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Requirements

Abstract—The quality of a delivered product relies heavily
upon the quality of its requirements. Across many disciplines and
domains, system and software requirements are mostly specified
in natural language (NL). However, natural language is inherently
ambiguous and inconsistent. Such intrinsic challenges can lead
to misinterpretations and errors that propagate to the subse-
quent phases of the system development. Pattern-based natural
language processing (NLP) techniques have been proposed to
detect the ambiguity in requirements specifications. However,
such approaches typically address specific cases or patterns and
lack the versatility essential to detecting different cases and
forms of ambiguity. In this paper, we propose an efficient and
versatile automatic syntactic ambiguity detection technique for
NL requirements. The proposed technique relies on filtering the
possible scored interpretations of a given sentence obtained via
Stanford CoreNLP library. In addition, it provides feedback to
the user with the possible correct interpretations to resolve the
ambiguity. Our approach incorporates four filtering pipelines
on the input NL-requirements working in conjunction with the
CoreNLP library to provide the most likely possible correct
interpretations of a requirement. We evaluated our approach
on a suite of datasets of 126 requirements and achieved 65%
precision and 99% recall on average.

Index Terms—Requirements specification, Requirements anal-
ysis, Quality analysis

I. INTRODUCTION

Requirements Engineering is a critical phase of system
development. The most important artefact in this phase is
the System Requirements Specification (SRS) document [1].
It provides the basis for an agreement between the client(s)
and the development team describing what needs to be built
[2]. The SRS document contains a detailed description of
the system to be built and its expected behaviour including
both functional and non functional requirements [3]. Improper
requirements – requirements with defects – lead to an increase
in the development time and cost of the system and can be
the cause of major operational failures [4]. Defected require-
ments typically includes quality issues and mistakes causing
problems in the consequent phases of system development [5],
[6]. The most common quality issues include missing or in-
complete, incorrect, inconsistent, and ambiguous requirements
[5], [6]. Half of the problems in the requirements are caused by
incorrect, ambiguous and poorly written requirements, where
ambiguity can be identified as the root cause [5], [6]. In [7],
[8], it is indicated that fixing errors in requirements or the early
phases of design incurs the least cost. Improper requirements
also affect the cost and duration of system maintenance.

The majority of system requirements (79%) are written in
natural language, such as English, with only 21% using some
kind of (semi-)formal notations [9], such as structured natural
language like forms [10], templates [11], or formalized lan-
guage [12]. However, NL is inherently ambiguous, imprecise,
and incomplete [13], [14]. To mitigate the inherent problems
associated with the reliance on requirements specified in
NL, it is pivotal to ensure the quality of the requirements.
Ambiguity is one of the most challenging quality issues that
may cause numerous problems in the subsequent phases of
the development life-cycle. Ambiguity is commonly defined
as a sentence with more than one interpretation by different
readers [9]. Different interpretations can translate into bugs
e.g., design, functional, logical, performance or user interface
bugs, if not detected and resolved at the earliest stage possible
[8].

Detecting ambiguity at an early stage would decrease the
consumed time and cost of the entire system development.
To detect such defects, several manual quality assurance
processes are put in place. However, detecting ambiguities
manually is a hard process that requires high expertise and
domain knowledge in addition to the distraction of quality
defects as indicated in [15]. Also, reviews of SRS documents
should involve all relevant stakeholders [3], who must read,
understand and confirm each requirement. Thus, an automated
approach for ambiguity detection and/or resolution is primary
to ensuring the robustness and reliability of systems as well
as enhancing the efficiency of the development process .

Most research addressing the ambiguity problem adopts
one of two main strategies: (1) ambiguity prevention and (2)
ambiguity detection and resolution. In the former strategy,
the main goal is to forbid ambiguities from manifesting in
requirements. This ensures that the requirements are stated
using precise structure and vocabularies that have unique
meaning. Typical approaches define concrete formats such as
controlled languages, templates, or patterns (e.g., EARS [10],
ACE [16], etc.). In the later strategy, the ambiguities are not
avoided from the beginning, but are allowed to exist in the
initial SRS documents; however, later eliminated with the aid
of appropriate techniques (e.g., machine learning [17] or rule-
based [18], [2]). Most of these approaches alert the user for
the presence of ambiguity in a sentence. However, they do not
provide possible correction(s). In addition, they mainly focus
on specific cases of ambiguity and fail to detect other possible
instances.
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To overcome such issues, we introduce a Score-Based
Ambiguity Detector and Resolver (SBADR). Our approach
utilises Stanford CoreNLP to obtain the possible parse trees
of each sentence of a given textual requirement. SBADR then
analyses the generated parse trees using four filtering pipelines
to detect and resolve, through suggesting multiple possible
interpretations, the syntactic ambiguities in the requirement.
These pipelines target: (1) eliminating redundant parsing trees
(meaningless or repeated) and, (2) short listing the recom-
mended interpretations. First, redundant interpretations are
eliminated to make sure that only the grammatically correct
unique interpretations of the sentence are detected. Then,
the interpretations are statistically analysed to provide the
most possible likelihood interpretations of the requirement. We
focus on syntactic ambiguity since its detection is possible
by analysing and favouring the syntactically correct reliable
interpretations through highest ones at sentence level. On the
other hand, detection of semantic and pragmatic ambiguities
requires a deeper-level of analysis of meaning at context
and discourse level. We evaluated the SBADR against the
most relevant approach "Ambigo" on their data sets achieving
a better performance. In addition, we evaluated on more
complex scenarios –unhandled by Ambigo– available with
widely accepted interpretations for reference.

The key contributions of this paper are:
• providing an effective and efficient automatic detection

technique for syntactic ambiguity while not being con-
fined to a specific ambiguity pattern;

• resolving the ambiguity by providing the user with the
most likelihood interpretation(s); and

• evaluating SBADR on a suite of datasets containing a
total of 126 sentences targeting attachment, co-ordination,
and analytical types of syntactic-ambiguity.

The rest of this paper is organized as follows: section II
gives insight on the ambiguity problem in natural language.
Section III proposes the ambiguity detection and resolution
technique. In section IV, we present the evaluation of the
recall, precision, and F-measure of the proposed approach.
Section V discusses the obtained results and highlights the
main threads to validity. Section VI, provides a review of
the current state of research within our scope. Section VII
concludes the paper and highlights the key future work.

II. MOTIVATION

Ambiguity is the prospect of having more than one interpre-
tation to a given sentence. It is one of the intrinsic problems
of natural language that occurs more frequently compared
to other types of issues as indicated in the empirical study
conducted in [19]. Ambiguities are commonly categorized into
four types, namely lexical, syntactic, semantic and pragmatic
ambiguities [18], [20], [21], [22].

According to the recent review in [20], each of the ambi-
guity types has main subdivisions. Figure 1 shows the types
of ambiguities alongside the main subdivisions of each type
in solid lines and our extended subdivision in dashed lines.

These major types are explained as follows.
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Fig. 1: Types of Ambiguity [20]

Lexical Ambiguity: refers to a situation where a single
word has more than one meaning. This type can be further cat-
egorized into homonymic and polysemic types of ambiguities.
The former type, homonymic ambiguity, occurs when multiple
words have the same spellings or phonetics but different
meaning as

- Case-1: same spelling with different meanings (e.g., the
soldiers liked the port," the word port can refer to a wine
or a harbor [23]).

- Case-2: same phonetic, pronounced the same, with
different meanings (e.g., Knight and night, The word
‘knight’, is a person who guards a sovereign or a palace,
but the word ‘night’ is the time period from sunset to
sunrise).

While the other type, polysemic ambiguity, occurs when a
single word gives different meanings in different contexts
(e.g., the word newspaper may mean (1) the physical printed
publication as in "The newspaper got wet in the rain" or (2)
the publishing institution as in "The newspaper fired some
of its editing staff"). From these two examples it can be
noticed that polysemy requires the meanings of the word to
be etymologically related.

Syntactic Ambiguity: occurs when the whole sentence can
have more than one grammatical structure. This type can be
divided into Attachment, Coordination and Analytical types of
Ambiguity. Attachment ambiguity happens when the under-
investigation sentence has suspect of attaching a part of the
sentence with another part [19] (e.g., "I saw the boy with
the telescope" can be: 1) I saw (the boy with the telescope)
or 2) I saw (the boy) with the telescope). Coordination
ambiguity appears when a sentence contains coordination or
one conjunction is used along with a modifier including two
cases:

- Case-1: one conjunction with a modifier (e.g., "young
men and women" can be: 1) (young men) and (young
women) or 2) (young men) and women)

- Case-2: multi-coordination (e.g., "John and Jack or
Marry should come" can be 1) (John and Jack) or (Mary)
should come or 2) (John) and (Jack or Mary) should



come).
The last type, Analytical ambiguity, exists when the role of the
constituents within a sentence is ambiguous which is common
in compound noun phrases (e.g., "general assistance program"
can be: 1) (general assistance) program "meaning: program
of general assistance" or 2) general (assistance program)
"meaning: general program of assistance").

Semantic Ambiguity: in this type of ambiguity, the sen-
tence has several interpretations even though there is neither
lexical nor syntactic ambiguities. This type can be decomposed
into scope and anaphoric types of ambiguity. Scope ambiguity
appears in a sentence with vague quantifying words (e.g., All
customers have a reference number may be interpreted as "ev-
ery customer has a reference number" or "all customers have
the same reference number"). Anaphoric ambiguity happens
when there are more than one possibility of referring to the
word which were mentioned earlier in the sentence [19] (e.g.,
In their free time, the mothers sing for the children ==> the
word their can be referred to by "mothers" or by "children").

Pragmatic Ambiguity: happens when the sentence has
more than one meaning within the context [20], [18]. Prag-
matic ambiguity can be indicated by referential ambiguity that
appears when a word locates its reference from more than
one preceding elements [20] (e.g., "the teachers shall provide
feedback to students before they go on a holiday" ==> Within
the context of the sentence, the word "they" can refer to either
the teacher or the students).

In this paper, the main focus is on syntactic ambiguity
including coordination, attachment and analytical types of am-
biguity. In addition to the key role in correctly understanding
software and system requirements (especially in maintenance
scenarios), the detection and resolution of syntactic ambiguity
is also pivotal across several applications of natural language
processing such as Information Extraction, Information Re-
trieval, and Automatic Speech Recognition [24].

III. OUR APPROACH

An overview of our SBADR tool is shown in Figure 2.
SBADR takes a requirements SRS document containing single
or multiple sentences per requirement as input. It then sepa-
rates the sentences of each multi-sentence requirement while
keeping their grouping relation intact. Then, each sentence
in the requirement is analysed separately to check whether
the analyzed sentence is ambiguous or not. If a sentence is
found to be ambiguous, the tool marks this sentence within
the corresponding requirement as ambiguous and computes the
most possible likelihood interpretations. Each interpretation
is formatted with grouping brackets to reflect the desired
meaning to make easier for the user to understand. Finally,
it provides the user with the recommended set of interpreta-
tions for each ambiguous sentence detected. The syntactical
structures of the suggested interpretations are attached with
the sentences.

SBADR utilises the Stanford CoreNLP library as the core
underlying technology. Stanford library has been selected for
the following reasons:(i) it is the most widely used tool for

processing NL requirements [25]; (ii) it is open source with an
increasingly growing resources and support community; and
(iii) it supports the application of different levels of analysis
on NL.
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Fig. 2: SBADR Workflow Diagram

A. Framework Description

Algorithm 1 the pseudo-code of the entire ambiguity check-
ing and correction pipeline. Through the utilisation of the Stan-
ford CoreNLP parser, we can parse the sentence into multiple
possible interpretations, with each interpretation associated
with a parsing confidence score. However, a large number
of the obtained interpretations are meaningless (i.e. they do
not correspond to a proper English sentence), or repeated.
Thus, we crafted a four-filtering pipeline appproach to extract
a unique set comprised of the highest scoring meaningful
interpretations. If more than one interpretation is obtained,
we assist the user in refining the sentence by displaying the
possible interpretations.

These four filtering pipelines form the basis of the ambiguity
analysis approach. We determined these pipelines by applying
extensive analysis on the output of parsing trees obtained
by the Stanford NLP parser for several ambiguous and non-
ambiguous sentences. A parsing tree is a rooted tree expressing
the syntactic structure of the input text with accordance to
some grammatical rules of the intended language [26]. The
filtering pipelines are as follows:

P1: Meaningless parse trees elimination pipeline: Since
the Stanford NLP parser is a statistical-based parser, some of
the obtained interpretations may be meaningless. Hence, we
check the meaning of each parse tree making sure it conforms
to a correct sentence structure as indicated in Figure 3. A
sentence structure repository is created based on analysing
over 1000 parse trees interpretations for several textual re-
quirements and studying the Stanford CoreNLP documenta-
tion. It contains a set of indicators that break the syntactic
correctness of a sentence (parse tree starts with fragment, noun
phrase, or verb phrase). This elimination is comprehensive
within the context of Stanford CoreNLP parsing. The figure
shows that, the recommended N scored parsing tree of a
given requirement are fed to the filtering pipeline as input.
Then, these scored trees are checked against the constructed
repository to eliminate any broken interpretation (only parse



Algorithm 1 Ambiguity Checking

Input: Requirement sentence
Output: Interpretation and ParsingTree
procedure GENERATEINTERPRETATIONS(Sentence)

TopTrees ← Extract the top K-best parsing trees
Apply four-filtering pipeline

Step1: ResTrees ← eliminate meaningless parsing
trees

Step2: ResTrees ← eliminate redundant parsing trees
based on structure

remove parsing trees with the same structure
Step3: ResTrees ← eliminate redundant parsing trees

based on interpretation
remove parsing trees with the same typed-

dependencies
Step4:ResTrees ← keep parsing trees with the highest

score within a specific variance
Within close score variance of the best scoring

interpretation "10%"
(found to be an effective ambiguity threshold based

on testing done so far)
if ResTree.size() > 1 then

ParsingTree ← ask user to select one interpretation
else

ParsingTree ← ResTree.get(0)
end if
Interpretation ← getInterpretation(ParsingTree)
return ParsingTree, Interpretation

end procedure=0

trees with roots labeled as "S" or "SBAR" remain and parse
trees with internal fragments are removed). Parse tress with
containing only noun phrases are also removed (no verb phrase
in the sentence). Finally, a set of meaningful interpretations
are produced. The P1 column in Fig.7 and Fig.8 show the
eliminated meaningless parsing trees in both examples. The
examples indicates that, a meaningful interpretation may take
a lower score than a meaningless interpretation. This highlights
the importance of the filtering pipeline in maximizing chance
to correct interpretations with lower scores while avoiding
incorrect ones.

Correctness 
Checker

Scored 
parsing trees

Failed Structure 
Indications 
Repository

Meaningful 
scored-trees

Fig. 3: First filtering pipeline removing meaningless parse trees

P2: Structural-based parse trees filtering pipeline:
In this pipeline, we remove the repeated trees with the

same structure. Repeated Parsing trees (based on structure)

have three cases: (1) complete identical structure with identi-
cal labels, (2) identical structure with interchangeable labels
(e.g., NN and NNP) , and (3) identical normalized struc-
tures (e.g., NP((DT the)(NN school)) ≡ NP(NP((DT the)(NN
school)))). These inconsistencies are resolved in two steps
before checking the redundancy as indicated in Fig.4. In S1,
interchangeable labels are resolved, first, the parsing trees are
flattened and converted to strings. Then, the unlabeled trees’
structures are extracted. In S2, the parse trees are normalised,
we remove nested redundant braces (e.g., NP inside NP, etc)
through bi-directional braces checking (locating corresponding
close bracket for each opened bracket). After unifying and
normalising the parse trees, we will have a set of parse
trees with abstract structures, then we locate the trees with
identical abstract structures as indicated in algorithm 2. The
P2 column in Fig.7 and Fig.8 show the eliminated parsing
trees set with repeated structures. For example, interpretations
with indices 1, 7 and 10 in Fig.7 have identical structures with
interchangeable labels.
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Unlabeled  
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S2
Normalize 
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Fig. 4: Second filtering pipeline removing redundant parse
trees based on structure

Algorithm 2 Eliminate repeated parsing-trees Case-A

procedure GETUNIQUEPARSINGTREES(ParsingTrees)
TreeStructureList ← φ
UniqueParsingTrees ← φ
for all crrTree ∈ ParsingTrees do

crrStructure ← extract abstract Structure (crrTree)
if crrStructure /∈ TreeStructureList then

UniqueParsingTrees ← crrTree
TreeStructureList ← crrStructure

end if
end for
return UniqueParsingTrees

end procedure=0

P3: Redundant interpretations elimination pipeline: For
better accuracy, we keep only the interpretations with unique
grammatical roles/relations along with unique grammatical
structure. Grammatical roles express the semantic relations
among words within the input sentence that are known as
typed dependencies in Stanford CoreNLP [27]. These relations
are extracted from the grammatical structure by identifying the
semantic head of each constituent in the parse structure [27].
Thus, typed dependencies of an input sentence are computed



given one parsing tree [27] – the mostly used parsing tree
by Stanford is the top scored one. To achieve this kind of
filtering, we keep unique parsing trees along with unique
typed dependencies as well, as indicated in Figure 5. First,
we compute the typed dependency of each parsing tree. Then,
for any repeated typed dependency, the corresponding least
scoring parsing tree(s) is/are eliminated as in algorithm 3. The
P3 column in Fig.8 presents the the eliminated interpretations
after applying this type of filtering. The figure visualizes a
case of having multiple parsing trees with the same typed
dependency. On the other hand, the P3 column in Fig7 shows
that the parsing trees set does not change after such type
of filter (i.e., means all parsing trees have unique typed
dependency).

Unique meaningful 
scored-trees

S1
Extract Unique 

Typed-Dependencies

Type-
Dependencies

S2
Eliminate trees based on 

repeated typed dependencies

Unique meaningful 
interpretations of 

(scored-trees)

Fig. 5: Third filtering pipeline eliminating redundant parse
trees based on typed dependencies

Algorithm 3 Eliminate repeated interpretations Case-B

procedure GETUNIQUEPARSINGTREES(ParsingTrees)
typedDependencyList ← φ
UniqueParsingTrees ← φ
for all crrTree ∈ ParsingTrees do

crrTD ← getTypedDependency (crrTree)
if crrTD /∈ typedDependencyList then

UniqueParsingTrees ← crrTree
typedDependencyList ← crrTD

end if
end for
return UniqueParsingTrees

end procedure=0

P4: Score based elimination pipeline: In this level of
filtering, we want a concise output set of interpretations
reflecting a real case of interpretations. Thus, we favor the
more closely related interpretations (score related) over the
remaining interpretations as they are less likely to be the
intended meaning of the sentence. These related interpretations
can be defined based on the attached statistical scores. A score
of a given parsing tree expresses the summation of all the
decision scores at each node in the parsing tree. A decision
score is the selected score ,among the recommended ones
each attached with possible semantic, reflecting how plausible
the parent node by adopting the semantic [28]. Thus, the
relevance degree of two parsing trees’ interpretations inversely
proportionate to the scores difference of these parsing trees.

Consequently, we keep trees within close score with variance
≈ 10% (found to be an effective ambiguity threshold based
on testing done so far) as indicated in Figure 6. Where the
variance would reflect how far the scores are spread out.

Unique meaningful 
interpretations of 

(scored-trees)

Maintain trees within 
score variance (k)

Highest unique 
meaningful 

Interpretations

Fig. 6: Fourth Filtering Pipeline

Parsing Trees Scores P1 P2 P3 P4

1 ROOT(S(NP( I PRP )VP( saw VBD NP( the DT boy NN )PP( with IN NP( 
a DT telescope NN ))PP( on IN NP( the DT hill NN ))))) -68.22

2 ROOT(S(NP( I PRP )VP( saw VBD NP( the DT boy NN )PP( with IN 
NP(NP( a DT telescope NN )PP( on IN NP( the DT hill NN ))))))) -68.77

3 ROOT(S(NP( I PRP )VP( saw VBD NP(NP( the DT boy NN )PP( with IN 
NP( a DT telescope NN )))PP( on IN NP( the DT hill NN ))))) -69.55

4 ROOT(S(NP( I PRP )VP( saw VBD NP(NP( the DT boy NN )PP( with IN 
NP(NP( a DT telescope NN )PP( on IN NP( the DT hill NN )))))))) -69.94

5 ROOT(S(NP( I PRP )VP( saw VBD NP(NP( the DT boy NN )PP( with IN 
NP( a DT telescope NN ))PP( on IN NP( the DT hill NN )))))) -71.28

6 ROOT(S(NP( I PRP )VP( saw VBD NP( the DT boy NN )PP(PP( with IN 
NP( a DT telescope NN ))PP( on IN NP( the DT hill NN ))))))

-73.12
✗

7 ROOT(S(NP( I PRP )VP( saw VBD NP( the DT boy NN )PP( with IN NP( 
a DT telescope NNP ))PP( on IN NP( the DT hill NN )))))

-73.26 ✗

8 ROOT(NP(S(NP( I PRP )VP( saw VBD NP( the DT boy NN )PP( with IN 
NP( a DT telescope NN ))PP( on IN NP( the DT hill NN ))))))

-73.29
✗

9 ROOT(FRAG(S(NP( I PRP )VP( saw VBD NP( the DT boy NN )PP( with IN 
NP( a DT telescope NN ))PP( on IN NP( the DT hill NN ))))))

-73.46 ✗

10 ROOT(S(NP( I PRP )VP( saw VBD NP( the DT boy NN )PP( with IN NP( 
a DT telescope NNS ))PP( on IN NP( the DT hill NN )))))

-73.57 ✗

Possible Interpretations

1.“I used a telescope to see a man who was on a hill.”
2.“I was on a hill, and used a telescope to see a man.”
3.“I saw a man, who was on a hill, and the hill had a telescope on it.”
4.“I saw a man, while I was on a hill which had a telescope on it.”
5.“I saw a man, who was on a hill and had a telescope.”

1 2

3 4

5

(a)

(b)

(c)

Input Sentence:    I saw the boy with the telescope on the hill

Fig. 7: Tracing and investigating the given text: (a) shows
the top 10 parse trees, Stanford scores, eliminated trees in
P1, P2, P3, P4 respectively from left to right (b) shows the
interpretations of the remaining trees ,(c) drawings reflecting
each interpretation

Algorithm 4 illustrates the complete filtering steps. First,
the candidate parsing trees initialized with the top parsing tree
whose score assigned to the mean. In addition, the variance
threshold is initialized with 10% of the mean. At each iteration,
we extract one parsing tree and calculate the corresponding
deviation. In case the square deviation does not exceed the
variance threshold, (1) consider this interpretation (2) update
mean and variance. The algorithm highlights the continuous
update of the interpretations mean and variance at every time
of adding a new interpretation and how the update stops.



Parsing Trees Scores P1 P2 P3 P4

1 ROOT(S(NP( The DT product NN )VP( shall MD VP( show VB NP(NP(the DT
weather NN )PP( for IN NP(the DT next JJ twenty-four JJ hours NN ))))))) -82.73

2 ROOT(S(NP( The DT product NN )VP( shall MD VP( show VB NP(the DT
weather NN )PP( for IN NP( the DT next JJ twenty-four JJ hours NN )))))) -82.94

3 ROOT(S(NP( The DT product NN )VP( shall MD VP( show VB NP(NP(the DT
weather NN )PP( for IN NP(the DT next JJ twenty-four NN hours NN ))))))) -83.18 ✗

4 ROOT(S(NP( The DT product NN )VP( shall MD VP( show VB NP(the DT
weather NN )PP( for IN NP( the DT next JJ twenty-four NN hours NN )))))) -83.39 ✗

5 ROOT(S(NP( The DT product NN )VP( shall MD VP( show VB NP(NP(the DT
weather NN )PP( for IN NP(the DT next JJ twenty-four JJ hours NNS ))))))) -85.95 ✗

6 ROOT(S(NP( The DT product NN )VP( shall MD VP( show VB NP(the DT
weather NN )PP( for IN NP( the DT next JJ twenty-four JJ hours NNS ))))))

-86.17 ✗

7 ROOT(S(NP( The DT product NN )VP( shall MD VP( show VB NP (NP (the DT
weather NN ) PP( for IN NP( the DT next JJ twenty-four JJ hours NNP )))))))

-87.69 ✗

8 ROOT(S(NP( The DT product NN )VP( shall MD VP( show VB NP(NP(the DT
weather NN )PP( for IN NP( the DT next JJ twenty-four NN hours  NNS )))))))

-87.74 ✗

9 ROOT(S(NP( The DT product NN )VP( shall MD VP( show VB NP(NP( the DT
weather NN )PP( for IN NP(the DT next JJ twenty-four NN hours NN )))))))

-87.77 ✗

10 ROOT(NP(S(NP( The DT product NN )VP( shall MD VP( show VB NP(NP(the DT
weather NN )PP( for IN NP(the DT next JJ twenty-four JJ hours NN ))))))))

-87.80 ✗

Possible Interpretations

1.“The product shall display the next twenty-four hours’ weather”
2.“During the next twenty-four hours, the product shall keep displaying the weather”

(a)

(b)

Input Req: The product shall show the weather for the next twenty-four hours.

Fig. 8: Tracing and investigating the given text: (a) shows
the top 10 parse trees, Stanford scores, eliminated trees in
P1, P2, P3, P4 respectively from left to right (b) shows the
interpretations of the remaining trees

The point behind updating the variance and not keeping it
constant to 10% is adapting the algorithm to the natural
deviation of the calculated scores that differs from case to
case based on the sentence, the complexity of its structure
and the statistical parsing decisions. Consequently, the resulted
interpretations will reflect more natural real-cases by striking a
balance between comprehensiveness and minimalism. The P4
column in Fig.7 shows the eliminated parse trees after applying
such type of filtering. As it can be seen, all the interpretations
are in the defined variance. Within which, all of them are
unique and correct interpretation as indicated in Figure 7 (b)
and (c). Similarly, Fig.8 illustrate the obtained interpretations
by applying the four-filtering pipelined approach on NL-
requirement. In which, the filter keeps two interpretation 8.(b).

Figure 7 and figure 8 serve as tracing examples for the
ambiguity resolution algorithm in different scenarios. The fig-
ures illustrate a step by step output highlighting the effect and
benefit of each filter. For the input sentence example, the table
at (a) presents the top 10 parse trees, the attached Stanford
scores, the eleminated parse trees at each filtering pipeline P1,
P2, P3 and P4 respectively. (b) and (c) outlines the obtained
interpretation(s) after applying the technique and visualise
the corresponding meanings respectively. For simplicity, we
only extract the top 10 parse trees on a simple sentence.
However, in real case scenarios we investigate a maximum
of 100 parse trees (for simple sentences, this number of parse
tress may not be generated). In the tracing examples (simple

Algorithm 4 Keep Highest Scored-Trees
procedure COMPUTE-HIGHESTSCOREDTREES(ParsingTrees)

varianceRatio = .1
HighestParsingTrees ← φ
scoredParsingTrees ← attachScores(ParsingTrees)
topTree ← scoredParsingTrees.pop()
meanScore ← topParsingTree.score()
scoreSum ← topParsingTree.score()
count ← 1
threshold = ← (meanScore* varianceRatio)
HighestParsingTrees.add(topTree)
for all crrParsingTree ∈ scoredParsingTrees do

crrScore ← crrParsingTree.score()
diviation = crrScore - meanScore
if (diviation)2 <= threshold then

HighestParsingTrees.add(crrParsingTree)
scoreSum ← scoreSum + crrParsingTree.score()
count ← count + 1
meanScore ← scoreSum / count
threshold = computeCurrenVariance

end if
end for
return HighestParsingTrees

end procedure

sentences) a lower variance percentage could be enough since
the decisions made in the scored trees are fewer. However, the
recommend percentage is better suited to support a wider range
of complicated generic cases without affecting the results of
the simpler structures. Figure 7.(b) and figure 8.(b) display the
obtained interpretations from our approach for ambiguous and
non-ambiguous examples respectively.

IV. EVALUATION

In order to establish the effectiveness and efficiency of
SBADR in detecting syntactic ambiguity in NL, we conducted
two experiments to assess the performance of SBADR against
a comparable baseline approach, on a total of 126 sentences
with 100 CoreNLP generated interpretations for each sentence
(126x100=12600 input interpretations) measuring the recall,
precision, and F-measure. Experiment 1: evaluates the per-
formance of SBADR against AmbiGO [29] - the most related
approach addressing the same types of syntactic ambiguity
including: coordination, analytical and attachment ambiguities.
Experiment 2: evaluates the performance of SBADR on
more complex ambiguity cases not handled by the comparable
approach. We conducted the experiments using the following
settings: (i) number of parse trees undergoing analysis is 100
per sentence, (ii) the initial variance ratio allowed for the
remaining top parse trees is 10%, and (iii) the evaluation data
sets are comprised of 100 sentences (the original data set used
for evaluating AmbiGO) with a total of 10000 input interpre-
tations for experiment 1, and 26 generic sentences curated
from multiple sources [30], [31], [32], [33], [34], [35], [36]
reflecting common complex and compound cases of ambiguity



for experiment 2. Extensive trials with SBADR have shown
that decreasing the value further results in missing possible
correct interpretations, while increasing it beyond 10% will
only result in more redundant and incorrect parse trees. The
datasets, their corresponding automatic output alongside with
the manual evaluation and the performance calculation could
be found in 1.

A. Experiment 1: SBADR vs AmbiGO

In this experiment, we evaluate our approach against Am-
biGO [29]. We selected this approach as it covers the three
cases of syntactic ambiguity. We used the same published
data sets (testing cases) used to evaluate AmbiGO in [29],
which include 50 cases of analytical ambiguity, 28 cases of
coordination ambiguity, and 22 cases of attachment ambiguity
as categorised by the authors of AmbiGO. It is worth noting
that the published test cases only include the detected ambigu-
ous cases, and we manually integrated each of these cases in
a sentence form. The supplied cases conform to three POS
taggings mentioned in details in [29].

We fed the tool with one data set category at a time to
measure the performance for each ambiguity type individually.
Table I shows the obtained evaluation measures for each type
of ambiguity at the sentence level (measured for each input
sentence) including: true positive (TP), false positive (FP), true
negative (TN), and false negative (FN) cases in addition to
SBADR precision, recall and F-measure. The table also shows
these measures at the interpretation level (measured for each
generated interpretation).

We then compared the obtained results with AmbiGO
results. Figure 9 shows the performance of both tools ex-
pressed in (precision, recall and F-measures) for coordination,
attachment and analytical ambiguity respectively. SBADR
outperforms AmbiGO in recall measures with around 80%
or more improvement for all types. This demonstrates that
SBADR can be much more reliable compared to AmbiGO in
real life scenarios, especially for detecting ambiguities within
SRS documents for complex and/or safety critical systems.
In such systems, any missed ambiguous requirement, could
lead to catastrophic operational consequences or costly fixes
in the development cycle. In addition, AmbiGO relies on static
predefined rules detecting only specific cases while SBADR do
not enforce any templates on the ambiguity detection process.
This added flexibility is also expected to make SBADR suited
for a range of applications, because the detection process can
handle multiple requirements writing styles. On the other hand,
AmbiGO considerably outperforms SBADR in the precision
for both attachment and analytical types of ambiguity (around
45%, and 35% improvement respectively), while providing
around 10% improvement in coordination ambiguity. This is
primarily attributed to the fact that AmbiGO incorporates a
semantic analysis relying on Google hits count search for
each detected case. However, such reliance would not be a
reliable approach when applied on technical requirements.

1Datasets and Evaluation: https://github.com/ABC-7/NL-Ambiguity

The hit count on such terms, would be very low for this
analysis to be usable. This is apparent in the fact that in
the coordination ambiguity type (where the dependency on
the actual meaning is much less compared to the other two
types), the improvement provided by AmbiGO is the least.
In addition, the precision of SBADR is expected to improve
considerably if the input data sets are system requirements
with more technical terms, because the relation among most
of the involved nouns and noun phrases will be resolved. We
also want to highlight an important aspect regarding the way
we calculated the precision for SBADR, which is that if a
sentence should only have X number of interpretations but
SBADR generated Y number of interpretations where Y is
greater than X, we count this as false positive. This means
that even if the precision of SBADR appears to be lower
than AmbiGO (when no limitation is enforced on the number
of generated interpretations by SBADR), SBADR can still
identify ambiguous sentences with high precision.

Overall, SBADR also has a better F-measure which reflects
that the improvement in recall outweigh AmbiGo’s lead in
precision. This trade off is expected to be in favor of SBADR
when utilised for SRS documents. In real life scenarios, loss
of precision would require more effort to filter the detected
ambiguity cases in a requirements document. On the other
hand, the solid recall rate of the utilised approach, is pivotal
for the reliability of the ambiguity approach. Any ambigu-
ous requirement that goes undetected could have severe and
negative impacts on the system being developed. The cost
and effort to filter the detected cases, will be far less than
that required to scan the entire requirements documents for
undetected cases, which in a typical scenario could be very
challenging if done manually, rendering the approach useless.
In addition, SBADR provides possible interpretations for each
detected case, making the filtering process much easier to go
through.
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TABLE I: Measured performance of SBADR on AmbiGO data sets

data-set TP FP TN FN Recall Precision F-measure

Ambiguity
Coordination 23 3 1 1 96% 88% 92%
Attachment 10 9 3 0 100% 53% 69%
Analytical 26 22 2 0 100% 54% 70%

Average 99% 65% 77%
data-set TP FP TN FN Recall Precision F-measure

Interpretation
Coordination 64 11 0 9 88% 85% 86%
Attachment 36 28 0 0 100% 56% 72%
Analytical 120 140 0 0 100% 46% 63%

Average 96% 62% 74%

B. Experiment2: SBADR complex scenarios

In this experiment, we evaluate SBADR on a more complex
set of ambiguity scenarios - not addressed by AmbiGO. We
aggregated 26 cases –curated from [30], [31], [32], [33],
[34], [35], [36]– of complex attachment and co-ordination
ambiguity scenarios along with their interpretations to evaluate
the reliability of SBADR. Such cases are widely discussed in
the field and represent challenging cases of compound and/or
mixed instances of ambiguity that are very hard to detect
and because of their complexity, specific detection patterns
for them can be very difficult to develop and unreliable in
practical scenarios.. The curated cases represent the following
ambiguity scenarios:

• Chain attachment: presence of more than one preposi-
tional phrase attachment.

• Different attachment types: attachment emerging from
non-prepositional cases (e.g., I fed her cat food ==> "I fed
her (cat food)" or "I fed (her cat) food"). This is different
from the analytical type since the analytical analyses the
attachment in one compound noun, but in this case, the
ambiguity arises from the attachment of two separate
nouns.

• Chain co-ordination: presence of more than one coordi-
nation in the sentence.

• Different type coordination: coordination connecting
phrases, words, verbs.

• Inverse co-ordination: this one is opposite to the type used
in the evaluation because the coordination precedes the
modifier (e.g., "I have cheese and tomato sandwiches"
==> "I have (cheese and tomato) sandwiches" or "I have
cheese and (tomato sandwiches)".

Table II shows the performance of SBADR for the complex
scenarios of attachment and co-ordination ambiguity. The
ambiguity column shows the values for each measure based
on the ability of SBADR to correctly identify a sentence
as ambiguous or not. SBADR correctly identified 6 out of
6 co-ordination cases (TP) achieving 100% for both recall
and precision. For the complex attachment scenarios, SBADR
correctly identified all the 17 ambiguous cases (TP) and 1
unambiguous case (TN), and missed only 2 ambiguous cases
(FN) out of the 20 attachment cases. Upon investigating the
missed cases, we found that the parsing from the Stanford
CoreNLP library was the reason behind missing these cases.
Our tool is still limited by the capabilities of the underlying

parser. The interpretation column serves to show the reliability
of SBADR in terms of providing a resolution for the detected
ambiguity. The reported values reflects the performance based
on the evaluation of SBADR on the generated interpretations
level (correctness of the interpretations identified for each
sentence). If a generated interpretation is valid, it is counted
as TP, otherwise, it is counted as FP. Missed interpretations
that should have been generated but were missed by SBADR
are counted as FN.

TABLE II: Measured performance of SBADR on complex
scenarios

Measures Ambiguity Interpretations

Coordination

TP 6 18
FP 0 4
TN 0 0
FN 0 1

Recall 100% 95%
Precision 100% 82%
F-measure 100% 88%

Attachment

TP 17 39
FP 0 9
TN 1 0
FN 2 3

Recall 90% 93%
Precision 100% 81%
F-measure 94% 87%

To assess the reliability of the provided interpretations,
we visualized two aspects of the approach performance upon
the conducted experiments (AmbiGO data sets and complex
scenarios): (1) the number of the produced interpretations per
sentence, (2) the correctness of the produced interpretations.
First, we grouped the requirements sentences based on the
count of the produced interpretations for each sentence. Then,
we computed the size percentage of each group relative to
the entire set of sentences. Figure 10 shows the identified
interpretation groups on the x-axis and the size percentage
of each group on the Y-axis. The figure shows that the
maximum obtained interpretations count is eight, in addition
more than 30% of sentences only have two interpretations
and sentences with more interpretations did not exceed 20%.
Based on this, users may choose to limit the number of
generated interpretations to only two and increase for more
complex sentences. We did not limit the number of the
generated sentences in our evaluation to gain an insight on
the performance of SBADR. We wanted to check that the



generated number of interpretations will remain reasonable
and see how the distribution of the sentences interpretation
groups looks like (this is expected to differ based on the
complexity of the contributing sentences in each data set).
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Regarding the correctness, we calculated the percentage
of correct interpretations found in each group of sentences
(identified based on the number of generated interpretations
for each sentence). Figure 11 visualizes the percentage of the
correct interpretations found on the y-axis and the correspond-
ing groups on the x-axis. The figure shows that, the correctness
of the generated interpretations is inversely proportional to
the generated number of interpretations. This is expected as
the more possible interpretations are generated, the higher the
probability they are not the correct interpretation. Thus, if the
number of generated possible interpretations is limited to a
maximum of two, the reported precision of SBADR will be
greatly improved. We have have not limited SBADR for just
two interpretations to assess its performance but it can be
easily adjusted based on the user’s preference
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Fig. 11: Percentage of correct interpretations per each inter-
pretation count

C. Threats to Validity
We manually reevaluated the test cases used in the first

experiment since several of them were manually labelled

wrong. For example, "public utility companies" is marked
as non-ambiguous by the author but it is ambiguous, given
that the semantic analysis by google indicate the use of the
two interpretations but with different frequency". The recom-
mended interpretations may be "public (utility companies)" or
"(public utility) companies". Consequently, we recomputed the
measure of AmbiGO according to the new manual evaluation
–agreed by the authors 1. Table III shows the changes in the
measured performance upon the the new manual evaluation.
On the other hand, the manual interpretations of test cases
used in the second experiment are widely explained in many
NLP resources.

We have applied SBADR on a relatively small set of require-
ments documents. However we chose a range of domains and
used datasets that have previously been used for ambiguity
analysis research tool assessment.

An external threat to validity is that the utilised sample
dataset might not be representable to other datasets and SRS
documents used in a real scenario. The main concern is the
size of the dataset used for evaluation. However, the utilised
data set for experiment 1 is the one utilised for AmbiGO, and
this data set was used to establish the comparison between
SBADR and a baseline approach. In addition, this data set was
designed specifically to contain several challenging ambiguity
instances comparable to what might be found in large SRS
documents, given such documents are extensively revised. In
addition, regarding how utilising larger data sets might affect
the recall rates, we do not expect this to have a negative impact.
SBADR detects better than a baseline algorithm developed
to detect several cases of ambiguities using set of rules for
patterns of ambiguity. The sample data set, albeit small in
size, contains several ambiguity patterns that are designed to
pose a challenge for detection. Our approach handled these
cases successfully. It is also expected to be able to handle
other missed patterns as well, since the underlying utilised
statistical parser is already trained on millions of sentences
and SBADR aims at exploiting that potential by extract-
ing the valid interpretations that, according to the statistical
parser scoring, have high chance of being correct. In terms
of expected precision, unambiguous sentences in real SRS
documents contain technical terms mitigating most of the
attachment and analytical issues. In addition, even if a sentence
is judged as unambiguous when the semantics is accounted for,
the syntactic ambiguity because of the structure of the sentence
will still hold and might provide a challenge for automation
tools.

V. DISCUSSION

In terms of resolving ambiguous sentences, our approach
shows a very good performance by achieving at least 80%
precision and recall for the provided interpretations as indi-
cated in Table II. On the other hand, the approach performs
less well for the non-ambiguous sentences for three reasons:

• Stanford CoreNLP library utilises a statistical-based
parser and may thus assign the top score to a semanti-



cally wrong interpretation (based solely on the syntactic
structure) which affects our results.

• The initial variance ratio is static and defined to cover a
wide range of cases. Consequently, sentences that require
lower variance for a better accuracy are affected.

• A lot of the interpretations are syntactically correct but
semantically incorrect due to the lack of semantic analy-
sis.

Our approach provides at most 3 interpretations from the
100 interpretations candidates for more than 50% of the
input sentences. This shows the reliability of the approach
in supporting users. In addition, the approach rarely misses
a viable interpretation and this case mainly happens due to
the static initial variance –too small. It is also worth noting
that SBADR should benefit from any improvements to the
underlying parser utilised. We plan to investigate the effects
of utilising other parsers on SBADR. We also plan to further
investigate the performance of SBADR on more data-sets with
varying sentence complexities.

TABLE III: Old and New Measured performance of AmbiGO
Tool

Measures Old New

Coordination
Recall 23% 13%

Precision 100% 100%
F-measure 38% 22%

Attachment
Recall 17% 10%

Precision 100% 100%
F-measure 29% 18%

Attachment
Recall 15% 22%

Precision 67% 88%
F-measure 25% 35%

VI. RELATED WORK

Gleich et al, in [18] developed an automatic ambiguity tool
for detecting ambiguity of requirements specifications written
in English or German, in addition to educating requirements
writers on the potential sources of ambiguity. The tool utilizes
natural language processing (NLP) techniques such as: (1)
part-of-speech (POS) tagging and (2) regular expressions (RE)
. The author built the basis of ambiguity definition and
recognition of the proposed ambiguity tool up on two main
sources including the Ambiguity Handbook by Berry et al
and Siemens-internal guidelines for writing requirements as
indicated in [18]. The developed tool is capable of detecting
39 cases of ambiguity with precision and recall scores of 95%
and 86% respectively. These cases mostly relate to single word
level.

Nigam et al, in [2] have also followed a similar approach
in developing an ambiguity detector tool. The tool detects
lexical and syntactic ambiguities in software requirement
specifications (SRS). All detected cases are based on corpus
file, containing words and phrases responsible for ambiguity,
fed to the tool. First, each line of the SRS is checked against
all lexical words in the corpus to identify ambiguous lines.
Ambiguities in a matched line are then classified into semantic,

syntactic or syntax ambiguity types by checking with POS
tagger. The tool is only capable of detecting ambiguity at the
word level and supports the result with some sort of ambiguity
percentage statistics in the form of charts and highlighting of
the detected ambiguities in text. Precision or recall score of
the proposed approach are not provided.

Sabriye et al, in [37] provide a prototype tool called ambigu-
ity detector for detecting syntactic and syntax ambiguity. The
tool is very similar to the one proposed by Nigam et al, [2],
but it does not provide lexical ambiguity. First, the POS tagger
of each sentence is computed (the core of the approach). If a
sentence POS does not contain full-stop "." or contains a pas-
sive voice it will be marked as a syntax ambiguity. A passive
voice in the sentence POS can be detected by matching any
of 8 POS patterns proposed by the author. On the other hand,
syntactic ambiguity can be detected by checking the inclusion
of adjective or adverb. The tool provide chart highlighting
the percentage of ambiguous, non-ambiguous, syntactically
ambiguous, and semantically ambiguous sentences.

Yang et al, [17] proposed an automatic tool NAI, Nocu-
ous Ambiguity Identification, to identify coordination ambi-
guities with high risk of misunderstanding among different
readers calling it nocuous. The authors define eleven POS-
based patterns to extract coordinating ambiguities from natural
language requirements document. Then, a machine learning
approach is applied to classify the extracted instances as
risky or not, subject to a given ambiguity threshold. To
effectively predict nocuoucity, collocation frequency heuristics
and semantic similarity heuristics are added. NAI tool achieves
70% precision and 100% recall for detection coordination
ambiguity with medium user interaction –annotating corpus
file with nocuous and innocuous cases for training the machine
learning algorithm. for a better accuracy, heuristics need to be
developed for allowing different aspects of ambiguity like: (1)
chained coordination ambiguity (e.g. “A and B and C”) ,and
(2) Ambiguity due the existence of “and/or” combination (e.g.
“A and B or C” ==> "A and (B or C)" or “(A and B) or C”).

Olteanu and Moldovan in [24] proposed an automated
approach for detecting attachment ambiguity. The provided
approach considers the semantic prospective ,utilizing web
data as the source of semantic knowledge, as well as the syn-
tactic perspective. The proposed approach uses support vector
model whose incorporated features are obtained from the
syntactic parsing tree of the candidate requirement sentence,
semantic information that are manually annotated in addition
to unsupervised information returned from the web. Then, the
approach uses the statistical models to predict the frequency
ratio of the candidate prepositional phrase attaching the verb
or the noun, this way, disambiguate the encountered case. The
proposed approach achieved accuracy of 93.62% and 92.85%
using Penn Treebank [38] and FrameNet[39] respectively.

Hussain et al., in [15] proposed prototype called requirement
specification ambiguity checker (ReqSAC), for automatically
assessing textual requirements of SRS documents ,in terms of
their ambiguity, by applying text classification system assign-
ing ambiguous and unambiguous flags to each requirement



sentence. The classification technique is based on a Decision
tree classifier ,as the size of the training corpus was not large
enough to fit neural network training, whose training corpus
is manually prepared by the authors. The corpus consists of
1211 sentence ,each marked as ambiguous or non ambiguous,
categorized into 165 text passages for 25 different problems.
The classifier run on both sentence and discourse levels
achieving accuracy of 86.67%.

R Khezri in [29] proposed an automated tool, called Am-
biGO, for detecting and resolving syntactic ambiguities in NL
text. The purpose of AmbiGO is to assist users with detecting
and resolving ambiguities. The tool detects and resolves three
types of syntactic ambiguities including: analytical, coordina-
tion and PP attachment ambiguities. The author proposes three
syntactic-patterns each for one ambiguity type for detecting
them. First, the POS of the given sentence is computed, then it
is compared with the proposed patterns for detection. Second,
AmbiGO augments a semantic analysis to the syntactic one for
final ambiguity resolution. It gets the static possible reading
corresponding to each pattern. After that, it gets the frequency
counts for each possible reading of an ambiguous candidate
from Google for semantic analysis. The tool achieved high
precision of 100% for coordination and attachment ; and
67% for analytical ,but low recall of 23%, 15%, 17% for
coordination, attachment, and analytical types respectively. In
addition, the tool is only capable of detecting primitive cases
and does not support chain scenarios (e.g., multiple and/or in
the coordination, multiple pp attachment, multi-noun entities
in the analytical).

Femmer et al, in [3] provide a fully automated tool for de-
tecting quality defects like: slashes, vague adverbs and adjec-
tives, negative words, non-verifiable term, subjective language,
imprecise phrase, requirements, comparative requirements,
pronouns, Loophole and long sentence. The analysis of the
proposed tool is built based on POS tagging and lemmatization
with the support of dictionaries. The tool displays warning
messages providing details of the detected issues to the user.

Quars [40] and ARM [41] are also automated quality
checking tools built up on quality models for assessing quality
properties like: ambiguities, incompleteness,.etc by detecting
the corresponding language defects called as indicators. These
tools process the input requirements to detect lexical and
syntactic defects ,using a domain dictionary, for indicators
such as vagueness, subjectivity, multiplicity and etc.

Defined formats is one of the traditional approaches used for
avoiding ambiguity in requirements. Such formats include: (i)
controlled language can be obtained by restricting the grammar
and limiting the vocabulary of the natural language [16], [42],
(ii) patterns each of them represent the structure of a specific
group of requirements [43], and (iii) boilerplates working as
parameterized templates for representing requirements with a
very limited vocabulary [44]. Many of these formats used for
allowing transformation into formal languages. However, they
are difficult for all stakeholders and impractical to use de-
fined formats due to the excessive restrictions and limitations
following specific patterns of grammar and utilising specific

vocabulary as indicated in [20].

VII. CONCLUSION

In this paper, we proposed an automated approach for
ambiguity detection and resolution. The approach detects syn-
tactic ambiguity including three different types: coordination,
attachment and analytical ambiguities, at the sentence level
using syntactic analysis with the help of Stanford CoreNLP
API. The approach is built upon filtering pipelines to eliminate
the likelihood of the possible interpretations while increasing
the chance of maintaining the higher prospect ones. The
approach is capable of providing reasonable and acceptable
interpretations to the complex cases that are not handled before
(e.g., chain attachment and chain coordination cases). We eval-
uated SBADR on a total of 126 texting case measuring recall,
precision, F-measure at both the sentence and interpretation
level.

Although the approach does well in ambiguous scenarios,
it achieves a lower performance in the non-ambiguous cases
(identifying them as ambiguous) due to the lack of semantic.

We aim to address two main interesting investigations for
improving the performance of our tool: (1) augmenting the
semantic perspective along side the syntactical one and (2)
self learning from the user feedback to avoid other types of
redundancy for similar requirements or scenarios.
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