfied with 1080p in those cases. Instead, those resources can
be utilized to serve players who are currently unhappy with the service, e.g. those
experiencing poor 240p or 360p graphic, or those not able to play at all due to
all nearby servers being overloaded. Therefore, the app vendor can lower the
QoS requirements of high demanding users, potentially without any remarkable
downgrade in their QoE, in order to better service users experiencing low QoS
levels. This way, app vendors can maximize users’ overall satisfaction measured
by their overall QoE. In this context, our research aims at allocating app users
to edge servers so that their overall QoE is maximized.

We refer to the above problem as a dynamic QoS edge user allocation (EUA)
problem. Despite being critical in edge computing, this problem has not been
extensively studied. Our main contributions are as follows:

– We define and model the dynamic QoS EUA problem, and prove its NP-
hardness.

– We propose an optimal approach based on integer linear programming (ILP)
for solving the dynamic QoS EUA and develop a heuristic approach for find-
ing sub-optimal solutions to large-scale instances of the problem efficiently.

– Extensive evaluations based on a real-world dataset are carried out to demon-
strate the effectiveness and efficiency of our approaches against a baseline
approach and the state of the art.

The remainder of the paper is organized as follows. Section 2 provides a mo-
tivating example for this research. Section 3.1 defines the dynamic QoS problem
and proves that it is NP-hard. We then propose an optimal approach based on
ILP and an efficient sub-optimal heuristic approach in Sect. 4. Section 5 eval-
uates the proposed approaches. Section 6 reviews the related work. Finally, we
conclude the paper in Sect. 7.

2 Motivating Example

Using the game streaming example in Sect. 1, let us consider a simple scenario
shown in Fig. 2. There are ten players u1, ..., u10, and four edge server s1, ..., s4.
Each edge server has a particular amount of different types of available resources
ready to fulfill users’ requests. A server’s resource capacity or player’s resource
demand are denoted as a vector 〈CPU,RAM, storage, bandwidth〉. The game
vendor can allocate its users to nearby edge servers and assign a QoS level to each
of them. In this example, there are three QoS levels for the game vendor to choose
from, namely W1,W2 and W3 (Fig. 1), which consume 〈1, 2, 1, 2〉, 〈2, 3, 3, 4〉, and
〈5, 7, 6, 6〉 units of 〈CPU,RAM, storage, bandwidth〉, respectively. Players’ cor-
responding QoE, measured based on Eq. 3, are 1.6, 4.09, and 4.99, respectively.
If the server’s available resources are not limited then all players will be able to
enjoy the highest QoS level. However, a typical edge server has relatively limited
resources so not everyone will be assigned W3. The game provider needs to find
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Fig. 2: Dynamic QoS EUA example scenario

a player - server - QoS allocation so that the overall user satisfaction, i.e. QoE,
is maximized.

Let us assume server s2 has already reached its maximum capacity and cannot
serve anymore players. As a result, player u8 needs to be allocated to server s4
along with player u7. If player u8 is assigned the highest QoS level W3, the
remaining resources on server s4 will suffice to serve player u7 with QoS level
W1. The resulting total QoE of those two players is 1.6+4.99 = 6.59. However, we
can see that the released resources from the downgrade from W3 to W2 allows
an upgrade from W1 to W2. If players u7 and u8 both receive QoS level W1,
players’ overall QoE is 4.09 + 4.09 = 8.18, greater than the previous solution.

The scale of the dynamic QoS EUA problem in the real-world scenarios can
of course be significantly larger than this example. Therefore, it is not always
possible to find an optimal solution in a timely manner, hence the need for an
efficient yet effective approach for finding a near-optimal solution to this prob-
lem efficiently.

3 Problem Formulation

3.1 Problem Definition

This section defines the dynamic QoS EUA problem. Table 1 summarizes the
notations and definitions used in this paper. Given a finite set of m edge servers
S = {s1, s2, ..., sm}, and n users U = {u1, u2, ..., un} in a particular area, we aim
to allocate users to edge servers so that the total user satisfaction, i.e. QoE, is
maximized. In the EUA problem, every user covered by edge servers must be
allocated to an edge server unless all the servers accessible for the user have
reached their maximum resource capacity. If a user cannot be allocated to any
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edge servers, or is not positioned within the coverage of any edge servers, they
will be directly connected to the app vendor’s central cloud server.

Table 1: Key Notations
Notation Description

S = {s1, s2, ..., sm} finite set of edge server sj , where j = 1, 2, ...,m

D = {CPU,RAM,
storage, bandwidth}

a set of computing resource dimension

cj = 〈c1j , c2j , ..., cdj 〉 d−dimensional vector with each dimension ckj being a resource
type, such as CPU or storage, representing the available re-
sources of an edge server sj , k ∈ D

U = {u1, u2, ..., un} finite set of user ui, where i = 1, 2, ..., n

W = {W1,W2, ...,Wq} a set of predefined resource level Wl, where l = 1, 2, ..., q. A
higher resource level requires more resource than a lower one
Wl < Wl+1. We will also refer to a resource level as a QoS
level.

wi = 〈w1
i , w

2
i , ..., w

d
i 〉 d−dimensional vector representing the resource amount de-

manded by user ui. Each vector component wk
i is a resource

type, k ∈ D. Each user can be assigned a resource level
wi ∈W

U(sj) set of users allocated to server sj , U(sj) ⊆ U
S(ui) set of user ui’s candidate servers – edge servers that cover

user ui, S(ui) ⊆ S
sui edge server assigned to serve user ui, sui ∈ S
cov(sj) coverage radius of server sj

A user ui can only be allocated to an edge server sj if they are located within
sj ’s coverage area cov(sj). We denote Sui

as the set of all user ui’s candidate
edge servers – those that cover user ui. Take Fig. 2 for example, users u3 and u4
can be served by servers s1, s2, or s3. Server s1 can serve users u1, u3, u4, and u5
as long as it has adequate resources.

ui ∈ cov(sj),∀ui ∈ U ;∀sj ∈ S (1)

If a user ui is allocated to an edge server, they will be assigned a specific
amount of computing resources wi = (wdi ), where each dimension d ∈ D repre-
sents a type of resource, e.g. CPU, RAM, storage, or bandwidth. wi is selected
from a predetermined setW of q resource levels, ranging from low to high. Each
of those resource levels corresponds to a QoS level. The total resources assigned
to all users allocated to an edge server must not exceed the available resources on
that edge server. The available computing resources on an edge server sj , sj ∈ S
are denoted as cj = (cdj ), d ∈ D. In Fig. 2, users u1, u3, u4, and u5 cannot all
receive QoS level W3 on server s1 because the total required resources would be
〈20, 28, 24, 24〉, exceeding server s1’s available resources 〈9, 15, 12, 10〉.∑

ui∈U(sj)

wi ≤ cj , ∀sj ∈ S (2)
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Each user ui’s assigned resource wi corresponds to a QoS level that results in
a different QoE level. As stated in [2, 8, 15], QoS is non-linearly correlated with
QoE. When the QoS reaches a specific level, a user’s QoE improves very trivially
regardless of a noticeable increase in the QoS. For example, in the model in Fig.
1, the QoE gained from the W2 − W3 upgrade is nearly 1. In the meantime,
the QoE gained from the W1 −W2 upgrade is approximately 3 at the cost of a
little extra resource. Several works model the correlation between QoE and QoS
using the sigmoid function [10,12,20]. In this research, we use a logistic function
(Equation 3), a generalized version of the sigmoid function, to model the QoS -
QoE correlation. This gives us more control over the QoE model, including QoE
growth rate, making the model more generalizable to different domains.

Ei =
L

1 + e−α(xi−β)
(3)

where L is the maximum value of QoE, β controls where the QoE growth should
be, or the mid-point of the QoE function, α controls the growth rate of the QoE
level (how steep the change from the minimum to maximum QoE level is), Ei

represents the QoE level given user ui’s QoS level wi, and xi =

∑
k∈D w

k
i

|D|
. We

let Ei = 0 if user ui is unallocated.

Our objective is to find a user-server assignment {u1, ..., un} −→ {s1, ..., sm}
with their individual QoS levels {w1, ..., wn} in order to maximize the overall
QoE of all users:

maximize

n∑
i=1

Ei (4)

3.2 Problem Hardness

We can prove that the dynamic QoS EUA problem defined above is NP-hard
by proving that its associated decision version is NP-complete. The decision
version of dynamic QoS EUA is defined as follows:

Given a set of demand workload L = {w1, w2, ..., wn} and a set of server
resource capacity C = {c1, c2, ..., cm}; for each positive number Q determine
whether there exists a partition of L′ ⊆ L into C′ ⊆ C with aggregate QoE
greater than Q, such that each subset of L′ sums to at most cj ,∀cj ∈ C′, and
the constraint (1) is satisfied. By repeatedly answering the decision problem,
with all feasible combination of wi ∈ W,∀i ∈ {1, ..., n}, it is possible to find the
allocation that produces the maximum overall QoE.

Theorem 1. The dynamic QoS EUA problem is NP.

Proof. Given a solution with m servers and n users, we can easily verify its
validity in polynomial time O(mn) – ensuring each user is allocated to at most
one server, and each server meets the condition of having its users’ total workload
less or equal than its available resource. Dynamic QoS EUA is thus in NP class.
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Theorem 2. Partition ≤p dynamic QoS EUA. Therefore, dynamic QoS EUA
is NP-hard.

Proof. We can prove that the dynamic QoS EUA problem is NP-hard by re-
ducing the Partition problem, which is NP-complete [9], to a specialization of
the dynamic QoS EUA decision problem.

Definition 1. (Partition) Given a finite sequence of non-negative integers
X = (x1, x2, ..., xn), determine whether there exists a subset S ⊆ {1, ..., n} such
that

∑
i∈S xi =

∑
j /∈S xj.

Each user ui can be either unallocated to any edge server, or allocated to an edge
server with an assigned QoS level wi ∈ W. For any instance X = (x1, x2, ..., xn)
of Partition, construct the following instance of the dynamic QoS problem:
there are n users, where each user ui has two 2-dimensional QoS level options,
〈xi, 0〉 and 〈0, xi〉; and a number of identical servers whose size is 〈C,C〉, where

C =

∑n
i=1 xi
2

. Assume that all users can be served by any of those servers. Note

that 〈xi, 0〉 ≡ 〈0, xi〉 ≡ wi. Clearly, there is a solution to dynamic QoS EUA
that allocates n users to two servers if and only if there is a solution to the
Partition problem. Because this special case is NP-hard, and being NP, the
general decision problem of dynamic QoS EUA is thus NP-complete. Since the
optimization problem is at least as hard as the decision problem, the dynamic
QoS EUA problem is NP-hard, which completes the proof.

4 Our Approach

We first formulate the dynamic QoS EUA problem as an integer linear pro-
gramming (ILP) problem to find its optimal solutions. After that, we propose a
heuristic approach to efficiently solve the problem in large-scale scenarios.

4.1 Integer Linear Programming Model

From the app vendor’s perspective, the optimal solution to the dynamic QoS
problem must achieve the greatest QoE over all users while satisfying a number
of constraints. The ILP model of the dynamic QoS problem can be formulated
as follows:

maximize

n∑
i=1

m∑
j=1

q∑
l=1

Elxijl (5)

subject to: xijl = 0 ∀l ∈ {1, ..., q},∀i, j ∈ {i, j|ui /∈ cov(sj)} (6)
n∑
i=1

q∑
l=1

W k
l xijl ≤ ckj ∀j ∈ {1, ...,m},∀k ∈ {1, ..., d} (7)

m∑
j=1

q∑
l=1

xijl ≤ 1 ∀i ∈ {1, ..., n} (8)

xijl ∈ {0, 1} ∀i ∈ {1, ..., n},∀j ∈ {1, ...,m},∀l ∈ {1, ..., q}
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xijl is the binary indicator variable such that,

xijl =

{
1, if user ui is allocated to server sj with QoS level Wl

0, otherwise.
(9)

The objective (5) maximizes the total QoE of all allocated users. In (5), the
QoE level El can be pre-calculated based on the predefined set W of QoS levels
Wl,∀l ∈ {1, ..., q}. Constraint (6) enforces the proximity constraints. Users not
located within a server’s coverage area will not be allocated to that server. A user
may be located within the overlapping coverage area of multiple edge servers.
Resource constraint (7) makes sure that the aggregate resource demands of all
users allocated to an edge server must not exceed the remaining resources of
that server. Constraint family (8) ensures that every user is allocated to at most
one edge server with one QoS level. In other words, a user can only be allocated
to either an edge server or the app vendor’s cloud server.

By solving this ILP problem with an Integer Programming solver, e.g. IBM
ILOG CPLEX5, or Gurobi6, an optimal solution to the dynamic QoS EUA
problem can be found.

4.2 Heuristic Approach

However, due to the exponential complexity of the problem, computing an opti-
mal solution will be extremely inefficient for large-scale scenarios. This is demon-
strated in our experimental results presented in Sect. 5. Approximate methods
have been proven to be a prevalent technique when dealing with this type of in-
tractable problems. In this section, we propose an effective and efficient heuristic
approach for finding sub-optimal solutions to the dynamic QoS problem.

Heuristic 1 Greedy

1: procedure AllocateEdgeUsers(S,U)
2: for each ui ∈ U do
3: Sui ← {sj ∈ S|ui ∈ cov(sj)};
4: if Sui 6= ∅ then
5: sui ← argmaxsj∈{0}∪Sui

{sj : cj ≥W1};
6: wi ← argmaxWl∈{0}∪W{Wl : Wl ≤ cj};
7: end if
8: end for
9: end procedure

The heuristic approach allocates every user ui ∈ U one by one (line 2). For
each user ui, we obtain the set Sui

of all candidate edge servers that cover that
user (line 3). If the set Sui

is not empty, or user ui is covered by one or more edge
servers, user ui will then be allocated to the server that has the most remaining
resources among all candidate servers (line 5) so that the server will be most
likely to have enough resources to accommodate other users. In the meantime,

5 www.ibm.com/analytics/cplex-optimizer/
6 www.gurobi.com/
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user ui is assigned the highest QoS level that can be accommodated by the
selected edge server (line 6).

The running time of this greedy heuristic consists of: (1) iterating through
all n users, which costs O(n), and (2) sorting a maximum of m candidate edge
servers for each user, which costs O(m logm), to obtain the server that has the
most remaining resources. Thus, the overall time complexity of this heuristic
approach is O(nm logm).

5 Experimental Evaluation

In this section, we evaluate the proposed approaches by an experimental study.
All the experiments were conducted on a Windows machine equipped with Intel
Core i5-7400T processor(4 CPUs, 2.4GHz) and 8GB RAM. The ILP model in
Sect. 4.1 was solved with IBM ILOG CPLEX Optimizer.

5.1 Baseline Approaches

Our optimal approach and sub-optimal heuristic approach are compared to two
other approaches, namely a random baseline, and a state-of-the-art approach for
solving the EUA problem:

– Random: Each user is allocated to a random edge server as long as that
server has sufficient remaining resources to accommodate this user and has
this user within its coverage area. The QoS level to be assigned to this
user is randomly determined based on the server’s remaining resources. For
example, if the maximum QoS level the server can achieve is W2, the user
will be randomly assigned either W1 or W2.

– VSVBP : [18] models the EUA problem as a variable sized vector bin packing
(VSVBP) problem and proposes an approach that maximizes the number of
allocated users while minimizing the number of edge servers needs to be
used. Since VSVBP does not consider dynamic QoS, we randomly preset
users’ QoS levels, i.e., resource demands.

5.2 Experiment Settings

Our experiments were conducted on the widely-used EUA dataset [18], which
includes data of base stations and end-users within the Melbourne central busi-
ness district area in Australia. In order to simulate different dynamic QoS EUA
scenarios, we vary the following three parameters:

– Number of end-users: We randomly select 100, 200, ..., 1, 000 users. Each ex-
periment is repeated 100 times to obtain 100 different user distributions so
that extreme cases, such as overly sparse or dense distributions, are neutral-
ized.

– Number of edge servers: Say the users selected above are covered by m
servers, we then assume 10%, 20%, ..., 100% of those m servers are available
to accommodate those users.

– Server’s available resources: The server’s available computing resources is
generated following a normal distribution N (µ, σ2), where σ = 1 and the
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(a) Total QoE (b) Elapsed CPU time

Fig. 3: Experiment set #1 results

average resource capacity of each server µ = 5, 10, 15, ...50 in each dimension
d ∈ D.

Table 2 summarizes the settings of our three sets of experiments. The possible
QoS level, for each user is preset to W = {〈1, 2, 1, 2〉, 〈2, 3, 3, 4〉,
〈5, 7, 6, 6〉}. For the QoE model, we set L = 5, α = 1.5, and β = 2. We employ
two metrics to evaluate our approaches: (1) overall QoE achieved over all users
for effectiveness evaluation, and (2) execution time (CPU time) for efficiency
evaluation.

Table 2: Experiment Settings
Number of users Number of servers Server’s available resources

Set #1 100, 200, ..., 1000 70% 35

Set #2 500 10%, 20%, ..., 100% 35

Set #3 500 70% 5, 10, 15, ..., 50

5.3 Experimental Results and Discussion

Figures 3, 4, and 5 depict the experimental results of three experiment sets 1, 2,
and 3, respectively.

1) Effectiveness: Figures 3, 4, and 5(a) demonstrate the effectiveness of all ap-
proaches in experiment sets 1, 2, and 3, measured by the overall QoE of all users
in the experiment. In general, Optimal, being the optimal approach, obviously
outperforms other approaches across all experiment sets and parameters. The
performance of Heuristic largely depends on the computing resource availability,
which will be analyzed in the following section.

In experiment set 1 (Fig. 3(a)), we vary the number of users starting from
100 and ending at 1,000 in steps in 100 users. From 100 to 600 users, Heuristic
results in higher total QoE than Random and VSVBP. Especially in the first
three steps (100, 200, and 300 users), Heuristic achieves a QoE almost as high as
Optimal. This occurs in those scenarios because the available resource is redun-
dant and therefore almost all users receive the highest QoS level. However, as the
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(a) Total QoE (b) Elapsed CPU time

Fig. 4: Experiment set #2 results

number of users continues to increase while the amount of available resources
is fixed, the computing resource for each user becomes more scarce, making
Heuristic no longer suitable in these situations. In fact, from 700 users onwards,
Heuristic starts being outperformed by Random and VSVBP. Due to being a
greedy heuristic, Heuristic always tries to exhaust the edge servers’ resources
by allocating the highest possible QoS level to users, which is not an effective
use of resource. For example, one user can achieve a QoE of 4.99 if assigned the
highest QoS level W3, which consumes a resource amount of 〈5, 7, 6, 6〉. That
resource suffices to serve two users with QoS levels W1 and W2, resulting in an
overall QoE of 1.6 + 4.09 = 5.69 > 4.99. Since a user’s QoS level is randomly
assigned by Random and VSVBP, these two methods are able to user resource
more effectively than Heuristic in those specific scenarios.

A similar trend can be observed in experiment sets 2 and 3. In resource-
scarce situations, i.e. number of servers ranging from 10% - 40% (Fig. 4(a)), and
server’s available resources ranging from 5 - 25 (Fig. 5(a)), Heuristic shows a
nearly similar performance to Random and VSVBP (slightly worse in a few cases)
for the same reason discussed previously. In those situations, the performance
difference between Heuristic and Random/VSVBP is not as significant as seen
in experiment set 1 (Fig. 3(a)). Nevertheless, the difference might be greater if
the resources are more limited, e.g. 1,000 users in both experiment sets 2 and 3,
an average server resource capacity of 20 in set 2, and 50% number of servers in
set 3.

As discussed above, while being suitable for resource-redundant scenarios,
Heuristic has not been proven to be superior when computing resources are lim-
ited. This calls for a more effective approach to solve the dynamic QoS problem
under resource-scarce circumstances.

2) Efficiency: Figures 3, 4, and 5(b) illustrate the efficiency of all approaches
in the study, measured by the elapsed CPU time. The execution time of Opti-
mal follows a similar pattern in all three experiment sets. As the experimental
parameters increase from the starting point to a point somewhere in the mid-
dle – 600 users in set 1, 70% number of servers in set 2, and 30 average server
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(a) Total QoE (b) Elapsed CPU time

Fig. 5: Experiment set #3 results

resource capacity in set 3 – the time quickly increases until it reaches a cap
of around a hefty 3 seconds due to being NP-hard. The rationale for this is
that the complexity of the problem increases as we keep adding up more users,
servers, and available resource, generating more possible options and solutions
for Optimal to select from. After passing that mid-point, the time gradually de-
creases at a slower rate then tends to converge. We notice that this convergence
is a reflection of the convergence of the total QoE produced by Optimal in each
corresponding experiment set. After the experimental parameters passing the
point mentioned above, the available resource steadily becomes more redundant
so that more users can obtain the highest QoS level without competing with
each others, generating less possible options for Optimal, hence running faster.

In experiment sets 1 and 2, the execution time of Heuristic grows gradually up
to just 1 milliseconds. However, it does not grow in experiment set 3 and instead
stabilizes around 0.5 - 0.6 milliseconds. This is because the available resource
does not impact the complexity of Heuristic, which runs in O(nm logm).

5.4 Threats to Validity

Threat to construct validity. The main threat to the construct validity lies in the
bias in our experimental design. To minimize the potential bias, we conducted
experiments with different changing parameters that would have direct impact
on the experimental results, including the number of servers, the number of
users, and available resources. The result of each experiment set is the average
of 100 executions, each with a different user distribution, to eliminate the bias
caused by special cases such as over-dense or over-sparse user distributions.

Threat to external validity. A threat to the external validity is the general-
izability of our findings in other specific domains. We mitigate this threat by
experimenting with different numbers of users and edge servers in the same ge-
ographical area to simulate various distributions and density levels of users and
edge servers that might be observed in different real-world scenarios.

Threat to internal validity. A threat to the internal validity is whether an
experimental condition makes a difference or not. To minimize this, we fix the



Edge User Allocation with Dynamic Quality of Service 13

other experimental parameters at a neutral value while changing a parameter.
For more sophisticated scenarios where two or more parameters change simul-
taneously, the results can easily be predicted in general based on the obtained
results as we mentioned in Sect. 5.3.

Threat to conclusion validity. The lack of statistical tests is the biggest threat
to our conclusion validity. This has been compensated for by comprehensive ex-
periments that cover different scenarios varying in both size and complexity. For
each set of experiments, the result is averaged over 100 runs of the experiment.

6 Related Work

Cisco [3] coined the fog computing, or edge computing, paradigm in 2012 to over-
come one major drawback of cloud computing – latency. Edge computing comes
with many new unique characteristics, namely location awareness, wide-spread
geographical distribution, mobility, substantial number of nodes, predominant
role of wireless access, strong presence of streaming and real-time applications,
and heterogeneity. Those characteristics allows edge computing to deliver a very
broad range of new services and applications at the edge of network, further
extending the existing cloud computing architecture.

QoE management and QoE-aware resource allocation have long been a chal-
lenge since the cloud computing era and before that [13]. Su et al. [22] propose
a game theoretic framework for resource allocation among media cloud, brokers
and mobile social users that aims at maximizing user’s QoE and media cloud’s
profit. While having some similarity to our work, e.g. the brokers can be seen as
edge servers, there are several fundamental architectural differences. The broker
in their work is just a proxy for transferring tasks between mobile users and the
cloud, whereas our edge server is where the tasks are processed. In addition, the
price for using/hiring the broker/media cloud’s resource seems to vary from time
to time, broker to broker in their work. We target a scenario where there is no
price difference within a single service provider. [11] investigates the cost - QoE
trade-off in virtual machine provisioning problem in a centralized cloud, specific
to video streaming domain. QoE is measured by the processing, playback, or
downloading rate in those work.

QoE-focused architecture and resource allocation have started gaining at-
traction in edge computing area as well. [5] proposes a novel architecture that
integrates resource-intensive computing with mobile application while leverag-
ing mobile cloud computing. Their goal is to provide a new breed of personal-
ized, QoE-aware services. [19] and [1] tackle the application placement in edge
computing environments. They measure user’s QoE based on three levels (low,
medium, and high) of access rate, required resources, and processing time. The
problem we are addressing, user allocation, can be seen as the step after appli-
cation placement. [14] focuses on computation offloading scheduling problem in
mobile clouds from a networking perspective, where energy and latency must be
considered in most cases. They propose a QoE-aware optimal and near-optimal
scheduling scheme applied in time-slotted scenarios that takes into account the
trade-off between user’s mobile energy consumption and latency.
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Apart from the aforementioned literature, there are a number of work on
computation offloading or virtual machine placement problem. However, they
do not consider QoE, which is important in an edge computing environment
where human plays a prominent role. Here, we seek to provide an empirically
grounded foundation for the dynamic QoS/QoE edge user allocation problem,
forming a solid basis for further developments.

7 Conclusion

App users’ quality-of-experience is of great importance for app vendors where
user satisfaction is taken seriously. Despite being significant, there is very limited
work considering this aspect in edge computing. Therefore, we have identified
and formally formulated the dynamic QoS edge user allocation problem with
the goal of maximizing users’ overall QoE as the first step of tackling the QoE-
aware user allocation problem. Having been proven to be NP-hard and also
experimentally illustrated, the optimal approach is not efficient once the problem
scales up. We therefore proposed a heuristic approach for solving the problem
more efficiently. We have also conducted extensive experiments on real-world
dataset to evaluate the effectiveness and efficiency of the proposed approaches
against a baseline approach and the state of the art.

Given this foundation of the problem, we have identified a number of pos-
sible directions for future work with respect to QoE such as dynamic QoS user
allocation in resource-scarce or time-varying situations, user’s mobility, service
migration, service recommendation, just to name a few. In addition, a finer-
grained QoE model with various types of costs or network conditions could be
studied next.
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