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Abstract. The advances in service-oriented architecture (SOA) have fueled the 
demand for building service-based systems (SBSs) by composing existing ser-
vices. Finding appropriate component services is a key step during the process 
for building SBSs. However, existing approaches require that system engineers 
have detailed knowledge of SOA techniques, which is often too demanding. A 
recent approach has been proposed to address this issue. However, it suffers from 
poor efficiency, which is increasingly critical as the service repository continues 
to grow. To address this issue, this paper proposes KS3+, a new, highly efficient 
approach that allows a system engineer to query for a system solution with a few 
keywords that represent the required system tasks. Modeling the problem of an-
swering such a keyword query as a dynamic programming problem, KS3+ can 
quickly find a system solution composed of services that perform the required 
system tasks. It offers an efficient paradigm that significantly reduces the time 
and effort during the process for building SBSs. The results of extensive experi-
ments on a real-world web service dataset demonstrate the high efficiency and 
effectiveness of KS3+. 

Keywords: Service Oriented Architecture; Service-Based Systems; Keyword 
Search; Web Services. 

1 Introduction 

The service-oriented architecture (SOA) has been widely employed by many enterprises to build 
service-based systems (SBSs) [1, 2]. The component services of an SBS collectively realize the 
functionality of the SBS, which are often offered as SaaS (Software-as-a-Service) to internal and 
external users in the cloud environment. The development and popularity of e-business, ecom-
merce, especially the pay-as-you-go business model promoted by cloud computing, have fueled 
the rapid growth of services and SBSs, shown by statistics published by programmableweb.com, 
a web service directory. The process for building an SBS consists of three phases: 1) System 
Planning: the system engineer empirically identifies and determines the system tasks, e.g., flight 
ticket booking, hotel booking, as well as the execution order of the tasks. 2) Service Discovery: 
the system engineer, through querying service repositories or service search engines, discovers 
multiple sets of composable services, each offering one of the required system tasks. 3) Service 
Selection: the system engineer selects one service from each set of candidate services to compose 
the target system that fulfills the multi-dimensional constraints and the optimization goal for the 
system quality, e.g., reliability, response time and cost. 
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The process above is complicated and requires detailed knowledge of sophisticated 
SOA techniques in different phases. It has become a major obstacle to broader applica-
tions of SOA. There has been a rapid increase in the need for an approach that assists 
system engineers in quickly finding system solutions for their SBSs, including which 
services to use and in what order they are composed, without going through the above 
complicated process [3]. 

We previously presented KS3 to tackle this challenge [4]. KS3 allows system engi-
neers to query for system solutions by entering only a few keywords that represent the 
required system tasks. Such a keyword query, i.e., a query containing keywords that 
represent the required system tasks, is modeled as a constraint optimization problem 
and employs the integer programming technique to find system solutions. However, 
KS3 suffers from extremely poor efficiency in processing queries on large web 
service repositories. According to [4], it takes up to 100 seconds to answer queries on 
a repository with 20,000 web services. To address this issue, this paper proposes KS3+, 
a new, highly efficient approach for building SBSs also based on keyword search tech-
niques. 

2 Keyword Search Method 

We discuss how KS3+ models keyword queries for system solutions and finds group 
Steiner trees [4] as answer trees to these keyword queries. We denote the set of key-
words in a query Q as K = {k1, k2, …, kl} and use k, kx, and ky to denote a non-empty 
set of K where k, kx, kyÍ K. To represent a group Steiner tree that is rooted at node v 
and covers a set of keywords k, we use T(v, k). Thus, the group Steiner tree we look 
for in data graph G(V, E) as answer to Q is T(v, K) where v ∈ V represents a web service 
and e ∈ E represents the composability of two web services. For more details see [4]. 

2.1 Dynamic Programming Model 

In this research, a group Steiner tree T(v, K) of height h (the length of the longest down-
ward path from the root of the group Steiner tree to any leaf) can be found by expanding 
the group Steiner trees of heights h = 0, 1, …, that cover kÍK. Let T(v, k) be a state in 
the dynamic programming model, and w(T(v, k)) be the weight of T(v, k), i.e., the total 
weight of the nodes in T(v, k), the state-transition equation in the dynamic programming 
model is: 

w(T(v, k)) = min(w(Tg(v, k)), w(Tm(v, k))) (1) 
 w(Tg(v, k)) = 
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where “+” is an operation to merge a node into a tree or to merge two trees to a new 
tree, N(v) is the set of node v’s neighbors in G, i.e., v ∈ G(V, E) and e(u, v) ∈ E. Eq. (1) 
indicates that the weight of the a group Steiner tree T(v, k) can be obtained by either of 
two cases, namely tree growth, i.e. Eq. (2), and tree merging, i.e. Eq. (3). As indicated 
by Eq. (2), the tree growth case is that Tg(v, k) can be obtained by growing a node u 
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from the minimum-weight subtree of T(v, k) that is rooted at u (one of v’s neighbors) 
and covers all keywords in k. Eq. (3) shows that, in the tree merging case, Tm(v, k) can 
be obtained by merging two minimum-weight subtrees, both rooted at v, one covering 
k1 and the other covering k2 such that k = k1  k2 and k1  k2 = Æ . 

2.2 Answering Keyword Queries 

A keyword query Q contains a set of keywords, K = {k1, …, kl}. Based on Eq.s (1) - 
(3), KS3+ employs Algorithm 1 to find the minimum group Steiner tree as the answer 
to query Qn. In line 1, Algorithm 1 initializes a priority queue of trees QT to be empty. 
The trees in QT are always sorted in ascending order by the total number of nodes in the 
trees, denoted by |T|. In lines 2 - 6, the algorithm locates nodes that contain individual 
keywords in K. For each node v in G, v ∈ V, if v contains any keywords k in K, kÍ K, 
the algorithm enqueues tree T(v, k) into QT. At this stage, for each such tree in QT, there 
is |T(v, k)| = 1 because there is only one node in each of the trees in QT. In lines 7 - 33, 
the algorithm iterates to dequeue trees from and enqueue trees into QT, and in the mean-
time grow them with Eq. (2) (lines 12 - 21) or merge them with Eq. (3) (lines 23 - 32) 
to find the minimum group Steiner tree T(v, k), where v ∈ V and k = K (lines 9 - 11). 
Eq. (2) is implemented by lines 12 - 21. Given a tree T(v, k) just dequeued from QT  
(line 8), the algorithm considers all v’s neighbors, denoted by u, and checks whether 
there is a tree T(u, k) in QT that can be replaced with T(v, k) + u, which contains the 
same set of keywords k but with fewer nodes (lines 12- 17). If such a T(u, k) does not 
exist in QT, T(v, k) + u is enqueued into QT  (lines 18 - 19). Eq. (3) is implemented by 
lines 23 - 32. Given a tree T(v, kx) (line 22), the algorithm attempts to find any existing 
trees, T(v, ky), that are also rooted at v and contain keywords kx � ky with more nodes 
than T(v, kx) + T(v, ky), where kx ≠ ky. Any such trees will be replaced with T(v, kx) + 
T(v, ky) in QT (lines 24 - 28). If there are no such trees, T(v, kx) + T(v, ky) will be 
enqueued into QT (lines 29 - 30). 

We now analyze the worst-case scenario complexity of Algorithm 1 when answering 
a query Q with a set of keywords K = {k1, …, kl} on a data graph G = (V, E), where |V| 
= n and |E| = m. Let T(v, k) be the tree with the minimum number of nodes of all trees 
rooted at v containing a subset of keywords k Í  K. There are 3 major components in 
complexity of Algorithm 1: queue maintenance, tree growth and tree merging. 

Queue maintenance. In total, there are 2l subsets of K. Thus, the maximum length 
of QT is 2ln, i.e., every tree rooted at any v ∈ V containing any k Í K is enqueued into 
QT. The complexity of enqueue/update operations and dequeue operations is dependent 
on the type of the queue. Here, we employ Fibonacci Heap, which has the complexity 
of O(1) for the enquene/update operations and O(log2ln) for dequeue operations. Be-
cause Algorithm 1 will enqueue or dequeue any T(v, k) into/from QT at most once, the 
complexity of enqueuing and dequeuing all 2ln trees in QT is O(2ln(l + logn)). 

Tree growth. Lines 12 - 21 handle the tree growth operations implementing Eq. (2). 
The for loop iterates for |N(v)| times, trying to find the T(u, k) grown from T(v, k) + u 
with the minimum number of nodes. Here, |N(v)| is the total number of neighbors of v. 
Thus, the total time for Algorithm 1 to execute the comparison operations in lines 12 - 
21 is O(2l ( )v V | N v |Îå ) = O(2lm). 
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Tree merging. Lines 23 - 32 
handle the tree merging op-
erations implementing Eq. 
(3). For each T(v, kx) 
dequeued in line 8, the for 
loop in lines 23 - 32 enumer-
ates every ky that fulfils kx ∩ 
ky = Ø, where kx, ky Í K. 
Given |K| = l, the total num-
ber of possible ky is 2l-|kx|. 
Thus, the total time for Al-
gorithm 1 to execute the 
comparison operations in 
lines 23 – 32 is n

1
1 2

l l i
l ,ii C

- -
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Overall, the complexity 
of Algorithm 1 is O(2ln(l + 
logn) + 2lm + 3ln). This indi-
cates that the efficiency of 
Algorithm 1 relies exponen-
tially on the number of query 
keywords. In real world 
problems where l is a small 
constant, the complexity of 
Algorithm 1 becomes 
O(nlogn + m). 

3 Experimental 
Evaluation 

We conducted a series of ex-
periments with a prototype 
of KS3+ implemented using 
JDK1.6.0 to compare the ef-
ficiency (computational overhead) and effectiveness (success rate) of KS3+ with KS3. 

3.1 Experimental Setup 

The data graphs and queries used in the experiments are randomly generated using 
a publicly available and widely used dataset named QWS, which contains the functional 
information about over 2,500 real-world web services [5]. All experiments were con-
ducted on a machine with Intel i5-4570 CPU 3.20GHz and 8 GB RAM, running Win-
dows 7 x64 Enterprise. In the experiments, random data graphs are generated based on 
the Erdős–Rényi model [6]. The relevance between the query keywords determines 
whether bridging nodes are needed to identify a system solution. In the data graph, 

Algorithm 1: Answer Keyword Query Q 
Input: G(V, E), K = {k1, k2, …, kl} 
Output: minimum group Steiner tree T(v, K), v ∈ V 
  1: QT ← Ø; 
  2: for each v ∈ V do 
  3:      if v contains k Í  K 
  4:           enqueue T(v, k) into QT; 
  5:      end if 
  6: end for 
  7: while QT ≠ Ø do  
  8:      dequeue QT to T(v, k); 
  9:      if k = K 
10:           return T(v, k); 
11:      end if    
12:      for each u ∈ N(v) do 
13:           if $ T(u, k) ∈ QT   
14:                if |T(v, k) + u| < |T(u, k)| 
15:                     T(u, k) ← T(v, k) + u; 
16:                     QT ← T(u, k); 
17:                end if 
18:           else 
19:                T(u, k) ← T(v, k) + u; 
20:           end if 
21:      end for 
22:      kx ← k; 
23:      for each ky s.t. kx ∩ ky = Ø do 
24:           if $T(v, kx � ky) ∈ QT   

25:                if |T(v, kx) + T(v, ky)| < |T(v, kx � ky)| 

26:                     T(v, kx � ky) ← T(v, kx) + T(v, ky); 

27:                     QT ← T(v, kx � ky); 
28:                end if 
29:           else 
30:                QT ← T(v, kx) + T(v, ky); 
31:           end if 
32:      end for 
33: end while 
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directly relevant keywords are composable and hence belong to adjacent nodes. Bridg-
ing services are needed when two keywords are not directly relevant. In the experi-
ments, we used the keyword distance to represent the relevance between two query 
keywords, reflected by the number of hops they are away from each other in the data 
graph. In the experiments, we fixed the keyword distances at 2 for all queries, which 
were also randomly generated. To avoid very large solutions, we limited the maximum 
number of nodes to be included in a solution to twice the number of query keywords. 

To comprehensively study the impacts of different parameters on the efficiency and 
effectiveness of KS3+, we vary four parameters in the experiments, as presented in 
Table 1. Note that in experiment set #3, the number of edges increases with the number 
of nodes to maintain the graph density while changing the graph size. For each set of 
experiments, we average the results obtained from 100 runs.  

3.2 Evaluation Results 

Efficiency. Fig. 1 shows the computation times taken by KS3+ and KS3 to answer 
keyword queries for systems solutions under different parameter settings. Overall, 
KS3+ demonstrates a multiple orders of magnitude advantage in efficiency over KS3 
under different parameter settings. While KS3 often takes seconds to minutes to answer 
queries under different parameter settings, KS3+ takes less than 1ms in most cases. 
This demonstrates its significant advantage in efficiency over KS3. 

Fig. 1(a) shows the efficiency of KS3+ in identifying the bridging nodes when the 
keywords in a query are not directly relevant. When the keyword distance increases 
from 1 to 10, the average computation time of KS3 increases from 16ms to 2,899ms. 
In the meantime, the average computation time of KS3+ increases from 0.08ms to 
0.40ms. KS3+ outperforms KS3 significantly, and demonstrates much higher tolerance 
to the increase in keyword distance. The results shown in Fig. 1(a) demonstrate that 
KS3+ can efficiently find a system solution even if the keywords entered are only re-
motely relevant, thanks to its excellent ability to identify bridging nodes. 

Fig. 1(b) demonstrates the outstanding ability of KS3+ to find a system solution 
when multiple bridging nodes are needed to connect many keyword nodes. KS3+ 
demonstrates great performance with an increase from 0.42ms to 319.69ms in compu-
tation time in response to the increase in the number of query keywords (referred to 
as l hereafter) from 2 to 5. The corresponding increase in the computation time of KS3 
is from 1,645ms to 12,574ms. Again, KS3+ outperforms KS3 significantly. In particu-
lar, when l reaches 6, it takes KS3+ 2,777.92ms on average to find a system solution, 
while KS3 cannot even answer the query within a reasonable amount of time. That is 
why the corresponding data is missing for KS3 in Fig. 1(b). Fig. 1(b) shows that KS3+ 
has a considerably better ability to find bridging nodes than KS3. 

Table 1. Experiment configuration 

Parameter Set #1 Set #2 Set #3 Set #4 
Keyword Distance 1 to 10 2 2 2 
Number of Query Keywords (l) 2 2 to 6 2 2 
Graph Size (Number of Nodes) 2,000 2,000 2,000 to 20,000 2,000 
Graph Density (Number of Edges) 2,000 2,000 2,000 to 20,000 2,000 to 8,000 
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Fig. 1(c) shows that the increase in the computation time of KS3 increases rapidly 
with the graph size, while the increase in the computation time KS3+ is almost negli-
gible. On a very large data graph with 20,000 nodes, KS3 takes a significant amount of 
time (up to 75,000ms) to answer a query. In the meantime, KS3+ takes only 1.35ms on 
average to answer the same query. In a large data graph, the number of group Steiner 
trees that cover all the keyword nodes is extremely large even when the number of 
keywords to cover is small. KS3 needs to identify and inspect all those trees. The ex-
tremely large search space inevitably leads to long computation time of KS3. KS3+, on 
the other hand, does not have to inspect all those trees. It prunes invalid trees and grows 
or merges only the trees that are likely to be part of the final answer tree. Thus, KS3+ 
can handle queries over large data graphs much more efficiently than KS3. 

Fig. 1(d) shows that in a dense data graph, where each service has many neighbors, 
it takes KS3+ much less time than KS3 to find a system solution. The advantage of 
KS3+ over KS3 is by multiple orders of magnitudes, similar to the results shown in Fig. 
1(a) and Fig. 1(c). As the number of edges increases from 2,000 to 8,000, the average 
computation time of KS3+ increases accordingly from 0.27ms to 0.64ms, versus the 
increase from 2,256ms to 20,331ms for KS3. A higher graph density means more neigh-
bors for each node, leading to more exact group Steiner trees for KS3 to identify and 
inspect to answer a query. However, given a tree T(v, k) dequeued in line 8 of Algo-
rithm 1, out of all the neighbors of v, Algorithm 1 would only grow T(v, k) to include 
those that result in trees containing the same keywords as T(v, k) but with fewer nodes. 
This prunes most invalid trees and ensures the high efficiency of KS3+. 

Effectiveness. We compared the effectiveness of KS3+ and KS3, measured by success 
rate, i.e., the percentage of cases where an answer to the keyword query can be found. 
Overall, KS3+ is as effective as KS3, with a consistent success rate of 100% in all 
experiments under different parameter settings. This indicates that KS3+ can always 
find a system solution, like KS3. The experimental results demonstrate that KS3+ does 
not compromise the success rate in finding a solution. 

 
Fig. 1. Computation time under different parameter settings (keyword distance = 2) 
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4 Related Work 

The process for building an SBS consists of three phases: system planning, service dis-
covery and service selection.  

System planning. The system engineer identifies the system tasks required for the 
target SBS, as well as their execution order. Most system planning techniques are based 
on artificial intelligence techniques [7]. The general idea is to model the task identifi-
cation problem as a planning problem. For example, in [7], the authors model the task 
identification problem as a CSTE planning problem to be solved with an SCP solver. 

Service discovery. Through service registries or service portals, the system engineer 
identifies a set of candidate services for each of the identified system tasks based on the 
functional and semantic information of candidate services. To improve the accuracy of 
service matching, several semantic web service languages have been proposed based 
on ontology techniques, e.g., OWLS-MX [8]. It automates the service matching opera-
tion that identifies the services that can perform the required system tasks. Many ap-
proaches have been proposed to automate the service discovery process, based on on-
tology techniques such as logical reasoning and temporal planning [9]. 

Service selection. The system engineer selects one service from the candidate ser-
vices for each system task to compose the target SBS. The selected services must col-
lectively fulfil the multi-dimensional quality constraints for the SBS [10], e.g., reliabil-
ity, response time, cost, etc., which is an NP-complete problem. Integer Programming 
(IP) is the main technique adopted in this phase. AgFlow [2] is one of the most repre-
sentative approaches. Following the idea of AgFlow, many researchers have been try-
ing to reduce the computation time for quality-aware service selection [11] or to solve 
the problem in more complex environments [1, 12]. 

A planning technique was proposed that explores system solutions by looking up 
services whose tags match the tags describing the SBS [3]. For each query, the engineer 
needs to enter a source tag and a destination tag. The proposed technique heuristically 
identifies the possible service compositions with an entry service according to the 
source tag and an exit service according to the destination tag. A similar approach is 
proposed in [13]. A major limitation to these approaches is that each query allows only 
two tags, i.e., a source tag and a destination tag. Multiple tags can only be entered one 
by one in different queries that are processed individually until a final solution is found. 
An error made in an early query can easily make it impossible to find the final solution. 

KS3 was  proposed in [4]. It overcomes the limitations of the approaches proposed 
in [3, 13]. However, it suffers from extremely poor efficiency in large-scale scenarios. 
By modelling keyword queries as dynamic programming problems, KS3+ achieves sig-
nificantly higher efficiency without sacrificing effectiveness. 

5 Conclusions and Future Work 

In this paper, we propose KS3+, a novel approach that integrates and automates the 
system planning, service discovery and service selection operations for building ser-
vice-based systems (SBSs). It assists system engineers without detailed knowledge of 
SOA techniques in finding system solutions with only a few keywords that describe the 
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required system tasks. KS3+ offers a new paradigm for building SBSs and can signifi-
cantly save the time and effort during the process for building SBSs. Making no com-
promise in effectiveness, KS3+ significantly outperforms KS3 in efficiency. In our fu-
ture work, we will enhance KS3+ to answer queries with quality constraints and quality 
optimization goals. 
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