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Abstract—Given the inherent non-deterministic nature of
machine learning (ML) systems, their behavior in production
environments can lead to unforeseen and potentially dangerous
outcomes. For a timely detection of unwanted behavior and
to prevent organizations from financial and reputational dam-
age, monitoring these systems is essential. This paper explores
the strategies, challenges, and improvement opportunities for
monitoring ML systems from the practitioners’ perspective.
We conducted a global survey of 91 ML practitioners to
collect diverse insights into current monitoring practices for
ML systems. We aim to complement existing research through
our qualitative and quantitative analyses, focusing on prevalent
runtime issues, industrial monitoring and mitigation practices,
key challenges, and desired enhancements in future monitoring
tools. Our findings reveal that practitioners frequently struggle
with runtime issues related to declining model performance,
exceeding latency, and security violations. While most prefer
automated monitoring for its increased efficiency, many still
rely on manual approaches due to the complexity or lack
of appropriate automation solutions. Practitioners report that
the initial setup and configuration of monitoring tools is often
complicated and challenging, particularly when integrating with
ML systems and setting alert thresholds. Moreover, practitioners
find that monitoring adds extra workload, strains resources, and
causes alert fatigue. The desired improvements from the practi-
tioners’ perspective are: automated generation and deployment
of monitors, improved support for performance and fairness
monitoring, and recommendations for resolving runtime issues.
These insights offer valuable guidance for the future development
of ML monitoring tools that are better aligned with practitioners’
needs.

Index Terms—Machine Learning, Monitoring, Industry, Prac-
titioner, Survey

I. INTRODUCTION

Machine Learning (ML) systems are being increasingly
employed across various domains, including social media, e-
commerce, and engineering — even critical domains such as
finance, healthcare, and autonomous vehicles nowadays lever-
age ML to automate and enhance their services. Generative
Al and Large Language Models (LLMs) have further boosted
ML adoption by creating several new use cases [1], [2].
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A typical ML system lifecycle begins by gathering re-
quirements and preparing data, which is followed by the
development of the ML component (experimentation, model
training, and evaluation) and other traditional software com-
ponents [3]. After development, the next step is integration
and system testing. Once quality assurance is completed, the
ML system is deployed to a production environment. This
stage is also known as operation or runtime since real users
interact with the ML system. The last step of this lifecycle
is maintenance, which mainly consists of monitoring and
response [4]. Monitoring involves continuously observing the
behavior of the ML system in production and triggering alerts
if any unwanted behavior is detected. Later, response activities
are performed to mitigate the runtime issues. The scope of this
study is production ML systems and runtime monitoring.

Production ML systems can be particularly difficult to
maintain over time due to the brittleness of ML [5]. Even
small changes in the input data or operating environment
can significantly impact the outputs of an ML system [5].
For example, reduced model performance due to changes
in the input data distribution. While testing ML systems is
valuable, it is insufficient to ensure correct behavior after
deployment [5]. Monitoring ML systems is essential for early
detection and mitigation of runtime issues, thereby maintaining
system reliability [5] and users’ trust. Recent events such as
Zillow’s house pricing model failure [6], Amazon’s biased
hiring algorithm [7], and Tesla’s fatal autopilot accident [8],
have confirmed the necessity of monitoring ML systems.
Considering the financial and reputational losses incurred by
large organizations due to runtime issues, ML monitoring is
becoming increasingly important in the industry.

Previous studies have explored monitoring methods and
challenges through practitioner interviews and literature re-
views [4], [9]-[13]. These studies reveal challenges such as
difficulty customizing monitors, privacy concerns with mon-
itoring, and generating meaningful alerts. However, they do
not discuss the complete monitoring context behind these
challenges, including the runtime issues encountered, the mon-



itoring and mitigation strategies and tools, associated chal-
lenges, and recommended improvements. This gap highlights
the need for further research to provide a comprehensive
understanding of ML monitoring from an industry perspective.
In this study, we present our findings from a survey of 91
ML practitioners about their point of view on ML monitoring.
Our survey complements previous research and even validates
some of their findings with a broader and more diverse group
of participants.

Our findings reveal that practitioners often struggle with
runtime issues such as degrading model performance, delayed
responses, resource constraints, and security violations. For
monitoring approaches, automated solutions were preferred
and tools like Prometheus and Grafana were frequently used.
Few participants reported to prefer manual monitoring ap-
proaches due to the complexity and lack of appropriate au-
tomated monitoring solutions, particularly for domain-specific
use cases. Additionally, it was mentioned that monitoring adds
extra workload on practitioners to learn, integrate, configure,
and then manage monitoring tools. Furthermore, monitoring
strains system resources, especially storage, due to large
volumes of data collected for logging and metrics. We also
asked practitioners for improvement recommendations, the
responses highlighted better support for performance and
fairness monitoring, recommendations for resolving runtime
issues, and automated generation and deployment of monitors.

The main contribution of this study is a holistic overview
of ML monitoring based on insights from experienced prac-
titioners across diverse roles, industries, and countries. While
previous studies on ML monitoring with human subjects do
exist, they were based on interviews with a small number
of participants [4], [9], [11]. To the best of our knowledge,
this is the first study to survey a global cohort of 91 ML
practitioners, offering a broader and more current perspective
on monitoring practices. The insights from this survey offer
valuable guidance for other practitioners and inform the future
development of ML monitoring tools that are better aligned
with practitioners’ needs.

Structure. The remainder of the paper is structured as follows.
Section II summarizes the related work on ML monitoring.
Section III describes our research methodology, including
research goals, survey design, execution, and data analysis.
Section IV reports the findings of our survey and answers the
research questions. Section V interprets the survey results and
Section VI describes the implications. Section VII explains the
threats to the validity of our study and our efforts to mitigate
them. Finally, Section VIII concludes the paper.

II. RELATED WORK

Prior work has stated that monitoring is critical to MLOps
[14]-[16]. Recent studies have explored ML monitoring prac-
tices and challenges through surveys, interviews, and literature
reviews. Zimelewicz et al. [17] perform a global survey with
188 practitioners focusing on ML deployment and monitoring.
Regarding monitoring, they found that most production models
are not monitored; those that are tend to focus on model inputs

and outputs. Key challenges included the lack of established
monitoring practices, the need to build custom tools, and
difficulty selecting appropriate metrics. These findings are
consistent with ours, which offer more detailed insights.

Shergadwala et al. [9] carried out interviews with 13 ML
practitioners to identify the requirements and challenges of
monitoring ML models from a human centric perspective.
They found that practitioners desire customizations in model
monitoring systems for domain-specific use cases, meaningful
alerts without cognitive overload, and suggestions for im-
provement. Among challenges, the interviewees mentioned
data privacy when using third party monitoring tools, mod-
ifying monitoring systems for domain-specific scenarios, and
unreliable drift detection. In comparison, our study has a
broader scope, as it considers runtime issues and monitoring
and mitigation strategies in addition to challenges and desired
ML monitoring features. Moreover, our survey complements
this study by confirming some of the findings and collecting
responses from a larger and more diverse pool of participants.

Shankar et al. [4] conducted interviews with 18 ML en-
gineers to learn about MLOps tasks and challenges. The
study results suggested that ML monitoring and response
was the last step in the MLOps workflow. The interviewees
described deployment and maintenance of ML models in
production as a very iterative, manual, and team-driven task.
Considering the manual effort required, three key challenges
for ML monitoring and response were highlighted: tracking
data quality and investigating alerts, managing complex model
pipelines when resolving a production bug, and debugging
rare errors. While this study focuses on the entire MLOps
lifecycle, our study is specifically about ML monitoring. We
investigate beyond challenges to provide a holistic overview
of practitioners’ experiences with ML monitoring.

Another interview study presented in [11] explores the
challenges of specifying training data and runtime monitors for
safety-critical ML systems. The results from the study based
on 10 interviews reveal several monitoring challenges. These
challenges include a lack of explainability for model decisions,
unclear runtime checks, monitoring overhead, and missing
technical guidance for ML monitoring in safety standards. The
scope of this study is restricted to monitoring safety-critical
ML systems, whereas our study encompasses monitoring
perspectives from various domains.

Lewis et al. [10] identified and characterized ML mis-
matches through an interview of 20 practitioners followed
by a validation survey. For ML systems in production en-
vironments, the study found three mismatches, the first and
most prominent one is a lack of runtime metrics, logs, and
user feedback for monitoring, reproducing, and correcting
runtime errors. The second was unawareness of computing
resources available in production, and the third and last one
was unawareness of the required time for model inference.
Additionally, the authors also explored mismatches related to
data in production.

A systematic literature review in [12] reports the challenges
and methods of monitoring ML models. They describe mon-



itoring as an extension of testing, as it continuously assesses
the system after deployment. From their review, they found
that high dimensionality of data during production makes
it difficult to ensure quality and thus requires more effort.
Shifts in data distribution were another problem since models
were deployed under the assumption that production data
distribution would be the same as training data. Another SLR
[13] summarized the existing monitoring and explainability
methods for ML, and monitoring methods were categorized
under data drift, outlier detection, and adversarial detection.
Both of these studies provide an overview of monitoring
methods, while [12] also presents some monitoring challenges.

While existing research discusses the importance of ML
monitoring and prevalent challenges, it does not provide a
holistic overview of the area. To the best of our knowledge, we
are the first to do a global survey to provide a comprehensive
understanding of current ML monitoring practices in the
industry. By surveying 91 ML practitioners from 11 countries,
our study offers a broader and more diverse perspective on
monitoring ML systems. We explore various runtime issues in
ML systems that necessitate monitoring, monitoring and miti-
gation strategies, monitoring challenges, and recommendations
for improvement.

III. METHODOLOGY
A. Goal and Research Questions

The study aims to investigate current industry practices and
challenges of monitoring ML systems in production environ-
ments. Through a survey of 91 ML practitioners, we collected
qualitative and quantitative data to understand practitioners’
perspectives regarding various aspects of the monitoring pro-
cess. This understanding can help other practitioners make
informed decisions and guide the future development of ML
monitoring tools. The following four research questions (RQs)
are addressed in this study:

RQ1: What are the common runtime issues practitioners
encounter in machine learning systems? This RQ inves-
tigates the runtime problems practitioners experience while
working on production ML systems and their causes. This
can help create awareness about common runtime issues and
the factors contributing towards them, thus encouraging ML
monitoring among professionals.

RQ2: How do practitioners monitor and mitigate run-
time issues in machine learning systems? This RQ helps
understand ML monitoring and issue mitigation strategies
prevalent in the industry. We aim to identify and describe the
monitoring methods, metrics, tools, and mitigation techniques
successfully applied by practitioners.

RQ3: What challenges do practitioners face when mon-
itoring machine learning systems? The insights from this
RQ aid in understanding the challenges practitioners encounter
when monitoring ML systems. This knowledge is valuable for
the improvement of monitoring solutions and can assist other
professionals in anticipating and managing similar problems.

RQ4: What are the priorities and areas of improvement
according to practitioners monitoring machine learning

systems? The findings from this RQ offer insights into
practitioners’ monitoring preferences and desired improve-
ments. Researchers and organizations developing monitoring
solutions can benefit from these insights by better aligning
their tools with real-world needs.

The RQs are conceptually linked to reflect the end-to-
end experience of practitioners, from identifying problems
and current practices to uncovering pain points and gathering
suggestions for improvements.

B. Survey Design and Distribution

This survey was performed to collect insights from expe-
rienced practitioners on ML monitoring practices and chal-
lenges. As this research involved human subjects, approval was
sought from the university ethics committee before conducting
the study.

Our questionnaire consisted of 25 questions, out of which
16 were closed-ended to measure the prevalence of ML
monitoring practices, and 9 were open-ended to capture nu-
anced insights. Quantitative questions were placed first to
avoid biasing responses, followed by qualitative questions
to allow participants to elaborate on their experiences. The
questionnaire was divided into 5 sections, one for each of the
following: participant demographics and ML experience (Q1
to Q11), runtime issues encountered (Q12 to Q14), monitoring
and mitigation strategies (Q15 to Q21), monitoring challenges
(Q22), and monitoring priorities and areas of improvement
(Q23 to Q25). Our questionnaire can be found at [18]. We
used Qualtrics [19] to design the survey and collect responses.

We conducted a pilot study before launching the survey to
assess the feasibility of the survey and refine the questionnaire.
It consisted of two ML practitioners recruited through the
authors’ professional network, whose feedback helped improve
the flow and terminology used in the questionnaire. The
improved survey was then made publicly available. Responses
for the survey were collected in two iterations. During the
first iteration, we began by posting adverts on social media
websites, LinkedIn, and X. We also searched LinkedIn for
professionals with experience of working with ML systems
and contacted them by sending a direct message. The messages
were significantly more successful in recruiting participants,
and we received 63 responses in the first iteration. For
more diversity in the responses, we performed a second
iteration and recruited 30 participants through Prolific [20].
The participants of the first iteration did not receive any
compensation, however, participants of the second iteration
recruited through Prolific were paid £6 per hour. To ensure
the quality of responses during the second round, we added 4
additional questions in the survey to check for attention and
relevant experience. Two low-quality responses were excluded,
resulting in 28 responses from the second round and bringing
the total number of responses from both rounds to 91 (63+28).

C. Data Analysis

We analyzed the data collected from the survey to answer
our research questions. For quantitative data from closed-
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ended questions, we used standard statistical analysis. For
qualitative data from open-ended questions, we applied the-
matic analysis. The first author assigned codes to the re-
sponses, grouped similar codes, created themes, and then re-
fined these themes to understand underlying data patterns. All
steps were performed under the supervision of other authors,
and any disagreements were resolved through consensus.

IV. RESULTS
A. Participant Demographics and ML Experience

In this section, we discuss the survey participants’ demo-
graphic characteristics and ML experience.

Figure 1 shows the geographic distribution of participants,
with the majority residing in Pakistan (35%), Australia (23%),
and the United States (20%). 44% of the participants were
aged 25-34, followed by 25% aged 18-24, and 19% aged
35-44. Comparatively, a much smaller portion of respondents
were aged 45 and above, 45-54 (4%), 55-64 (5%), and 65 or
older (2%). This distribution is consistent with the common
age disparity found in software practitioners. In terms of
qualification, most of our respondents have a Master’s degree
(41%) or a Bachelor’s degree (36%), followed by Doctorate
holders (21%), and a small portion with high school diplomas
(2%). A significant portion of the participants are qualified in
Computing and Technology (89%) fields such as Computer
Science, Data Science, Artificial Intelligence, Software En-
gineering, and Information Technology. The remaining 11%
have qualifications in Engineering or Business.

Regarding current role, most participants are Machine
Learning Engineers (24%) and Software Developers (23%).
Other designations include Project Manager (14%), Data
Scientist (13%), DevOps Engineer (11%), Researcher (7%),
Quality Assurance Engineer (4%), Business Analyst (1%),
Data Engineer (1%), IOT Engineer (1%), Product Owner (1%),
Prompt Engineer (1%), and Solutions Architect (1%). The par-
ticipants have experience across multiple domains, as shown in
Figure 2. Many respondents reported experience in more than
one domain, with the most frequently mentioned ones being
Education (27%), Engineering (14%), and Healthcare (12%).

The practitioners’ experience and context of ML systems are
important aspects to consider when investigating ML monitor-
ing approaches and challenges, hence, we asked participants
about their team size, years of experience, familiarity with ML
techniques, goals for leveraging ML, and deployment envi-
ronments. The results are summarized in Table I. Considering
team size, the largest portion of participants worked in teams
of 1-10 people (67%), followed by those who worked in teams
of 11-30 people (22%). A smaller portion worked in larger
teams of 31-50 people (8%), 51-100 people (2%), and more
than 100 people (2%). The overall experience of respondents
working with ML systems is nearly normally distributed, most
have 1-3 years of experience (43%), or 4-6 years of experience
(31%). A smaller portion are either seasoned experts with 7 or
more years of experience (16%) or in their early career with
less than 1 year (10%). Regarding experience with specific
ML techniques, the most prominent ones were Generative Al
(22%) and Supervised Learning (21%).

For goals behind employing ML systems, the results indi-
cate an inclination towards using ML for improving products
and operational efficiency, with less focus on use cases such
as marketing and security. The primary objective reported
for leveraging ML systems was Product Development and
Innovation (18%) and Reduce Costs and Optimize Production
(18%), closely followed by Enhance User Experience (16%)
and Quality Improvement and Maintenance (10%). Compara-
tively, some less common objectives were Risk Management
and Fraud Detection (10%), Customer Service (9%), Sales
Optimization (8%), Marketing (5%), and Security and Com-
pliance (1%). Regarding deployment environment, participants
significantly preferred Cloud-managed Infrastructure (44%)
(e.g., Amazon Web Services (AWS) [21]) over other envi-
ronments. Similar level of interest was reported for API based
ML Services (19%) (e.g., OpenAl API [22]) and Containerized
Deployment (19%) (e.g., Docker [23] and Kubernetes [24]).
Few participants mentioned other deployment environments
such as Locally Hosted (12%) (e.g., on-premise server) and
Edge Computing Platform (6%) (e.g., mobile device).

B. RQI - Runtime Issues Encountered

Practitioners often encounter issues in production ML sys-
tems; in this study, we refer to them as runtime issues. To
better understand these issues, we asked participants whether
they had experienced such issues, the specific problems they
faced, and what caused them. 70% of the participants reported
that they have encountered runtime issues, while 30% said
they have not. For those who have, we followed up with
two open-ended questions about the issues and their causes.
Based on the collected data, we identified causes linked with
their respective issues and performed thematic analysis to find
patterns. Seven themes emerged from this analysis, which
complement findings in [9], [12], [17].

The first theme, Model Performance Issues (38 %), demon-
strates that practitioners face problems with maintaining the
accuracy and correctness of model outputs in production ML
systems. This can be due to differences between training
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TABLE I
PRACTITIONERS’ EXPERIENCE AND ML LANDSCAPE

Category Percentage (%)
Team Size

1-10 people 67%
11-30 people 22%
31-50 people 8%
51-100 people 2%
More than 100 people 1%
Experience with ML Systems

Less than 1 year of experience 10%
1-3 years of experience 43%
4-6 years of experience 31%
7 or more years of experience 16%
Experience with ML Techniques

Ensemble Learning 12%
Generative Al 22%

Reinforcement Learning 10%
Self-supervised Learning 8%

Semi-supervised Learning 13%
Supervised Learning 21%
Unsupervised Learning 15%
Business Objective for Applying ML

Enhance User Experience 16%

Marketing 5%

Product Development and Innovation 18%
Quality Improvement and Maintenance 16%
Reduce Costs and Optimize Production 18%
Risk Management and Fraud Detection 10%
Sales Optimization 8%
Security and Compliance 1%

and production data (data drift), changes in user patterns or
operating context (concept drift), data quality issues such as
incorrect format, or unseen edge cases. Issues like data drift
were also reported for Generative Al systems, along with
hallucinations [25]. Participant P6 emphasized how reliance
on external APIs can be a reason for poor responses, “With
Generative Al solutions, the main reason for this is the de-
pendence on the external LLM APIs, which may be unreliable
in certain post-deployment environments.”

The second theme, Response Time Issues (25%), suggests
delayed responses and limited processing capacity. Key rea-
sons for this include model complexity, infrastructure limi-

tations, and inefficient deployment configurations, often due
to an underestimation of production load. For instance, P20
mentioned, “We identified that if we load an LLM onto
separate servers, the latency exceeds tremendously. We also
identified that if an LLM is loaded on a server where there
is already an inference running |[...], the latency of the newly
loaded LLM gets affected tremendously.”

The third prominent theme, Infrastructure Issues (14%),
P87 describes it as, “Infrastructure is unable to handle peak
loads (e.g., Black Friday sales crashing recommendation en-
gines).” This theme emphasizes scalability problems, com-
putational resource constraints, compatibility issues, resource
leaks, system crashes, and API cost overruns. Exploring the
causes for these issues revealed resource limitations (e.g.,
CPU/GPU capacity, limited memory), misconfigured cloud
infrastructure (e.g., GPU enablement issues), model size and
complexity, faulty updates and deployment pipelines, legacy
code, and complexity of cloud infrastructure.

Themes four and five are Security and Privacy Violations
(11%) and Fairness Violations (8%). The response of P78
highlights the critical nature of such issues, “Industries that
deal with delicate and sensitive data like Healthcare, security
violations can have severe repercussions like legal penalties.”
Security violations such as data poisoning, data leakage, and
model theft are often caused by a lack of security procedures
or compliance failures. For fairness violations, they are caused
primarily due to insufficient fairness assessment at design
time, such as imbalanced training data, biased algorithms, and
technical debt [26].

Theme six Consistency and Reliability Issues (3%), refers
to inconsistent outputs and unreliable behavior of the ML
system that can undermine user trust. P27 pointed out the
reason for this, “Responses from the LLM are not consistent or
reliable, which can heavily affect the quality of the application
[...] [because] the LLM does not properly comply with the
instructions mentioned in the prompt.”

The last theme, Accessibility Issue (1%), illustrates barriers
encountered by users who rely on assistive technologies. These
occur due to non-compliance with accessibility standards and
non-inclusive design choices.

Answering RQ1: The most frequently encountered run-
time issues in ML systems, as reported by practitioners, are
model output quality issues due to drift, data quality, and
unseen edge cases. Response time issues and infrastructure
issues are also common concerns, often arising due to
resource limitations and higher than expected user volume.
While mentioned less often, security, privacy, and fairness
violations remain an important concern, particularly in
critical applications. A few respondents also highlighted
consistency, reliability, and accessibility issues.

C. RQ?2 - Monitoring and Mitigation Strategies

To understand how practitioners monitor ML systems, we
asked them two closed-ended and three open-ended ques-



TABLE 11

MONITORING AND MITIGATION APPROACHES

F1-score, AUC-ROC,
RMSE, prediction
quality

error rate analysis,
threshold-based
monitoring

[28], Prometheus
[29], Grafana [30]

pairs, confidence scores

Category Specific Requirements Techniques & Primary Tools Data Collected Mitigation Strategies
Metrics

Model Model accuracy, Statistical metrics, MLAflow [27], Model predictions and Model retraining,

Performance precision, recall, confusion matrices, Weights & Biases ground truth, model I/O | hyperparameter tuning,

automated pipelines,
rollback mechanisms

Data Quality &
Drift

Data drift, feature drift,
data format

Statistical drift tests
(Kolmogorov
Smirnov test [31],
Jensen-Shannon test
[32]), distribution
comparisons, schema
validation

Evidently AI [33],
MLAflow [27], Alibi
Detect [34], custom
scripts

Feature distributions,
data statistics,
correlations, missing
values

Automated retraining
triggers, pipeline
adjustments, feature
engineering, quality checks

Response Time

End-to-end latency,
inference time, API
response time,
processing speed

P95/P99 latency
percentiles,
threshold-based
monitoring

Prometheus [29],
Grafana [30], AWS
CloudWatch [21],
Azure App Insights
[35], DataDog [36]

Response times, API
latency logs, inference
duration, performance
logs

Infrastructure scaling
(Kubernetes [24]), model
optimization (TensorRT
[37], ONNX [38]), caching
(Redis [39]), load
balancing

Resource
Utilization

CPU/GPU usage,
memory consumption,
disk usage, throughput,
system load

Resource monitoring,
utilization
percentages

Prometheus [29],
Grafana [30], AWS
CloudWatch [21],
Azure Monitor [35],
DataDog [36]

CPU/GPU/memory
stats, disk I/0, network
utilization, performance
data

Auto-scaling, resource
optimization, load
balancing, containerization
(Docker [23]/Kubernetes
[24])

System Reliability

Uptime, availability,
error rates, system
crashes, service failures

Uptime monitoring,
error tracking, health
checks, availability
metrics

Pingdom [40], AWS
CloudWatch [21]

System logs, error
traces, uptime statistics,
health results, failure
logs

Redundancy, failover
mechanisms, circuit
breakers, automated
recovery

Security &
Privacy

Adversarial attacks,
privacy violations,
prompt injections, data
leakage

Anomaly detection,
security attacks,
privacy assessments

AWS WAF [41],
security scanners,
Security information
and event
management (SIEM)

Security logs,
anomalous patterns,
breach reports, access
logs

Security patches, input
filtering, rate limiting, API
key rotation, access
controls

Fairness & Bias

Demographic parity,
disparate impact, bias
across groups, equitable
outcomes

Statistical testing,
Fairness metrics, bias
audits, group-based
analysis

Fairlearn [42], Al
Fairness 360 [43],

Demographic data,
prediction outcomes by
group, bias indicators,
fairness scores

Bias mitigation algorithms,
data rebalancing,
fairness-aware training,
diverse training data

Cost

Token usage, API costs,
computational expenses,
resource efficiency

Cost tracking, usage
monitoring,
efficiency metrics

OpenAlI dashboard
[44], billing APIs
[22]

Token usage, API logs,
billing data,
consumption costs,
usage patterns

Prompt optimization,
caching, rate limiting,
resource optimization, cost
alerts

tions. The first question was about whether they monitor ML
systems or not. 77% of participants reported that they do
monitor production ML systems, while 23% said they do not.
Comparing these responses with participants’ experiences of
runtime issues, we found that 58% of those who monitor
ML systems have also encountered runtime issues, while 19%
monitor but have not experienced such issues. A smaller
portion of 10% participants reported encountering runtime
issues despite not monitoring their systems, and 11% neither
monitor nor report having faced runtime issues. For those
who did monitor, we asked a follow-up question about the
monitoring techniques used in practice. Figure 3 shows the
results of various techniques applied while also considering
the experience level of participants. Automated monitoring
techniques (47%) were preferred by the majority of partic-

ipants, followed by manual monitoring (19%), and reliance
on user feedback (9%). A small group reported using Hybrid
techniques (2%) that combine automated, manual, and user
feedback-based monitoring. Interestingly, the experience level
of practitioners did not appear to influence their choice of mon-
itoring technique; some junior practitioners used automated
methods, while some experienced practitioners continued to
rely on manual approaches.

Table II presents a summary of our findings on ML monitor-
ing strategies and approaches to mitigate runtime issues. The
results are categorized according to the monitored aspect and
divided into eight categories. One notable trend is the heavy
reliance on statistical metrics and threshold-based monitoring
for model performance and drift monitoring. We observed that
basic threshold-based monitoring was also frequently used to
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detect latency issues. Open-source tools such as MLflow [27],
Prometheus [29], and Grafana [30] are widely used to track
model performance and resource metrics. Data drift detection
is typically done through data distribution comparisons, and
response times are monitored through latency profiles. These
monitoring strategies often trigger automated mitigation ac-
tions like model retraining, scaling, and caching.

Another trend is the growing awareness of responsible
Al aspects such as fairness, privacy, and cost monitoring.
Although these areas are monitored far less frequently than
model performance, drift, or latency, they are gaining attention.
Monitoring these aspects typically relies on specialized tools,
such as Fairlearn [42], Al Fairness 360 [43], and AWS WAF
[41]. Cost and resource monitoring are often supported through
usage tracking dashboards like the OpenAl dashboard [44]
and cloud billing APIs, with mitigation strategies focused
on prompt optimization and resource efficiency. Overall, the
ML monitoring landscape reflects a balance between model
performance and system operation concerns, with growing
interest in responsible ML aspects like fairness.

Lastly, we asked participants how long it takes for them to
identify and mitigate runtime issues. The responses summa-
rized in Figure 4, show that 44% of participants reported it
takes them between 1-2 days for the complete detection and
mitigation process. 23% shared it takes them between 3 to
5 days, 16% said less than a day, 12% reported more than
a week, and 4% stated exactly one week. Overall, for 40%
of participants, identifying and resolving runtime issues takes
between three days to over a week. This is a prolonged time
frame that can lead to financial losses and reduced user trust
in the ML systems.

Answering RQ2: Most practitioners preferred automated
monitoring techniques, though some still relied on manual
methods and user feedback. Interestingly, no relationship
was found between practitioners’ experience level and
choice of monitoring technique. The primary monitoring
categories for practitioners include model performance,
response time, resource utilization, and drift. Monitoring
tools like Prometheus and Grafana were most commonly
reported for performance, response time, and resource
utilization monitoring. MLflow was also a popular choice
for monitoring performance and drift. Among mitiga-
tion strategies, model retraining was found to be useful
for addressing performance and drift issues; scaling and
optimization were used for infrastructure and resource
issues; and redundancy and automated recovery helped
with reliability issues. For nearly half of the participants,
the complete process of identifying and resolving runtime
issues took between three days to over a week.

D. RQ3 - Monitoring Challenges

Monitoring production ML systems presents several chal-
lenges for practitioners [4], [9]. We asked participants who
monitor ML systems about these challenges through an open-
ended question. Out of all the participants, 34% responded to
this question, and their responses revealed four key themes:

The first theme, Operational Overhead (40%), represents
the additional effort and cost involved in monitoring. P3
noted, “Automated monitoring for such [Retrieval Augmented
Generation (RAG)] systems is limited as the answers vary
from domain to domain, therefore generic monitors are not
feasible.” Participants mentioned increased workload when
learning new monitoring tools, manually modifying them, and
dealing with alert fatigue due to false alarms. P21 shared,
“[...] Using it [monitoring solution] was difficult as it had very
limited functionality and required significant time to implement
new monitoring requirements.” Additional concerns included
the cost of monitoring infrastructure, high computational
requirements, data labeling costs, resource constraints, and
scalability challenges in storing and analyzing large volumes
of monitoring data, also observed in [4], [11].

The second theme, Setup and Configuration Complex-
ity (31%), captures the challenges practitioners face during
the initial setup and configuration of monitors. Similar to
[9], [17], we found that this process can be manual and
tedious, especially selecting appropriate metrics, identifying
which properties to monitor, configuring alert thresholds,
collaborating with other team members, setting up automated
alerts, and balancing monitoring tradeoffs. For example, P90
mentioned, “/...] Ensuring scalable, accurate monitoring of
diverse queries on platforms like grok.com is particularly
tricky.” Similarly, P84 reported, “[...] setting up accurate
drift detection, dealing with noisy alerts, and ensuring the
monitoring dashboards were actually useful without being
overwhelming were definitely challenges.”



The third theme, Integration Difficulties (21%), represents
the challenges in integrating monitoring tools with the ML
system, particularly, automating data streams to monitors. For
instance, P83 pointed out, “Integration [of monitoring tools]
with existing CI/CD pipelines was difficult. [There is a] lack of
plug-and-play monitoring tools for small-scale systems [...]".

Lastly, the fourth theme, Data Quality and Availability
Issues (8%), encompasses challenges such as the unavail-
ability of ground truth data, inconsistencies in data quality,
and privacy concerns during data logging and analysis, also
reported in [9], [17]. For example, P47 reported, “Ensuring
fairness across [...] subgroups was difficult due to the lack of
balanced ground truth data for all categories.”

Answering RQ3: Two major pain points in ML monitor-
ing, as reported by practitioners, are the operational over-
head and setup and configuration complexity. Participants
described these aspects as laborious, time-consuming, and
contributing to increased workload, particularly due to
false alarms. Integration of monitoring tools with exist-
ing ML systems was also mentioned as a challenge by
a smaller portion of respondents. In comparison, issues
related to data quality and the unavailability of labelled
data were not a major concern.

E. RQ4 - Monitoring Priorities and Areas of Improvement

To improve the ML monitoring experience for practitioners,
it is essential to understand their preferences and requirements.
We asked participants two closed-ended questions, each in-
cluding an Other option to allow for additional input.

Figure 5 shows the monitoring aspects practitioners priori-
tize in ML systems. Model Performance and Response Time
continue to dominate with 12% and 11% respectively. Partic-
ipants also showed a substantial and nearly similar interest in
Safety (9%), Fairness and Bias (8%), Privacy (8%), Resource
Usage/Sustainability (8%), and Security (8%). Aspects that
received decent attention were Availability (6%), Regulatory
Compliance (6%), Transparency (5%), Accountability (4%),
Explainability (4%), Human Values (4%), Trust (4%), and
Human Values (3%). This trend shows a growing awareness re-
garding responsible ML among practitioners. Tracking Model
Version and Updates (1%) was cited using the Other option
by only one participant.

TABLE III
AREAS OF IMPROVEMENT

Percentage (%)

Automated Monitor Setup & Deployment 19%
Automated Resolution of Runtime Issues 10%
Explanations for Runtime Issues & Root Causes 7%
Fairness & Bias Monitoring 13%
Model Performance Monitoring 18%
Privacy Monitoring 9%
Recommended Fixes for Runtime Issues 12%
Traceability across Business Objectives, Require- 12%
ments, & Metrics

Support Area

Table III presents the areas of improvement for ML mon-
itoring solutions. The findings indicate a strong interest in
Automated Monitor Setup and Deployment (19%), this insight
is consistent with the challenges reported regarding the com-
plexity of configuring monitors. Model Performance Monitor-
ing (18%) is the second most mentioned area of improvement
according to practitioners. This aligns with the frequent run-
time issues practitioners experience with model performance.
Other popular areas with the potential for improvement are
Fairness and Bias Monitoring (13%), Recommended Fixes
for Runtime Issues (12%), and Traceability across Business
Objectives, Requirements, and Metrics (12%). Less common
areas are Automated Resolution of Runtime Issues (10%),
Privacy Monitoring (9%), and Explanations for Runtime Issues
and Root Causes (7%). Few participants used the Other op-
tion to recommend additional features. P58 shared, “Intuitive
interface for setting up and managing monitors to reduce
technical barrier for team members, a robust system for
automated fixes and recommendations would help streamline
operations and improve system reliability [...]. Understanding
the root causes of requirements violations in clearer terms
would enable us to make informed adjustments and enhance
overall system performance.” Similarly, P33 noted, “Efficient
real-time monitoring, automated remediation, and a focus on
transparency and explainability are key to addressing these
[runtime] issues effectively.”

Answering RQ4: Practitioners largely prioritize moni-
toring model performance and response time over other
aspects. There is growing interest among practitioners to
monitor responsible ML aspects such as safety, fairness
and bias, privacy, sustainability, and transparency. Qual-
ities such as security remain important as well, while
accountability, explainability, and human values received
less attention. Regarding areas of improvement, automated
monitor generation and deployment, and better perfor-
mance monitoring were frequently cited. In contrast, fewer
participants wanted improved fairness monitoring, recom-
mendations of fixes, and traceability between requirements
and metrics.

V. DISCUSSION

A. Low-Code Monitor Setup and Management

Our findings revealed that practitioners struggle with the
initial setup and configuration of monitors. The increased
workload of learning new tools, dealing with false alarms, and
manually tuning thresholds highlights a need for automation.
Practitioners expressed a strong desire for automated solutions
that would reduce technical barriers and time to set up
monitors. Low-code [45] or no-code [46] approaches would
be ideal in this regard for quick monitor creation, deployment,
and management [1]. While few approaches exist [47], they
do not sufficiently address all aspects of this issue described
in the challenges section IV-D.
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B. Generative Al Specific Monitoring Solutions

The unique nature of generative Al systems requires mon-
itoring solutions tailored to these systems. Participants men-
tioned that they often monitor generative Al systems manually
because it is difficult to find appropriate automated tools. Since
generative Al is a relatively new area, available monitoring
solutions and tools are limited [36], particularly open-source
options [48]. There is a clear and urgent need for more targeted
monitoring solutions focusing on generative Al systems. These
solutions should cater to their unique characteristics, such as
handling natural language prompts and responses, efficiently
managing high computational loads, and minimizing token
usage costs if using approaches like LLM-as-a-Judge [49].

C. Domain-specific Monitoring Solutions

Based on our findings, it is evident that domain-specific
monitoring solutions are scarce. Participants reported that they
either rely on manual monitoring or have to write scripts them-
selves for monitoring domain-specific ML applications. Addi-
tionally, configuring thresholds can be particularly challenging
for such use cases, causing alert fatigue among practitioners.
This emphasizes the need for monitoring solutions that can
be easily adapted for domain-specific scenarios and provide
threshold recommendations while balancing tradeoffs.

D. Disconnect between Monitoring Solutions and Adoption

Our findings revealed that practitioners prioritize model per-
formance above all, and it is also the area where most runtime
issues are encountered. While several approaches and tools for
model performance monitoring exist [50], [51], practitioners
continue to face challenges even with well-known and well-
researched issues like data drift [50] and concept drift [51].
Our study did not collect sufficient data to determine whether

these challenges are due to a lack of awareness, maturity of
solutions, cost barriers, or any other factors. Regardless of the
cause, this highlights a major disconnect between research and
practice. Future works should explore the underlying reasons
for this gap and focus on bridging it.

E. Increased Awareness of Responsible ML but Limited Adop-
tion

Monitoring priorities of practitioners suggested an increased
awareness of responsible ML monitoring. While it is encour-
aging to see this awareness, the implementation in practice
was limited. Only a small portion of participants reported
monitoring for responsible ML aspects such as fairness and
accessibility. One possible reason is the additional effort
required to implement and manage these monitors. Integrating
features for responsible ML into existing monitoring tools
could reduce this burden, eliminating the need for sepa-
rate systems. Additionally, developing user-friendly, plug-and-
play—style solutions for responsible ML monitoring would
help encourage broader adoption.

F. Design with Monitoring in Mind

Integration of monitoring tools with existing ML systems
is one of the challenges reported by practitioners. A possible
reason for this is that many ML system architectures were
not originally designed with future monitoring requirements
in mind. Proactively accounting for monitoring needs during
the design of ML systems and CI/CD pipeline would greatly
simplify integration in later stages.

VI. IMPLICATIONS

To enhance the practical relevance of our findings, we
outline key implications below.

A. Practitioners

Our study provides practitioners with an overview of com-
mon runtime issues encountered in production ML systems.
Practitioners should prioritize these issues based on severity
according to their specific context and identify monitoring
requirements early in the ML development lifecycle. Early
consideration would allow ML systems to be developed in
a way that supports built-in instrumentation or hooks aligned
with suitable monitoring tools, enabling smoother integration
and reducing operational efforts or the need for major changes
later. Table II provides a starting point by summarizing various
monitoring aspects, techniques, tools, and mitigation strategies
used by other practitioners.

B. Tool Builders

Our findings suggest that tool developers should priori-
tize low-code and domain-adaptable monitoring solutions that
reduce operational overhead, simplify integration, and offer
built-in support for responsible ML aspects such as fairness
and privacy. Automation in monitor setup, accurate alerts,
issue mitigation suggestions, and support for newer system
types (e.g., generative Al) are also critical design needs.



C. Researchers

For researchers, the identified monitoring challenges and
improvement areas provide a foundation for evaluating ex-
isting tools and developing frameworks aligned with practi-
tioners’ needs. It would also be valuable to investigate why
model performance monitoring challenges persist despite the
availability of several tools, and how to bridge the gap between
tool capabilities and practitioner needs.

VII. THREATS TO VALIDITY

In this section, we discuss the threats to the validity of this
study and our attempts to mitigate them.

A. Internal Validity

A potential threat to internal validity is that factors such
as participants’ experience level, team size, domain, or demo-
graphic location of the practitioners may influence the results.
To reduce this, we collected responses from 11 countries, with
the top 4 countries representing different global regions. To
prevent the impact of participants’ experience, we collected
responses from novices, mid-level, and experts in the field of
ML. Our participant pool also covers a range of application
domains and team sizes for better representation. However,
it is important to note that these factors were self-reported,
and while the responses are diverse across multiple categories,
the distribution is not uniform, which may affect the results.
A specific risk associated with participants recruited through
Prolific was the potential to misrepresent their experience or
rush through the survey. To address this, we added additional
attention and relevant experience check questions and excluded
responses that did not correctly answer these questions.

B. External Validity

Threats to external validity include results not being gener-
alizable. Since this was an anonymous survey, we could not
collect organizational affiliations of participants to guarantee
the authenticity of industrial experience. However, many par-
ticipants were recruited through LinkedIn, where professional
affiliations are publicly visible. While this does not entirely
eliminate the risk, we have tried to reduce its impact on
the study. Additionally, recruitment through social media and
anonymous surveys is a commonly accepted practice in soft-
ware engineering research involving industry participants [52],
[53]. We tried to include participants from a range of domains,
team sizes, experience levels, and geographical locations. To
reach a broader audience, we recruited participants through
social media and Prolific. However, 85% of our participants
are from Pakistan, Australia, and the United States, which is
a threat to the generalizability of the study, as regional dif-
ferences may influence the reported results. Another concern
was selection bias, as the practitioners who responded might
be highly experienced in ML monitoring. To mitigate this,
we recruited participants based on ML experience, not ML
monitoring experience. Lastly, for RQ3, since only 34% of
participants responded, the results may not fully represent all
monitoring challenges that exist. To mitigate this, we analyzed

responses from diverse roles, experience levels, and domains
to reflect varied practitioner perspectives.

C. Construct Validity

The terminology used in survey questions is a potential
threat to construct validity. We addressed this in three ways:
(i) we added a detailed explanatory statement with examples
at the beginning of the survey; (ii) we conducted a pilot
study with experienced ML practitioners to ensure that the
survey terminology was consistent with industry terminology;
and (iii) during analysis of free-text answers, if the authors
observed that a participant had not correctly understood the
question, their response was excluded from the survey. Ad-
ditionally, closed-ended questions can also be a concern for
construct validity, as they limit the range of answers. To lower
this risk, we added a free-text “other” option with nearly all
such questions. The same questions and ordering were used
for both survey iterations, with the addition of 4 questions
(attention and relevant experience checks) for Prolific.

D. Conclusion Validity

A major threat to conclusion validity is false or inaccurate
reporting by participants, especially those recruited through
Prolific. For issues of genuine misunderstanding, we per-
formed pilot tests to refine survey terminology and ensure it
was easily understood by practitioners. While this risk cannot
be completely mitigated, we have tried to exclude misreported
and misunderstood responses where possible. Lastly, our
sample size offers reasonable coverage for capturing diverse
practitioner perspectives.

VIII. CONCLUSION AND FUTURE WORK

This paper investigates the complete monitoring landscape
for production ML systems. This includes runtime issues,
monitoring approaches and tools, mitigation strategies, mon-
itoring challenges, priorities, and areas of improvement. Our
goal was to understand how ML practitioners perform moni-
toring and how it can be improved. By conducting a survey
with 91 practitioners, we collected diverse insights to identify
current industrial practices, pain points, and opportunities for
advancement. The findings from this survey are beneficial for
other practitioners and can help guide the design of future ML
monitoring tools that more closely reflect real-world needs.

Potential future work directions include follow-up inter-
views for deeper analysis into the types of ML systems used,
runtime issues specific to each type of system, and why
certain monitoring tools are preferred. Further exploration of
monitoring for generative Al and responsible ML would also
be valuable.
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