
Automated Test Generation For Smart Contracts via
On-Chain Test Case Augmentation and Migration

Jiashuo Zhang
School of Computer Science

Peking University
Beijing, China

zhangjiashuo@pku.edu.cn

Jiachi Chen∗
Sun Yat-sen University & The State
Key Laboratory of Blockchain and
Data Security, Zhejiang University

Zhuhai, China
chenjch86@mail.sysu.edu.cn

John Grundy
Monash University

Melbourne, Australia
john.grundy@monash.edu

Jianbo Gao∗
Beijing Key Laboratory of Security

and Privacy in Intelligent Transportation
Beijing Jiaotong University

Beijing, China
gao@bjtu.edu.cn

Yanlin Wang
School of Software Engineering

Sun Yat-sen University
Zhuhai, China

yanlin-wang@outlook.com

Ting Chen
University of Electronic Science

and Technology of China
Chengdu, China

brokendragon@uestc.edu.cn

Zhi Guan
National Engineering Research Center for
Software Engineering, Peking University

Beijing, China
guan@pku.edu.cn

Zhong Chen∗
School of Computer Science

Peking University
Beijing, China

zhongchen@pku.edu.cn

Abstract—Pre-deployment testing has become essential to en-
sure the functional correctness of smart contracts. However,
since smart contracts are stateful programs integrating many
different functionalities, manually writing test cases to cover
all potential usages requires significant effort from developers,
leading to insufficient testing and increasing risks in practice.
Although several testing techniques for smart contracts have been
proposed, they primarily focus on detecting common low-level
vulnerabilities such as re-entrancy, rather than generating ex-
pressive and function-relevant test cases that can reduce manual
testing efforts. To bridge the gap, we propose SOLMIGRATOR,
an automated technique designed to generate expressive and
representative test cases for smart contracts. To our knowledge,
SOLMIGRATOR is the first migration-based test generation
technique for smart contracts, which extracts test cases from
real-world usages of on-chain contracts and migrates them to
test newly developed smart contracts with similar functionalities.
Given a target smart contract to be tested and an on-chain
similar source smart contract, SOLMIGRATOR first transforms
the on-chain usage of the source contract into off-chain executable
test cases based on on-chain transaction replay and dependency
analysis. It then employs fine-grained static analysis to migrate
the augmented test cases from the source to the target smart
contract. We built a prototype of SOLMIGRATOR and have
evaluated it on real-world smart contracts within the two most
popular categories, ERC20 and ERC721. Our evaluation results
demonstrate that SOLMIGRATOR effectively extracts test cases
from existing on-chain smart contracts and accurately migrates
them across different smart contracts, achieving an average
precision of 96.3% and accuracy of 93.6%. Furthermore, the

∗Corresponding authors

results indicate that these migrated test cases effectively cover
common key functionalities of the target smart contracts. This
provides promising evidence that real-world usages of existing
smart contracts can be transformed into effective test cases for
other newly developed smart contracts.

Index Terms—Ethereum, smart contracts, test generation, test
migration

I. INTRODUCTION

Smart contracts have attracted rapid development and
widespread applications since their introduction. Due to the
finance-related nature of smart contracts and recurrent security
incidents, pre-deployment testing has become essential in the
contract-development lifecycle [1], [2]. To gain confidence in
the functional correctness of smart contracts, developers in
over 90% of projects conduct functional testing during their
development process [3], using frameworks like Hardhat [4]
and Truffle [5] to develop and execute test cases. However,
since smart contracts are stateful programs integrating many
different functionalities, manually developing test cases that
thoroughly cover the potential usage of each functionality is
often both challenging and costly, requiring significant effort
from developers. Such effort may prevent smart contracts from
being effectively tested and increase the risk of undetected
functional bugs in practice.

Automated test case generation techniques have been shown
to be promising in reducing the effort of writing test cases and
improving testing effectiveness [6], [7]. Although many testing



techniques for smart contracts have been proposed [8]–[10],
they are typically fuzzing-based techniques aimed at detecting
common low-level vulnerabilities such as re-entrancy [11] and
integer overflow [12]. Their primary goal is to generate nu-
merous randomized test cases to detect as many vulnerabilities
as possible, rather than generating a good set of function-
relevant test cases that represent the canonical usages of smart
contracts. Consequently, the task of developing expressive and
representative test cases still falls to real-world developers.

In this work, we aim to reduce the cost of testing smart
contracts by extracting and migrating test cases from existing
on-chain smart contracts. We are motivated in this direction
by two observations. First, there are billions of historical
transactions on Ethereum, documenting real-world call data of
millions of on-chain contracts [13]. This on-chain usage data,
with comprehensive information about common usage patterns
of smart contracts, can become valuable test cases for other
smart contracts. Second, although smart contracts have enabled
a wide range of different applications, there are many cases
where smart contracts share quite similar functionalities [14].
Previous studies found that 80% of a typical smart contract’s
code could be reused from external code sources [15], leading
to similar functionalities and implementations. Thus it may be
possible to migrate test cases extracted from existing on-chain
contracts to other newly developed contracts in order to more
thoroughly test these new smart contracts.

Based on these two key observations, we propose SOLMI-
GRATOR, the first migration-based technique that generates
test cases for smart contracts by extracting and migrating on-
chain usages of smart contracts with similar functionalities.
Given (i) a target new smart contract to test and (ii) an on-
chain source smart contract sharing common functionalities,
SOLMIGRATOR takes on-chain transaction data for the source
contract as input and employs two phases – test augmentation
and test migration – to generate test cases for the new target
contract. During test augmentation, SOLMIGRATOR analyzes
the historical transactions of the source contract and trans-
forms them into off-chain executable test cases, including test
transaction sequences and test assertions. To ensure testing
efficiency, SOLMIGRATOR de-duplicates test cases based on
execution trace analysis and reduces the test sequence length
through transaction dependency analysis and reconstruction.
During test migration, SOLMIGRATOR employs fine-grained
static analysis techniques, including inter-function control/data
flow analysis and taint analysis, to match and migrate the
augmented test cases from the source contract to the target
contract. These migrated test cases can be directly used to test
the target contract, while preserving testing wisdom extracted
from real-world usages of the source contract.

To validate SOLMIGRATOR’s effectiveness, we evaluated it
on real-world smart contracts in two of the most prevalent
categories, i.e., ERC20 and ERC721. To evaluate test aug-
mentation, we sampled 93 ERC20 and 51 ERC721 on-chain
smart contracts and used SOLMIGRATOR to augment test
cases based on their historical transactions. SOLMIGRATOR
successfully augmented a total of 967 test cases from these

contracts, corresponding to an average of 5.1 test cases per
ERC20 contract and 9.6 test cases per ERC721 smart contract.
To evaluate test migration, we chose ten popular contracts
for each category and permuted them into 90 source-target
pairs per category. We then used SOLMIGRATOR to migrate
test cases between these pairs, resulting in a total of 1,719
attempted test case migrations for evaluating SOLMIGRATOR.
SOLMIGRATOR achieves an average precision of 96.3% and
accuracy of 93.6%, demonstrating the effectiveness of the
migration process. After comparing the functions tested by
migrated test cases with those used in real transaction history
of the target contract, we validated that these migrated test
cases can cover common real-world usages of the target
contract, demonstrating the usability of SOLMIGRATOR.

This research makes the following key contributions:
• We propose SOLMIGRATOR, the first migration-based

automated test case generation technique for smart con-
tracts. It can extract and migrate test cases from real-
world usage of similar on-chain smart contracts to gen-
erate test cases for newly developed smart contracts.

• We incorporate a set of new approaches into SOLMIGRA-
TOR, including test case augmentation based on on-chain
transaction replay and dependency analysis, and test case
migration based on fine-grained static analysis.

• Our empirical evaluation of SOLMIGRATOR on real-
world smart contracts demonstrates its effectiveness. This
provides initial yet promising evidence about the feasi-
bility of extracting test cases from on-chain contracts and
migrating them across contracts.

• We make the source code of SOLMIGRATOR and the
experimental data available at https://github.com/Jiashuo-
Zhang/SolMigrator, to support further studies in this field.

II. BACKGROUND AND MOTIVATION

Smart contracts are programs running on a blockchain. They
differ from regular programs in that they are immutable after
deployment, consume resources (e.g., gas on Ethereum [16]) to
run, generate public transaction records about their execution
as they run, and may conform to various standards [17],
such as ERC20 [18] and ERC721 [19], which relate to token
representation. To be executed, smart contracts first need to be
compiled into bytecode, i.e., a sequence of opcodes that can
be interpreted by the Ethereum Virtual Machine (EVM) [16].
Each opcode refers to a specific operation that transitions
the EVM from the current state to the next, including stack,
memory, and storage operations, arithmetic calculations, and
many other operations [20]. When a smart contract is called,
the EVM will sequentially execute these opcodes and update
the contract’s state based on the execution results.

A. Smart Contract Testing

Smart contract testing is an essential step to ensure the
functional correctness of smart contracts [2]. A typical test
case for smart contracts comprises a sequence of test trans-
actions and a set of test oracles [4]. The test transactions
simulate potential uses of the function being tested, while the

https://github.com/Jiashuo-Zhang/SolMigrator
https://github.com/Jiashuo-Zhang/SolMigrator


oracles define the expected behavior during test execution. For
example, when testing a token transfer function, the transaction
sequences would include token transfer operations, and the
oracle would validate certain assertions, such as requiring the
transfer operation to be reverted if the token sender’s balance
is less than the amount to be transferred. Since oracles in smart
contracts are assertion-based, we use the terms “assertion” and
“oracle” interchangeably in this paper.

Currently, more than 90% of smart contract projects con-
duct functional testing during their development process [3],
highlighting the importance of real-world testing practices.
To assist developers in managing and executing their smart
contract test cases, testing frameworks like Hardhat [4] and
Truffle [5] have been introduced. These frameworks provide
a unified interface for writing test transactions and extend
assertion libraries like Chai [21] for writing test assertions.
They automate the execution of test cases, including deploying
the contract within a testing environment, executing the test
transactions, and checking each test assertion to determine
the success of the test. However, developing a good set of
effective functional test cases for smart contracts is still very
time-consuming and error-prone.

B. Motivation

Real-World
Interactions

Develop

Common Functionalities

Contract

Manual Testing

Test CasesDeveloper

On-Chain 
Contracts

Our
Work

Fig. 1: A motivating scenario of SOLMIGRATOR

Consider the scenario in Fig. 1, where the developer Alice is
implementing a smart contract. This contract involves several
common functionalities, which have been widely used in ex-
isting smart contracts and implemented by many external code
sources (e.g., OpenZeppelin [22]). By reusing these external
code sources, Alice efficiently completes the development
process and begins testing the contract to verify the functional
correctness of her contract. However, since the smart contract
integrates many different functionalities, she finds that man-
ually writing test cases to cover all potential usages of each
functionality is both difficult and time-consuming.

At this point, SOLMIGRATOR enables Alice to generate
test cases automatically, thereby reducing her manual effort.
SOLMIGRATOR leverages a key insight: while Alice struggles
with testing each potential usage of her contract, many of its

functionalities, especially those with external code sources,
have already been commonly implemented in existing smart
contracts and extensively used in on-chain transactions. These
real-world interactions cover various usages of each function-
ality, which are exactly what Alice aims to test. By using
SOLMIGRATOR to transform these on-chain usages into off-
chain executable test cases, Alice can avoid the repetitive and
time-consuming task of manually writing test cases, enhancing
the efficiency of her testing process.

III. OUR APPROACH

Fig. 2 provides an overview of SOLMIGRATOR. It takes a
pair of user-specified source and target contracts as input and
conducts a two-phase analysis, including test augmentation
and test migration, to generate test cases for the target contract.

The test augmentation process is designed to extract off-
chain executable test cases from the real-world interactions be-
tween users and existing on-chain smart contracts. It takes the
source contract and its historical transactions as input. It then
replays the transactions (Section IV-A) and analyzes depen-
dency relations among them (Section IV-B). Based on these re-
sults, SOLMIGRATOR transforms the entire transaction history
into a set of independent and self-contained test transaction
sequences, covering different functionalities of the contract
(Section IV-C). To enhance testing efficiency, SOLMIGRATOR
conducts a transaction sequence folding process that reduces
the number of transactions in each sequence while maintaining
coverage of the same functionalities (Section IV-D). In the
final step, SOLMIGRATOR executes these augmented test se-
quences and augments a set of test assertions that characterize
the execution behaviors of the contract (Section IV-E).

After augmenting these test cases, including both test trans-
action sequences and assertions, SOLMIGRATOR migrates
them from the source contract to the target contract. It takes
the source code of both the source and target contracts as
input and conducts fine-grained static analysis techniques on
them. Based on these analyses, SOLMIGRATOR establishes
matching relations between functions in the source and target
contracts. It then migrates the test transactions (Section V-A)
and assertions (Section V-B) for specific source functions
to their counterparts in the target contract. Finally, it packs
the migrated test cases into test scripts compatible with the
Hardhat framework [4] (Section V-C), enabling developers to
execute them directly on the target contracts.

IV. TEST AUGMENTATION

During test augmentation, SOLMIGRATOR takes the on-
chain historical transactions of the source contract as inputs,
and augments a set of off-chain test cases for the source
contract. These augmented test cases, including both test trans-
action sequences and test assertions, will be further migrated
from the source contract to the target contract in Section V.

A. Transaction Replay

Given an on-chain source contract, SOLMIGRATOR first
replays historical on-chain transactions of the contract and



Source 
Contract

On-Chain 
Transactions

Dependency 
Analysis

Test Sequence 
Augmentation

Transaction
Replay

Test Assertion 
Augmentation

Test Augmentation

Test Migration

Test Sequence 
Migration

Test Script 
Generation

Target 
Contract

Source Test
Assertions

Source Test
Sequences

Test Assertion 
Migration

Migrated
Test Cases

Fig. 2: The overview of SOLMIGRATOR

records the execution trace of each transaction. For each
transaction, this execution trace records all executed opcodes
and the intermediate states of EVM stack, memory, and
storage during the transaction execution. To fetch these traces,
SOLMIGRATOR uses the debug traceTransaction API of Go-
Ethereum [23] to interact with an Ethereum archive node [24],
which maintains all on-chain state data since the genesis block.

B. Transaction Dependency Graph Construction

Based on the execution traces, SOLMIGRATOR extracts
the read and write set of each transaction and then con-
structs a transaction dependency graph. For each transaction,
SOLMIGRATOR analyzes the storage opcodes (i.e., SLOAD and
SSTORE) in its execution trace and records the EVM storage
slots and values that are read or written as 〈slot, value〉 tuples.
To preserve the order of the read and write operations on the
same storage slot, SOLMIGRATOR indexes each tuple by the
key 〈block, tx〉, where block refers to the block number that
includes the transaction, and tx represents the transaction index
within that block.

Using these extracted read and write sets, SOLMIGRATOR
then constructs a transaction dependency graph of the replayed
historical transactions. Nodes in this graph represent transac-
tions, while the directed edges between nodes represent the
dependency relations between transactions. These dependency
relations are essentially write-read relations, i.e., transaction A
depends on transaction B if and only if B wrote a value into
the storage, which was later read by A. If multiple transactions
have written to the same slot that transaction A reads, A
only depends on the transaction performing the latest write
(ordered by the 〈block, tx〉 index), while having no dependency
relation with the others. Additionally, transactions that only
have read-read or write-write relations, i.e., read or write the
same storage slot, do not necessarily depend on each other.

Fig. 3 shows an example of the transaction dependency
graph for an ERC20 contract [25]. The graph has nine nodes,

transfer 
A→B

transfer 
A→C

transfer 
A→D

approve 
A→E

transfer 
C→D

transfer 
B→C

transfer 
B→D

1 2

3 5 8

4 7

6
mint

0x0 →A

9

transferFrom 
A→F (by E)

Contract 
Creation

Fig. 3: An example of the transaction dependency graph

representing historical transactions 1-9, respectively. Transac-
tions 1 mints tokens to A, and transactions 2-7 transfer tokens
among several addresses using the ERC20 transfer function.
In transaction 8, A approves E to spend his tokens, so that
in transaction 9, E can successfully call the transferFrom
function and transfer A’s token to F. The edges between nodes
represent dependencies between transactions. For example,
each transfer operation reads the balance states of the sender
and receiver and updates these states accordingly. Therefore,
for multiple transfer operations involving the same account
(e.g., transactions 2 and 3), the subsequent transaction reads
the results of the previous one, forming a dependency relation.

C. Test Sequence Augmentation

Based on the constructed transaction dependency graph,
SOLMIGRATOR transforms the entire on-chain transaction
history into a set of off-chain executable test cases. Every his-
torical transaction represents a real-world usage of a specific
functionality. Therefore, by constructing off-chain test transac-
tion sequences that faithfully replay each historical transaction,
we can simulate the real-world usage performed by it and test
the same functionality in an off-chain environment.

To construct test sequences that faithfully replay a target
historical transaction, a trivial method would be to include
every transaction from the contract creation up to the target
transaction into the test sequence. However, this approach
would be highly inefficient: the target transaction will often
only depend on a small subset of previous transactions, rather
than on all of the transactions that precede it. To achieve an
efficient result, SOLMIGRATOR utilizes the transaction depen-
dency graph to slice the entire transaction history and construct
a succinct and self-contained transaction sequence. For each
target transaction, SOLMIGRATOR starts with a test sequence
containing only the target transaction itself. Then, it iteratively
checks each transaction within the sequence to determine if all
transactions it depends on are already included in the current
sequence. If any transactions that a current transaction depends
on, i.e., preceding nodes in the transaction dependency graph,
are not present in the sequence, SOLMIGRATOR adds them.
This process continues until no new transactions are added
to the sequence, i.e., the constructed transaction sequence
contains all necessary transactions to faithfully replay the
target transaction off-chain.

After constructing these test transaction sequences, SOLMI-
GRATOR analyzes them further for de-duplication. Our in-
tuition is that real-world transactions often repetitively call



the same function of the contract using exactly the same
execution path. However, in testing smart contracts the focus
is primarily targeted towards transactions that explore new
execution paths. To achieve this, SOLMIGRATOR analyzes
the execution of EVM opcodes and de-duplicates the test
sequences based on whether the sequence leads to a new
execution path of the called function. If the execution path
of the transaction covers new execution branches not covered
by existing test cases, SOLMIGRATOR will add it as a new test
case. If multiple transaction sequences call the target function
with exactly the same execution path, SOLMIGRATOR only
includes the shortest one. Finally, SOLMIGRATOR generates
a set of executable test transaction sequences, each covering
different functionalities of the contract.

D. Test Sequence Folding

After generating a set of executable test cases, SOLMI-
GRATOR employs an additional process we call test sequence
folding to further reduce the length of the test transaction se-
quences. This process is motivated by the findings of previous
studies: longer test sequences are more difficult for developers
to understand [26], and they may also have lower success rates
of test migrations [7].

The rationale behind our test sequence folding process is
that preserving all dependency relations between historical
transactions may be too strict for the testing context and
could lead to long test sequences. Therefore, by relaxing these
strict dependency relations, it is possible to test the same
functionality with a shorter transaction sequence. For example,
transactions 1 to 9 in Fig. 3 form a test transaction sequence
targeting the transferFrom function of an ERC20 contract.
Within this sequence, transactions 2-7 are included to strictly
maintain the dependency relations and set A’s balance to the
latest value before transaction 9 reads it. However, these trans-
actions, which only involve A transferring tokens to several
irrelevant addresses, are actually not necessary for covering
the target test path, i.e., E successfully transfers tokens from
A to F in transaction 9. Therefore, to generate meaningful test
cases rather than strictly replay historical transactions, these
transactions can be removed from the sequence.

During the folding process, SOLMIGRATOR iterates through
the transaction sequence from back to front and tries to “relax”
dependency relations of each transaction. Given a dependency
relation between the current transaction and a previous transac-
tion, SOLMIGRATOR analyzes the storage slots that cause this
dependency and searches for earlier alternative transactions
that have written to these same slots. If such alternative
transactions exist, SOLMIGRATOR will try to reconstruct the
dependency graph by updating the dependency relation from
the current transaction to the originally dependent transaction
to a new relation between the current transaction and that
alternative transaction. If multiple alternatives are available,
SOLMIGRATOR prioritizes the earliest transaction as the new
dependent transaction. SOLMIGRATOR then reconstructs the
transaction sequences based on the updated relations and
executes the reconstructed sequence to check whether the

relaxation changes the execution path of the target test transac-
tion. If the execution path remains unchanged, the relaxations
of dependencies will be preserved. Otherwise, SOLMIGRATOR
reverts them and tries to relax other dependencies of the
current transaction. The process of reconstructing dependency
relations continues for each transaction, until SOLMIGRATOR
reaches the start of the transaction sequence.

As an example, to fold the transaction sequence shown
in Fig. 3, SOLMIGRATOR first analyzes the dependencies of
transaction 9. This includes transaction 7, due to its write
to A’s balance, and transaction 8, due to its write to the
allowance state. Then, SOLMIGRATOR searches for alternative
transactions that write the same slots (i.e., A’s balance) as
transaction 7 and identifies transactions 1, 2, 4 as the result.
Since transaction 1 is the earliest alternative transaction,
SOLMIGRATOR replaces the dependency of transaction 9 on
transaction 7 with a new dependency on transaction 1, and
reconstructs the transaction sequence. This reconstruction re-
moves transaction 7, along with transactions 2-6, which are not
depended on by any remaining transactions in the sequence.
The validity of the reconstructed sequence is confirmed as
the execution path of the target transaction, i.e., transaction 9,
remains unchanged. Since there are no alternative transactions
to replace the writes made by transaction 8, SOLMIGRATOR
maintains this dependency and completes the folding process.
As a result, the original sequence of transactions 1-9 is folded
into a new sequence of transactions 1, 8, and 9.

E. Assertion Augmentation

A test case for a smart contract includes both the sequence
of test transactions to be executed and the test assertions to
be checked. These test assertions specify the smart contract’s
intended behaviors during test case execution. Therefore, after
generating the test sequences, SOLMIGRATOR further executes
these sequences and extracts assertions from their execution
traces. To do this, SOLMIGRATOR augments the following
three categories of assertions, which have been commonly
used to characterize the execution behaviors of smart contracts
by existing testing frameworks [4], [27].
Status-Based Assertions: SOLMIGRATOR augments asser-
tions that specify the expected execution status for each trans-
action. If a transaction executes successfully, SOLMIGRA-
TOR augments a success assertion, i.e., expect(tx).to.not.revert.
Otherwise, SOLMIGRATOR augments a failure assertion, i.e.,
expect(tx).to.revert.
Event-Based Assertions: SOLMIGRATOR augments event-
based assertions for the transactions that emit events. It
extracts the event’s name and parameters from the trans-
action receipts and the contract ABI, and then encodes
them into an event-based assertion in the form of ex-
pect(tx).to.emit(...).withArgs(...). If the same transaction emits
more than one event, SOLMIGRATOR will generate one asser-
tion for each of them.
Return-Value-Based Assertions: For each transaction that has
a return value, SOLMIGRATOR will generate a return-value-



based assertion, which will check the transaction return value
using statements like expect(txResult).to.equal().

After generating the test sequence assertions, SOLMIGRA-
TOR finally transforms the on-chain historical transactions into
off-chain executable test cases.

V. TEST MIGRATION

The test migration process aims to migrate the test cases
augmented in Section IV from the source contract to the
target contract. Specifically, it involves three steps, i.e., test
transaction sequence migration, test assertion migration and
test script generation.

A. Test Transaction Sequence Migration

Each transaction in the test transaction sequence is a call to
a specific function of the source contract. Therefore, to migrate
the test transaction sequence from the source contract to the
target contract, we first need to match the functions in the
source contract with those in the target contract.

1) Function Matching: Our function matching process
starts with matching functions with the same function selec-
tors [28], i.e., functions with the same function name and
input parameter types. Previous studies have shown that due to
prevalent code reuse practices, smart contracts with common
functionalities often share a large portion of the same under-
lying functions [15]. For example, in ERC20 contracts [18],
functions with signature transfer(address, uint256) typically
manage the functionality for transferring tokens. These func-
tions can be directly matched based on function selectors.

SOLMIGRATOR then uses these already matched functions
as matching “anchors” and matches the remaining func-
tions based on their relations to these anchors. To do this,
SOLMIGRATOR focuses on two types of relations – call
relations and data dependency relations – that characterize
the control/data flow dependencies among functions. For call
relations, SOLMIGRATOR traverses the AST (Abstract Syntax
Tree) [29] of each function and analyzes the inter-function
call statements in it. For data dependencies, SOLMIGRATOR
extracts each function’s read and write operations on contract
storage variables and records data flow dependencies where a
function reads a variable that another function has written.

Based on these analyses, SOLMIGRATOR attempts to match
source contract functions that have not yet been matched to
corresponding functions in target contracts. If a target function
has the same input interface as a source function and they both
have control/data dependencies with a pair of already matched
functions, SOLMIGRATOR will establish a match between
them. If a source function has multiple potential matches in the
target contract, SOLMIGRATOR prioritizes the target function
that shares the highest number of related functions with the
source function.

2) Transaction Sequence Migration: Based on matching re-
lations between functions in source and target smart contracts,
SOLMIGRATOR migrates each transaction in the source test
sequence to a transaction for the target contract. There are
two types of transactions in a test sequence, i.e., the contract

deployment transaction and other transactions that call the
deployed contract. They are migrated as follows:
Contract Deployment Transactions: The input data of these
transactions includes the creation bytecode of the contract
and the value of the contract constructor parameters. The
contract creation bytecode is directly obtained by compiling
the target contract, while the constructor parameters are instan-
tiated by matching and migrating constructor arguments in the
source contract’s deployment transaction. SOLMIGRATOR first
identifies functions influenced by each constructor parameter.
It then conducts dynamic taint analysis on both the source
and target contracts, setting constructor parameters as taint
sources and the state read operations in each function as sinks.
SOLMIGRATOR then matches the constructor parameters be-
tween the source and target contracts based on whether they
can influence the same function. If a target parameter and a
source parameter share the same type, and the functions they
influence include one or more pairs of matched functions,
SOLMIGRATOR considers them matched and uses the value
of the source parameter to instantiate the target parameter. If
no match is found, SOLMIGRATOR randomly generates the
target parameter’s value based on its type.
Other Transactions: For subsequent transactions that call the
deployed contract, the input data includes a function selector
that specifies the function to be called and the value of
the function parameters. To migrate them, SOLMIGRATOR
replaces the function selector in the source transaction with
the selector of the matched target function and instantiates the
parameters based on their values in the source transaction.

Note that test migration is different from test generation
techniques such as fuzzing, primarily in that it focuses on
migrating test transactions existing in the source contract to
the target contract. Therefore, SOLMIGRATOR will not insert
newly generated test transactions into the testing sequence.
If a source test sequence tests a function that does not have
any counterpart in the target contract, it will not be migrated
to the target contract. Automatically generating additional test
transactions that do not exist in the source contract is beyond
the scope of this paper and is potential future work.

B. Test Assertion Migration

After migrating test transaction sequences, SOLMIGRATOR
further migrates test assertions from the source to the target
smart contract. To migrate status-based assertions, SOLMI-
GRATOR enumerates each source transaction, finds its coun-
terpart in the migrated sequence, and generates the same
assertion for the counterpart. To migrate return-value-based
assertions, SOLMIGRATOR analyzes the ABIs (Application
Binary Interfaces) [30] of the source and target contracts to
extract the return value types of all functions. If a source
function has the same return value types as its counterpart
in the target contract, SOLMIGRATOR migrates its return-
value-based assertions to the target transactions calling its
counterpart.

To migrate event-based assertions, SOLMIGRATOR first
matches the event in the source and target contracts. It tra-



verses the contract’s AST to locate event-emitting statements
and records the functions that emit each event. If two events
have the same parameter types and the functions that emit
them include one or more pairs of matched functions, these
events are matched. SOLMIGRATOR then migrates event asser-
tions based on these matching relations. If a source transaction
emits an event that has a matched event in the target contract,
its event assertion will be migrated from the source transaction
to its counterpart in the target transaction sequence.

C. Test Script Generation

Finally, after generating assertions for the target test se-
quences, SOLMIGRATOR creates complete and executable test
cases for the target smart contract. It then runs these test
cases and checks their execution results on the target contract.
If the migrated test cases can successfully execute on the
target contract, SOLMIGRATOR packages them into test scripts
compatible with the Hardhat testing framework [4]. We choose
Hardhat because it is one of the major test frameworks for
smart contracts [31]. Our SOLMIGRATOR approach can also
be adapted to other testing frameworks, such as Truffle [5] and
Foundry [27], with minor adjustments.

If a migrated test case fails on the target contract, it will not
be output as a migrated test case by SOLMIGRATOR. This is
because a test case passing on the source contract but failing on
the target contract indicates that the functionality being tested
differs between the source and target contracts. Without ad-
ditional information from developers, SOLMIGRATOR cannot
determine whether these functional differences are intended.
These test cases will be marked as migrated but failed test
cases. Developers can then choose to review these migrated
but failed test cases and decide whether to incorporate them
into the testing process.

VI. EMPIRICAL EVALUATION

We evaluate SOLMIGRATOR’s effectiveness in augmenting
and migrating test cases for real-world smart contracts.

A. Experimental Setup

Research Questions. Specifically, we focus on the fol-
lowing three research questions:
• RQ1. Can SOLMIGRATOR effectively augment test cases

from existing on-chain smart contracts?
• RQ2. Can SOLMIGRATOR effectively migrate the aug-

mented test cases from the source to the target contracts?
• RQ3. Can test cases migrated by SOLMIGRATOR effectively

cover common functionalities of the target contract?
Dataset. To answer these research questions, we collected

real-world smart contracts within two smart contract cate-
gories, ERC20 and ERC721, and evaluated SOLMIGRATOR
using them. These two categories are currently the most
popular and influential categories on Ethereum, comprising
over 1,200,000 contracts with a market capitalization ex-
ceeding 500 billion dollars [32]. To collect contracts for
these two categories, we queried the public crypto ethereum
dataset provided by Google BigQuery [33] and extracted

smart contracts with ERC20 and ERC721 labels. We collected
165,665 ERC20 contracts and 3,481 ERC721 contracts in
total. To facilitate our analysis, we refined these contracts
by filtering for contracts with available source code and over
1,000 historical transactions, resulting in a final experimental
dataset of 2,829 ERC20 contracts and 108 ERC721 contracts.

To retrieve contracts’ historical transactions and states, we
maintained an Ethereum archive node [24] to record full
Ethereum on-chain states. Before our experiments, we fetched
the historical transactions for each contract in the dataset
and the execution traces of these transactions. Then, we
conducted the experiments on a machine with Intel Core i9
CPU (3.0GHz), 64 GB RAM, and running Windows WSL.

The source code of SOLMIGRATOR, our datasets and ex-
periment results are all available in the online artifacts [34].

B. RQ1: Effectiveness in Augmenting Test Cases

In RQ1, we evaluate the effectiveness of SOLMIGRATOR in
extracting test cases from historical transactions of on-chain
smart contracts. In line with previous studies [35], [36], we
randomly sampled a set of smart contracts for each category to
facilitate the analysis. A total of 93 contracts from the ERC20
category and 51 from the ERC721 category were sampled,
achieving a confidence level of 95% with a confidence interval
of 10%. Then, for each of these contracts, we collected the
first 1,000 transactions since its deployment and used SOLMI-
GRATOR to augment test cases based on them. As a result,
SOLMIGRATOR augmented an average of 5.1 test cases for
each ERC20 contract and 9.6 test cases for each ERC721
contract, demonstrating its effectiveness in extracting off-
chain test cases from on-chain transactions. These augmented
test cases, with an average of 4.3 test transactions and 5.0
assertions for ERC20 contracts, and an average of 14.9 test
transactions and 29.0 assertions for ERC721 contracts, can be
efficiently integrated into the testing process.

Furthermore, we evaluated the impact of the folding process
on the test transaction sequence length by comparing the
lengths of the augmented test transaction sequences before
and after folding. We found that for 18% of ERC20 test
cases and 37% of ERC721 test cases, the lengths of the
test transaction sequences were reduced by the test folding
process, with the average test case length reduced to 35% of
the original. This indicates that the folding process can help
SOLMIGRATOR test the same functionality with fewer test
transactions, demonstrating its effectiveness.

We also investigated the impact of the number of historical
transactions on the number of augmented test cases. Specifi-
cally, we used SOLMIGRATOR to generate test cases based on
different numbers of historical transactions and analyzed the
number of augmented test cases. As shown in Fig. 4, there is
a rapid increase in the number of augmented test cases from
1 to 400 transactions, followed by a much slower growth rate
after 400 transactions. This result may be attributed to the
observation that real-world historical transactions often focus
on the repetitive use of particularly common contract function-
alities, thus not introducing new test cases. This indicates that



0 200 400 600 800 1000
Number of Historical Transactions

0

2

4

6

8

10

12
Nu

m
be

r o
f A

ug
m

en
te

d 
Te

st
 C

as
es ERC20

ERC721

Fig. 4: The average number of augmented test cases with
different number of historical transactions.

TABLE I: Statistics of the benchmark contracts
ERC20 Category ERC721 Category

ID Name # Tests ID Name # Tests
A0 TetherToken 11 B0 BoredApeYachtClub 12
A1 BNB 6 B1 Miladys 17
A2 SHIBA 5 B2 Doodles 16
A3 TRX 9 B3 CoolCats 11
A4 IMXToken 6 B4 Azuki 6
A5 WBTC 12 B5 MutantApeYachtClub 6
A6 FetchToken 7 B6 Mfers 9
A7 PepeToken 14 B7 CoolmansUniverse 14
A8 CroToken 7 B8 IO 10
A9 GraphToken 7 B9 PudgyPenguins 6

in practice, using 1,000 transactions could efficiently cover
commonly used functionalities of the contract and augment
corresponding test cases.

C. RQ2: Effectiveness in Migrating Test Cases

In RQ2, we evaluated SOLMIGRATOR’s effectiveness in
migrating the augmented test cases. Specifically, we used
SOLMIGRATOR to migrate test cases for a set of source-target
contract pairs and manually analyzed the migration results.
To ensure real-world significance, we chose ten contracts for
each category based on the Etherscan Top Token list [37] and
Top NFT list [38]. These contracts were chosen based on
the number of transactions, excluding those whose primary
function is not token management (e.g., auctions) and those
with external dependencies (e.g., proxy contracts). Then, we
migrated test cases among these contracts within the same
category by setting each contract as the source and the
remaining contracts as targets. This results in 180 source-target
migration pairs (10 targets × 9 sources × 2 categories), with
a total of 1,719 attempted test case migrations for evaluating
SOLMIGRATOR. Table I shows the IDs, names, and number of
augmented test cases for these benchmark contracts. Detailed
information about the benchmarks and migration results can
be found in our online supplementary material [34].

We manually analyzed the migration results for each test
case to evaluate the effectiveness of SOLMIGRATOR’s migra-
tion process. During the manual inspection, we classified test
cases that are successfully migrated and executed on the target
contract as positives, and those that failed to be migrated

or executed as negatives. For the positive cases, we further
classified them into True Positives (TPs) and False Positives
(FPs) based on whether the migrated test cases correctly
match their counterparts in the target smart contract. For the
negative cases, we further classified them into False Negatives
(FNs) and True Negatives (TNs) based on whether there is a
counterpart in the target contract but SOLMIGRATOR failed to
migrate the test cases.

Table II shows the breakdown results for each source-target
migration pair. Specifically, the From and To columns show the
ID of source and target smart contracts. The Migrate column
shows the proportion of test cases successfully migrated and
executed on the target contract, i.e., positive rate. The remain-
ing columns show the proportion of TPs, FPs, TNs, FNs of
the migration results of each source-target pair, respectively.
In summary, SOLMIGRATOR achieved an average precision
of 96.3%, recall of 92.8%, and accuracy of 93.6%, demon-
strating its effectiveness. It migrated an average of 58.1% and
56.3% test cases from source contracts to target contracts
in ERC20 and ERC721 categories, respectively, which cor-
responds to 56.9% and 53.3% of test cases being correctly
matched (TPs) and 1.2%, 2.9% being incorrectly matched
(FPs). For the test cases not migrated, the true negative rates
were 38.0% for ERC20 and 39.0% for ERC721, with 3.8%
and 4.7% false negative rates, respectively.

The migration results show a relatively high proportion of
true negatives. In line with existing test migration studies for
other software [39], [40], such results are mainly influenced by
the differences among the benchmark smart contracts, rather
than the technique itself. After manually analyzing them, we
found that in 68.1% of cases, there are no existing counterparts
in the target contract, directly preventing SOLMIGRATOR from
matching test cases from the source contract to the target
contract. In the remaining 31.9%, the test cases from the
source contract can be matched to the target contract, but
they fail to execute in the target contract due to functional
differences between the source and target contracts. For ex-
ample, a contract might not allow transfers between users
until the owner enables this function, causing migrated test
cases that directly perform transfers between users to fail on
this contract. Note that although these test cases failed to be
directly migrated, they may still become useful after minor
modifications by developers.

Our manual analysis revealed large variations in migration
rates among different pairs of smart contracts. For example,
the migration rate from contract A4 to A6 is 100%, whereas it
is only 33% from A4 to A1. The main reason is that, although
these contracts are within the same category, there can still be
notable functional differences among them. For example, A4
and A6 allow mint operations, i.e., the contract owner can
mint tokens for users, while A1 does not. These differences
could lead to different usage patterns of the contracts, such as
how users initially obtain tokens, making test cases migrated
from A4 fail on A1. These results support the intuition that
migrating test cases between more similar smart contracts can
result in a higher migration rate.



TABLE II: Migration results of test cases for ERC20 (A) and ERC721 (B) contracts by SOLMIGRATOR

From To Migrate TP FP TN FN From To Migrate TP FP TN FN From To Migrate TP FP TN FN

A0 A1 45% 45% 0% 55% 0% A0 A2 55% 55% 0% 45% 0% A0 A3 45% 45% 0% 55% 0%
A0 A4 45% 45% 0% 55% 0% A0 A5 55% 55% 0% 45% 0% A0 A6 55% 55% 0% 45% 0%
A0 A7 64% 64% 0% 36% 0% A0 A8 55% 55% 0% 45% 0% A0 A9 64% 64% 0% 36% 0%
A1 A0 83% 83% 0% 17% 0% A1 A2 100% 83% 17% 0% 0% A1 A3 50% 50% 0% 50% 0%
A1 A4 50% 50% 0% 50% 0% A1 A5 50% 50% 0% 50% 0% A1 A6 83% 83% 0% 17% 0%
A1 A7 83% 67% 17% 17% 0% A1 A8 50% 50% 0% 50% 0% A1 A9 100% 83% 17% 0% 0%
A2 A0 100% 100% 0% 0% 0% A2 A1 80% 80% 0% 20% 0% A2 A3 60% 60% 0% 40% 0%
A2 A4 60% 60% 0% 40% 0% A2 A5 60% 60% 0% 40% 0% A2 A6 100% 100% 0% 0% 0%
A2 A7 100% 100% 0% 0% 0% A2 A8 60% 60% 0% 40% 0% A2 A9 100% 100% 0% 0% 0%
A3 A0 56% 56% 0% 44% 0% A3 A1 33% 33% 0% 44% 22% A3 A2 78% 78% 0% 22% 0%
A3 A4 78% 78% 0% 0% 22% A3 A5 56% 56% 0% 22% 22% A3 A6 78% 78% 0% 0% 22%
A3 A7 67% 67% 0% 33% 0% A3 A8 67% 67% 0% 22% 11% A3 A9 78% 78% 0% 0% 22%
A4 A0 100% 83% 17% 0% 0% A4 A1 33% 33% 0% 67% 0% A4 A2 50% 50% 0% 50% 0%
A4 A3 50% 50% 0% 0% 50% A4 A5 100% 100% 0% 0% 0% A4 A6 100% 100% 0% 0% 0%
A4 A7 67% 50% 17% 33% 0% A4 A8 67% 67% 0% 33% 0% A4 A9 100% 100% 0% 0% 0%
A5 A0 42% 42% 0% 50% 8% A5 A1 25% 25% 0% 75% 0% A5 A2 33% 33% 0% 67% 0%
A5 A3 33% 33% 0% 67% 0% A5 A4 33% 33% 0% 67% 0% A5 A6 33% 33% 0% 67% 0%
A5 A7 50% 50% 0% 50% 0% A5 A8 50% 50% 0% 50% 0% A5 A9 50% 50% 0% 50% 0%
A6 A0 57% 57% 0% 43% 0% A6 A1 57% 57% 0% 43% 0% A6 A2 57% 57% 0% 43% 0%
A6 A3 29% 29% 0% 71% 0% A6 A4 29% 29% 0% 71% 0% A6 A5 29% 29% 0% 71% 0%
A6 A7 43% 43% 0% 57% 0% A6 A8 43% 43% 0% 57% 0% A6 A9 57% 57% 0% 43% 0%
A7 A0 79% 79% 0% 14% 7% A7 A1 71% 71% 0% 29% 0% A7 A2 79% 79% 0% 21% 0%
A7 A3 29% 29% 0% 71% 0% A7 A4 29% 29% 0% 71% 0% A7 A5 29% 29% 0% 71% 0%
A7 A6 79% 79% 0% 21% 0% A7 A8 36% 36% 0% 43% 21% A7 A9 86% 79% 7% 7% 7%
A8 A0 57% 57% 0% 14% 29% A8 A1 14% 14% 0% 86% 0% A8 A2 43% 43% 0% 57% 0%
A8 A3 29% 29% 0% 71% 0% A8 A4 29% 29% 0% 71% 0% A8 A5 57% 43% 14% 14% 29%
A8 A6 29% 29% 0% 43% 29% A8 A7 43% 43% 0% 57% 0% A8 A9 43% 43% 0% 57% 0%
A9 A0 71% 71% 0% 29% 0% A9 A1 57% 57% 0% 43% 0% A9 A2 57% 57% 0% 43% 0%
A9 A3 43% 43% 0% 57% 0% A9 A4 43% 43% 0% 57% 0% A9 A5 57% 57% 0% 43% 0%
A9 A6 57% 57% 0% 0% 43% A9 A7 71% 71% 0% 29% 0% A9 A8 57% 57% 0% 43% 0%
Average 58.1% 56.9% 1.2% 38.0% 3.8% Precision: 97.9%, Recall: 93.7%, Accuracy: 94.9%

From To Migrate TP FP TN FN From To Migrate TP FP TN FN From To Migrate TP FP TN FN

B0 B1 58% 58% 0% 42% 0% B0 B2 33% 33% 0% 50% 17% B0 B3 33% 25% 8% 50% 17%
B0 B4 33% 33% 0% 67% 0% B0 B5 67% 58% 8% 33% 0% B0 B6 67% 50% 17% 17% 17%
B0 B7 33% 33% 0% 50% 17% B0 B8 33% 33% 0% 67% 0% B0 B9 33% 25% 8% 67% 0%
B1 B0 76% 76% 0% 24% 0% B1 B2 41% 41% 0% 59% 0% B1 B3 35% 35% 0% 65% 0%
B1 B4 41% 35% 6% 59% 0% B1 B5 65% 65% 0% 35% 0% B1 B6 59% 59% 0% 6% 35%
B1 B7 41% 41% 0% 18% 41% B1 B8 41% 41% 0% 59% 0% B1 B9 41% 41% 0% 59% 0%
B2 B0 50% 50% 0% 12% 38% B2 B1 50% 50% 0% 12% 38% B2 B3 44% 44% 0% 25% 31%
B2 B4 31% 31% 0% 69% 0% B2 B5 50% 50% 0% 12% 38% B2 B6 62% 62% 0% 38% 0%
B2 B7 88% 88% 0% 12% 0% B2 B8 31% 31% 0% 69% 0% B2 B9 38% 25% 12% 62% 0%
B3 B0 64% 45% 18% 36% 0% B3 B1 64% 45% 18% 36% 0% B3 B2 36% 36% 0% 64% 0%
B3 B4 27% 27% 0% 73% 0% B3 B5 55% 45% 9% 45% 0% B3 B6 45% 36% 9% 55% 0%
B3 B7 36% 36% 0% 64% 0% B3 B8 27% 27% 0% 73% 0% B3 B9 45% 27% 18% 55% 0%
B4 B0 67% 67% 0% 33% 0% B4 B1 83% 83% 0% 17% 0% B4 B2 67% 67% 0% 33% 0%
B4 B3 67% 67% 0% 33% 0% B4 B5 83% 83% 0% 17% 0% B4 B6 67% 67% 0% 33% 0%
B4 B7 67% 67% 0% 33% 0% B4 B8 67% 67% 0% 33% 0% B4 B9 67% 67% 0% 33% 0%
B5 B0 67% 67% 0% 0% 33% B5 B1 100% 100% 0% 0% 0% B5 B2 50% 50% 0% 50% 0%
B5 B3 67% 67% 0% 33% 0% B5 B4 50% 50% 0% 50% 0% B5 B6 67% 67% 0% 33% 0%
B5 B7 50% 50% 0% 50% 0% B5 B8 67% 67% 0% 33% 0% B5 B9 50% 50% 0% 50% 0%
B6 B0 89% 89% 0% 11% 0% B6 B1 89% 89% 0% 11% 0% B6 B2 89% 89% 0% 11% 0%
B6 B3 78% 78% 0% 11% 11% B6 B4 67% 67% 0% 33% 0% B6 B5 89% 89% 0% 11% 0%
B6 B7 100% 100% 0% 0% 0% B6 B8 67% 67% 0% 33% 0% B6 B9 67% 67% 0% 22% 11%
B7 B0 64% 50% 14% 21% 14% B7 B1 64% 50% 14% 21% 14% B7 B2 43% 43% 0% 57% 0%
B7 B3 57% 57% 0% 7% 36% B7 B4 43% 43% 0% 57% 0% B7 B5 64% 50% 14% 21% 14%
B7 B6 43% 43% 0% 57% 0% B7 B8 64% 64% 0% 36% 0% B7 B9 43% 36% 7% 57% 0%
B8 B0 80% 70% 10% 20% 0% B8 B1 70% 50% 20% 30% 0% B8 B2 40% 40% 0% 60% 0%
B8 B3 50% 50% 0% 50% 0% B8 B4 40% 40% 0% 60% 0% B8 B5 80% 60% 20% 20% 0%
B8 B6 70% 50% 20% 30% 0% B8 B7 50% 40% 10% 50% 0% B8 B9 40% 40% 0% 60% 0%
B9 B0 50% 50% 0% 50% 0% B9 B1 50% 50% 0% 50% 0% B9 B2 50% 50% 0% 50% 0%
B9 B3 83% 83% 0% 17% 0% B9 B4 33% 33% 0% 67% 0% B9 B5 50% 50% 0% 50% 0%
B9 B6 50% 50% 0% 50% 0% B9 B7 50% 50% 0% 50% 0% B9 B8 33% 33% 0% 67% 0%
Average 56.3% 53.3% 2.9% 39.0% 4.7% Precision: 94.7%, Recall: 91.9%, Accuracy: 92.3%

Furthermore, the migration results suggest SOLMIGRA-
TOR’s abilities in revealing functional differences between
the source and target smart contracts, which could have
implications for bug-finding, differential testing, and design
choice refining. Specifically, in 31.9% (12.3% of all migration
cases) of true negatives, the test cases from the source contract
can be correctly matched, but fail to execute in the target
contract. The manual investigation of these cases demonstrates
that some of them can reveal non-standard and potentially
defective implementations in the target contracts. For example,

the PepeToken contract disables token transfers by default and
allows the contract owner to enable or disable them arbitrarily.
However, previous research [41] has identified such control as
a potential risk for Rug Pull attacks: If the contract owner
unintentionally or maliciously disables transfers, users are
prevented from selling their tokens, resulting in direct financial
losses. Unlike the PepeToken contract, other ERC20 smart
contracts do not require additional steps to enable transfers.
Therefore, the test cases migrated from these contracts will at-
tempt direct token transfers without requiring other operations.



During the migration process, these direct transfer operations
will be reverted by the PepeToken contract, leading to failures
in the migration process. Developers can further analyze these
failures to determine whether the implementation that allows
the owner to arbitrarily disable or enable transfers is a bug
or an intentional design choice. Please refer to our online
supplement material for more detailed descriptions [34].

D. RQ3: Effectiveness of the Migrated Test Cases

While RQ2 demonstrates that the augmented test cases can
be accurately migrated from the source to the target contracts,
it does not investigate their effectiveness for the target contract.
Therefore, we further introduced RQ3 to check whether the
migrated test cases can cover commonly used functions of the
target contract.

To achieve this, we executed real-world transactions of each
target contract and the test cases migrated to it, and compared
the functions called by them. Note that since SOLMIGRATOR
is the first migration technique for smart contracts, there are
no available tools for comparison. However, the baselines used
in the experiments, i.e., real-world transactions of the target
contract, are actually more suitable for our evaluation, because
practical real-world usage is precisely what SOLMIGRATOR
aims to cover. We first replayed the transactions of each target
contract in Table I and recorded the functions called by each
transaction. In line with Section VI-B, the number of analyzed
transactions is 1,000. After that, we executed the test cases
migrated from each source contract and analyzed the functions
they tested. Then, we chose the migration source that achieves
the highest function coverage, along with the test cases mi-
grated from it, for comparison with real-world transactions of
each target contract. Since developers typically perform test
migration between contracts that are as similar as possible,
choosing the most suitable source contract better simulates
the real-world application scenarios of test migration.

The results are shown in Table III. The Target column is
the target contract that the test cases are migrated to, and
the Source column is the migration source. The Func column
shows the number of functions covered by the migrated test
cases. The Tx column shows the proportion of real-world
transactions that called these covered transactions. Our results
show that for 13 out of 20 (65.0%) target contracts, the
migrated test cases can cover the functions used in over
85% of real-world transactions. This indicates that after
migration, test cases extracted from the real-world usage of the
source contract can also effectively cover the common usage
of the target contract.

After inspecting the remaining contracts, we found that
they have several commonly used functions specific to these
contracts, which prevents SOLMIGRATOR from migrating test
cases from other contracts to cover these functions. For
example, the most frequently used function in the contract
CoolmanUniverse is the mintAllowlist function, which requires
users to provide a Merkle proof before minting. Since all
other smart contracts do not have similar functions, no test
cases for this functionality are migrated. However, considering

TABLE III: Migrated test cases vs. real-world transactions
ERC20 Category ERC721 Category

Target Source #Func Tx(%) Target Source #Func Tx(%)
A0 A9 4 99.2% B0 B1 8 89.1%
A1 A6 4 99.9% B1 B5 6 94.1%
A2 A3 6 100.0% B2 B6 5 17.0%
A3 A4 3 53.7% B3 B7 6 11.4%
A4 A3 6 96.7% B4 B0 4 1.7%
A5 A4 6 97.5% B5 B1 7 99.7%
A6 A4 6 99.7% B6 B2 6 99.7%
A7 A1 4 99.6% B7 B2 7 28.8%
A8 A5 5 2.8% B8 B7 7 20.0%
A9 A0 5 99.8% B9 B3 4 99.9 %

the non-exhaustive set of migration source contracts, the
results in Table III are only lower bounds: it is possible to
cover these uncovered functions by migrating test cases from
other on-chain source contracts. In practice, developers can
rely on existing similarity-based search tools [42], [43] and
services [44], to select more suitable migration sources and
achieve better migration results.

VII. DISCUSSION

A. Implications

Our study has demonstrated that it is viable to extract
and migrate test cases from real-world usages of existing
smart contracts and use them to test other newly developed
smart contracts. Considering the commonly shared functional-
ities among smart contracts [14], SOLMIGRATOR could have
practical implications across broad and realistic application
scenarios. For example, it can be used when developing and
testing smart contracts in a field that has several established
on-chain projects to refer to. While developers often reuse
the code of established contracts to enhance development
efficiency [14], SOLMIGRATOR enables them to also reuse the
human knowledge from real-world usages of these contracts to
enhance testing efficiency. Beyond migrating test cases across
different contracts, SOLMIGRATOR can also be applied to
different versions of the same contract, such as testing a new
contract intended to upgrade an existing on-chain contract.

By using SOLMIGRATOR, developers can reduce the effort
required for manually writing test cases for new contracts.
They can identify similar on-chain contracts through their
knowledge or using similarity-based search tools [42], [43]
and services [44], and then use SOLMIGRATOR to migrate
test cases from these contracts. These migrated test cases
enable developers to efficiently simulate potential real-world
usages of contracts and confirm their functional correctness,
thus reducing the manual effort required in testing processes.
Beyond ensuring functional correctness, test cases migrated
from established smart contracts can also assist developers
in refining their design choices, such as suggesting missing
features or improving usage patterns for new smart contracts.

B. Threats to Validity

The main internal threat to validity is the potential mis-
takes in the manual analysis of the evaluation results. To
mitigate the threat, we employed a double-checking process
and carefully reviewed the manual label results. We have made



these results publicly available for external inspection [34].
The main external threat to validity lies in the selection
of our datasets. To ensure real-world relevance, our dataset
includes two most popular categories of smart contracts. These
have well-established datasets [33] and have been commonly
used in previous studies [45]–[47]. The size of our dataset
is also adequate, compared to previous studies on test case
migration [39], [40].

C. Limitations

As the first test migration tool for smart contracts, SOLMI-
GRATOR uses a matching process based on function signature
matching and static analysis. Although its effectiveness is
justified by evaluations on applications with similar specifica-
tions, it can be improved to better handle diverse functions
in more complex scenarios. We plan to enhance SOLMI-
GRATOR’s matching process by integrating it with LLMs
for improved semantic understanding in the future. Addi-
tionally, SOLMIGRATOR’s test augmentation process, which
uses execution paths for test case selection and deduplication,
could filter out potentially interesting test cases. We plan to
implement a more fine-grained selection approach to better
balance the number and representativeness of the augmented
test cases. Furthermore, in line with previous test migration
tools [39], [40], SOLMIGRATOR currently employs a one-to-
one migration process, i.e., from one specific source contract to
one target contract. Although existing similarity-based search
tools [42], [44] can help developers in selecting a suitable
migration source, the non-exhaustive nature of the one-to-one
migration process might lead to potentially sub-optimal results,
impacting the effectiveness of test case generation. Future
studies could improve SOLMIGRATOR to support many-to-one
migration, where multiple migration sources can be automat-
ically identified through similarity-based search techniques.

VIII. RELATED WORK

A. Test Migration for Other Software

Several previous studies have focused on migrating test
cases between other software with similar functionalities, such
as mobile apps and web applications [39], [48]–[50]. For
example, Behrang et al. [48] propose GUITestMigrator to
transfer test cases across mobile apps that follow the same
specifications. This tool allows tests developed for one app to
be migrated to other apps, thereby helping to automate the
assessment of mobile app coding assignments. AppTestMi-
grator [6] extends the functionality of GUITestMigrator by
employing static analysis techniques to enable test migration
between mobile apps that share only part of their functionality.

Our work differs from them in two main aspects. First, our
work is the first migration-based technique in the new context
of smart contracts. It incorporates a set of static analysis
techniques tailored for smart contracts, which could inherently
differ from those used in mobile apps. Second, unlike existing
techniques that can only transfer already developed test cases,
SOLMIGRATOR does not require manually developed test
cases as inputs. Instead, it can automatically extract test cases

from millions of on-chain contracts, thus could be applicable
to more test case generation scenarios.

B. Test Generation Techniques for Smart Contracts
With the rapid development and emerging applications of

smart contracts [51]–[53], there has been a substantial body of
previous studies [54], [55] focusing on using test generation
techniques like fuzzing to detect security vulnerabilities in
smart contracts, such as re-entrancy [11]. They typically intro-
duce pre-defined detection patterns for each vulnerability and
monitor the contract’s underlying behavior during execution
to determine whether these vulnerabilities are triggered. For
example, ContractFuzzer [56] is one of the first fuzzing-based
techniques for smart contracts. It introduces detection patterns
for seven types of vulnerabilities and employs fuzzing to
generate test cases to exploit them. Smartian [57] incorporates
static and dynamic data-flow analyses into smart contract
fuzzing, in order to detect security vulnerabilities in hard-to-
reach branches. However, the primary goal of these existing
test generation techniques is to produce a large number of ran-
dom test inputs to detect certain types of vulnerabilities, which
is orthogonal to our goal of generating a set of expressive and
function-relevant test cases that represent canonical usages of
the smart contracts.

IX. CONCLUSION AND FUTURE WORK

We have proposed SOLMIGRATOR, the first migration-
based technique that generates test cases for smart contracts
by extracting and migrating the on-chain usages of existing
smart contracts with similar functionalities. We incorporated
a set of new approaches in SOLMIGRATOR, including test
case augmentation based on on-chain transaction replay and
dependency analysis, and test case migration based on fine-
grained static analysis. Our empirical evaluation provides
initial, yet promising, evidence for the feasibility of using
test cases extracted and migrated from existing on-chain
contracts to test new smart contracts. Experimental results
show that SOLMIGRATOR can effectively extract and migrate
test cases, achieving an accuracy of 93.6% in migrating 1,719
augmented test cases. Moreover, it demonstrates that the test
cases migrated from source contracts can effectively represent
the potential usage of the target contracts. As future work,
we are planning to conduct empirical studies using more
smart contracts and a larger number of test cases to confirm
our initial results. We also plan to incorporate techniques
such as similarity-based search to improve the usability and
effectiveness of SOLMIGRATOR.

ACKNOWLEDGEMENT

This work is partially supported by Primary Research
& Developement Plan of Jiangsu Province (BE2023025,
BE2023025-5), National Natural Science Foundation of China
(62202011, 62172010, 62332004), and the Open Research
Fund of The State Key Laboratory of Blockchain and Data
Security, Zhejiang University. John Grundy is supported by
ARC Laureate Fellowship FL190100035. We also thank the
anonymous reviewers for their valuable feedback.



REFERENCES

[1] J. Chen, X. Xia, D. Lo, J. Grundy, and X. Yang, “Maintenance-related
concerns for post-deployed ethereum smart contract development: issues,
techniques, and future challenges,” Empirical Software Engineering,
vol. 26, no. 6, p. 117, 2021.

[2] Z. Wan, X. Xia, D. Lo, J. Chen, X. Luo, and X. Yang, “Smart
contract security: a practitioners’ perspective,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 2021,
pp. 1410–1422.

[3] L. Palechor and C.-P. Bezemer, “How are solidity smart contracts tested
in open source projects? an exploratory study,” in Proceedings of the 3rd
ACM/IEEE International Conference on Automation of Software Test,
2022, pp. 165–169.

[4] Hardhat, “Ethereum development environment for professionals,” 2024.
[Online]. Available: https://hardhat.org/

[5] R. Verma, N. Dhanda, and V. Nagar, “Application of truffle suite
in a blockchain environment,” in Proceedings of Third International
Conference on Computing, Communications, and Cyber-Security: IC4S
2021. Springer, 2022, pp. 693–702.

[6] F. Behrang and A. Orso, “Test migration between mobile apps with
similar functionality,” in 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2019, pp. 54–65.

[7] J.-W. Lin, R. Jabbarvand, and S. Malek, “Test transfer across mobile
apps through semantic mapping,” in 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2019,
pp. 42–53.

[8] M. Ye, Y. Nan, Z. Zheng, D. Wu, and H. Li, “Detecting state incon-
sistency bugs in dapps via on-chain transaction replay and fuzzing,” in
Proceedings of the 32nd ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2023, pp. 298–309.

[9] C. Shou, S. Tan, and K. Sen, “Ityfuzz: Snapshot-based fuzzer for smart
contract,” in Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2023, pp. 322–333.

[10] T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh, “sfuzz: An
efficient adaptive fuzzer for solidity smart contracts,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
2020, pp. 778–788.

[11] Z. Wang, J. Chen, P. Zheng, Y. Zhang, W. Zhang, and Z. Zheng, “Unity
is strength: Enhancing precision in reentrancy vulnerability detection of
smart contract analysis tools,” IEEE Transactions on Software Engineer-
ing, 2024.

[12] C. F. Torres, J. Schütte, and R. State, “Osiris: Hunting for integer bugs in
ethereum smart contracts,” in Proceedings of the 34th annual computer
security applications conference, 2018, pp. 664–676.

[13] T. Chen, Z. Li, Y. Zhu, J. Chen, X. Luo, J. C.-S. Lui, X. Lin,
and X. Zhang, “Understanding ethereum via graph analysis,” ACM
Transactions on Internet Technology (TOIT), vol. 20, no. 2, pp. 1–32,
2020.

[14] X. Chen, P. Liao, Y. Zhang, Y. Huang, and Z. Zheng, “Understanding
code reuse in smart contracts,” in 2021 IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE,
2021, pp. 470–479.

[15] K. Sun, Z. Xu, C. Liu, K. Li, and Y. Liu, “Demystifying the composition
and code reuse in solidity smart contracts,” in Proceedings of the 31st
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2023, pp. 796–807.

[16] G. Wood et al., “Ethereum: A secure decentralised generalised trans-
action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1–32, 2014.

[17] Ethereum, “Ethereum improvement proposals,” 2023. [Online].
Available: https://eips.ethereum.org

[18] V. Fabian and B. Vitalik, “Erc-20: Token standard,” 2016. [Online].
Available: https://eips.ethereum.org/EIPS/eip-20

[19] E. William, S. Dieter, E. Jacob, and S. Nastassia, “Erc-721:
Non-fungible token standard,” 2018. [Online]. Available: https:
//eips.ethereum.org/EIPS/eip-721

[20] Ethereum, “Opcodes for the evm,” 2023. [Online]. Available:
https://ethereum.org/en/developers/docs/evm/opcodes

[21] L. Zamprogno, B. Hall, R. Holmes, and J. M. Atlee, “Dynamic human-
in-the-loop assertion generation,” IEEE Transactions on Software Engi-
neering, vol. 49, no. 4, pp. 2337–2351, 2022.

[22] Openzepplin, “The standard for secure blockchain applications,” 2023.
[Online]. Available: https://www.openzeppelin.com/

[23] Go-Ethereum, “debug namespace,” 2024. [Online]. Available: https:
//geth.ethereum.org/docs/interacting-with-geth/rpc/ns-debug

[24] Ethereum, “Ethereum archive node,” 2023. [Online]. Available: https:
//ethereum.org/en/developers/docs/nodes-and-clients/archive-nodes

[25] Openzepplin, “Implementation of the erc-20 permit extension,”
2023. [Online]. Available: https://github.com/OpenZeppelin/
openzeppelin-contracts/blob/master/contracts/token/ERC20/extensions/
ERC20Permit.sol

[26] A. Arcuri, “A theoretical and empirical analysis of the role of test
sequence length in software testing for structural coverage,” IEEE
Transactions on Software Engineering, vol. 38, no. 3, pp. 497–519, 2011.

[27] Foundry, “Foundry,” 2024. [Online]. Available: https://github.com/
foundry-rs/foundry

[28] T. Chen, Z. Li, X. Luo, X. Wang, T. Wang, Z. He, K. Fang, Y. Zhang,
H. Zhu, H. Li et al., “Sigrec: Automatic recovery of function signatures
in smart contracts,” IEEE Transactions on Software Engineering, vol. 48,
no. 8, pp. 3066–3086, 2021.

[29] Slither, “Slither ir,” 2024. [Online]. Available: https://github.com/crytic/
slither/wiki/SlithIR

[30] S. Documentation, “Contract abi specification,” 2024. [On-
line]. Available: https://docs.soliditylang.org/en/latest/abi-spec.html#
contract-abi-specification

[31] S. Chaliasos, M. A. Charalambous, L. Zhou, R. Galanopoulou, A. Ger-
vais, D. Mitropoulos, and B. Livshits, “Smart contract and defi security
tools: Do they meet the needs of practitioners?” in Proceedings of
the 46th IEEE/ACM International Conference on Software Engineering,
2024, pp. 1–13.

[32] CryptoRank, “Ethereum cryptocurrency,” 2024. [Online]. Avail-
able: https://console.cloud.google.com/marketplace/product/ethereum/
crypto-ethereum-blockchain

[33] G. BigQuery, “Ethereum tokens,” 2024. [Online]. Available: https:
//cryptorank.io/blockchains/ethereum

[34] Anonymous, “Online supplement material,” 2024. [Online]. Available:
https://github.com/Jiashuo-Zhang/SolMigrator

[35] S. Yang, J. Chen, and Z. Zheng, “Definition and detection of defects in
nft smart contracts,” in 32nd ACM SIGSOFT International Symposium
on Software Testing and Analysis, 2023.

[36] Z. Zhang, B. Zhang, W. Xu, and Z. Lin, “Demystifying exploitable bugs
in smart contracts,” in 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE). IEEE, 2023, pp. 615–627.

[37] Etherscan, “Top token list,” 2024. [Online]. Available: https://etherscan.
io/tokens

[38] ——, “Top nft list,” 2024. [Online]. Available: https://etherscan.io/
nft-top-contracts

[39] J.-W. Lin, R. Jabbarvand, and S. Malek, “Test transfer across mobile
apps through semantic mapping,” in 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2019,
pp. 42–53.

[40] F. Behrang and A. Orso, “Test migration between mobile apps with
similar functionality,” in 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2019, pp. 54–65.

[41] Z. Lin, J. Chen, J. Wu, W. Zhang, Y. Wang, and Z. Zheng, “Crpwarner:
Warning the risk of contract-related rug pull in defi smart contracts,”
IEEE Transactions on Software Engineering, 2024.

[42] H. Liu, Z. Yang, C. Liu, Y. Jiang, W. Zhao, and J. Sun, “Eclone:
Detect semantic clones in ethereum via symbolic transaction sketch,” in
Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2018, pp. 900–903.

[43] Z. Tian, Y. Huang, J. Tian, Z. Wang, Y. Chen, and L. Chen, “Ethereum
smart contract representation learning for robust bytecode-level similar-
ity detection.” in SEKE, 2022, pp. 513–518.

[44] Etherscan, “Similar contracts search,” 2024. [Online]. Available:
https://etherscan.io/find-similar-contracts

[45] T. Chen, Y. Zhang, Z. Li, X. Luo, T. Wang, R. Cao, X. Xiao, and
X. Zhang, “Tokenscope: Automatically detecting inconsistent behaviors
of cryptocurrency tokens in ethereum,” in Proceedings of the 2019 ACM
SIGSAC conference on computer and communications security, 2019,
pp. 1503–1520.

[46] Z. He, S. Song, Y. Bai, X. Luo, T. Chen, W. Zhang, P. He, H. Li,
X. Lin, and X. Zhang, “Tokenaware: Accurate and efficient bookkeeping
recognition for token smart contracts,” ACM Transactions on Software
Engineering and Methodology, vol. 32, no. 1, pp. 1–35, 2023.

https://hardhat.org/
https://eips.ethereum.org
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-721
https://ethereum.org/en/developers/docs/evm/opcodes
https://www.openzeppelin.com/
https://geth.ethereum.org/docs/interacting-with-geth/rpc/ns-debug
https://geth.ethereum.org/docs/interacting-with-geth/rpc/ns-debug
https://ethereum.org/en/developers/docs/nodes-and-clients/archive-nodes
https://ethereum.org/en/developers/docs/nodes-and-clients/archive-nodes
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/extensions/ERC20Permit.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/extensions/ERC20Permit.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/extensions/ERC20Permit.sol
https://github.com/foundry-rs/foundry
https://github.com/foundry-rs/foundry
https://github.com/crytic/slither/wiki/SlithIR
https://github.com/crytic/slither/wiki/SlithIR
https://docs.soliditylang.org/en/latest/abi-spec.html#contract-abi-specification
https://docs.soliditylang.org/en/latest/abi-spec.html#contract-abi-specification
https://console.cloud.google.com/marketplace/product/ethereum/crypto-ethereum-blockchain
https://console.cloud.google.com/marketplace/product/ethereum/crypto-ethereum-blockchain
https://cryptorank.io/blockchains/ethereum
https://cryptorank.io/blockchains/ethereum
https://github.com/Jiashuo-Zhang/SolMigrator
https://etherscan.io/tokens
https://etherscan.io/tokens
https://etherscan.io/nft-top-contracts
https://etherscan.io/nft-top-contracts
https://etherscan.io/find-similar-contracts


[47] J. Chen, X. Xia, D. Lo, and J. Grundy, “Why do smart contracts self-
destruct? investigating the selfdestruct function on ethereum,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 31, no. 2, pp. 1–37, 2021.

[48] F. Behrang and A. Orso, “Test migration for efficient large-scale
assessment of mobile app coding assignments,” in Proceedings of the
27th ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2018, pp. 164–175.

[49] A. Rau, J. Hotzkow, and A. Zeller, “Efficient gui test generation by
learning from tests of other apps,” in Proceedings of the 40th Interna-
tional Conference on Software Engineering: Companion Proceeedings,
2018, pp. 370–371.

[50] S. Talebipour, Y. Zhao, L. Dojcilović, C. Li, and N. Medvidović,
“Ui test migration across mobile platforms,” in 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2021, pp. 756–767.

[51] K. Yang, B. Yang, T. Wang, and Y. Zhou, “Zero-cerd: A self-blindable
anonymous authentication system based on blockchain,” Chinese Jour-
nal of Electronics, vol. 32, no. 3, pp. 587–596, 2023.

[52] K. Shang, W. He, S. Zhang, and Z.-h. Zhou, “Review on security defense
technology research in edge computing environment,” Chinese Journal
of Electronics, vol. 33, no. 1, pp. 1–18, 2024.

[53] Y. Li and Y. Zhang, “Digital twin for industrial internet,” Fundamental
Research, vol. 4, no. 1, pp. 21–24, 2024.

[54] S. Wu, Z. Li, L. Yan, W. Chen, M. Jiang, C. Wang, X. Luo, and H. Zhou,
“Are we there yet? unraveling the state-of-the-art smart contract fuzzers,”
in Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering, 2024, pp. 1–13.

[55] N. Ivanov, C. Li, Q. Yan, Z. Sun, Z. Cao, and X. Luo, “Security
threat mitigation for smart contracts: A comprehensive survey,” ACM
Computing Surveys, 2023.

[56] B. Jiang, Y. Liu, and W. K. Chan, “Contractfuzzer: Fuzzing smart con-
tracts for vulnerability detection,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, 2018, pp.
259–269.

[57] J. Choi, D. Kim, S. Kim, G. Grieco, A. Groce, and S. K. Cha,
“Smartian: Enhancing smart contract fuzzing with static and dynamic
data-flow analyses,” in 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2021, pp. 227–239.


	Introduction
	Background and Motivation
	Smart Contract Testing
	Motivation

	Our Approach
	Test Augmentation
	Transaction Replay
	Transaction Dependency Graph Construction
	Test Sequence Augmentation
	Test Sequence Folding
	Assertion Augmentation

	Test Migration
	Test Transaction Sequence Migration
	Function Matching
	Transaction Sequence Migration

	Test Assertion Migration
	Test Script Generation

	Empirical Evaluation
	Experimental Setup
	RQ1: Effectiveness in Augmenting Test Cases
	RQ2: Effectiveness in Migrating Test Cases
	RQ3: Effectiveness of the Migrated Test Cases

	Discussion
	Implications
	Threats to Validity
	Limitations

	Related Work
	Test Migration for Other Software
	Test Generation Techniques for Smart Contracts

	Conclusion and Future Work
	References

