
GitHubInclusifier: Finding and fixing non-inclusive language in
GitHub Repositories

Liam Todd, John Grundy
Department Software Systems and Cybersecurity,

Faculty of IT, Monash University, Australia
john.grundy@monash.edu

Christoph Treude
School of Computing and Information Systems,

University of Melbourne, Australia
christoph.treude@unimelb.edu.au

ABSTRACT
Non-inclusive language in software artefacts has been recognised
as a serious problem.We describe a tool to find and fix non-inclusive
language in a variety of GitHub repository artefacts. These include
various README files, PDFs, code comments, and code. A wide
variety of non-inclusive language including racist, ageist, ableist, vi-
olent and others are located and issues created, tagging the artefacts
for checking. Suggested fixes can be generated using third-party
LLM APIs, and approved changes made to documents, including
code refactorings, and committed to the repository.

The tool and evaluation data are available from: https://github.
com/LiamTodd/github-inclusifier

The demo video is available at: https://www.youtube.com/
watch?v=1z1QKdQg-nM

CCS CONCEPTS
• Social and professional topics → Software maintenance;
User characteristics; • Software and its engineering → Extra-
functional properties; Software evolution.

KEYWORDS
Inclusive language, refactoring, biased language, inappropriate lan-
guage, software documentation, software maintenance tools
ACM Reference Format:
Liam Todd, John Grundy and Christoph Treude. 2024. GitHubInclusifier:
Finding and fixing non-inclusive language in GitHub Repositories . In Pro-
ceedings of IEEE/ACM International Conference on Software Engineering
(ICSE2024). ACM, New York, NY, USA, 5 pages. https://doi.org/XXXXXXX.
XXXXXXX

1 INTRODUCTION
Concern has been growing about various biases and non-inclusive
practices in software engineering and engineered software, includ-
ing but not limited to gender, race, age, neurodiversity and others
[2, 3, 8, 10–12, 15]. Related to this, there has been increasing con-
cern about non-inclusive language in software artefacts, and several
guidelines developed to help developers to address this [1, 5, 9] and
bots for ‘tone policing’ [6]. One approach is to apply style transfer

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE2024, April 14-20, 2024, Lisbon, Portugal
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

to non-inclusive language to ‘inclusify’ it [13, 14]. However, find-
ing and fixing biased language in documentation, code and code
comments in github repositories is very challenging [4, 7, 16].

We present GitHubInclusifier, a prototype tool designed to dis-
courage the use of non-inclusive language in software repositories,
in both non-code and code artefacts, and to provide its users with
means of rectifying such language usage with more inclusive al-
ternatives. GitHubInclusifier is aimed towards software developers
who work collaboratively on software projects using GitHub. Upon
linking GitHubInclusifier to a GitHub repository, it analyses the lan-
guage usedwithin it, in both non-code and code artefacts, extracting
the details of instances of non-inclusive language. Through a num-
ber of user-friendly interfaces, these instances are highlighted to the
user, and they are presented with tools which can be used to alter
the language choices in the repository. GitHubInclusifier leverages
third-party large language models (LLMs) to suggest alternative
text, and implements a refactoring tool allowing users to efficiently
alter non-inclusive language choices in code files, safely pushing
these changes directly to the source repository.

2 MOTIVATION

(A)

(B)

(C)

Figure 1: (a) Non-inclusive ableist language in README.md
file; (b) violent language method name and comment; (c)
violent language method name, comment and code.

Figure 1 shows examples of non-inclusive language in documen-
tation and code files. Ideally on committing files with non-inclusive
language such instances could be detected and changes suggested
andmade. Making such inclusifying language style transfer changes
can be challenging. In example (a), changing ‘cripple’ to e.g. ‘se-
verely impact’ would remove ableist language, though care needs
to be taken not to change overall meaning. If the method com-
ments in (b) and (c) are changed, care is needed that meaning is not
changed but also e.g. if referring to a method or variable name, the

https://github.com/LiamTodd/github-inclusifier
https://github.com/LiamTodd/github-inclusifier
https://www.youtube.com/watch?v=1z1QKdQg-nM
https://www.youtube.com/watch?v=1z1QKdQg-nM
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

ICSE2024, April 14-20, 2024, Lisbon, Portugal Todd et al.

reference is not broken. Changing e.g. method name in (c) means
code refactoring is needed not only on the target code file, but
whole application. Finally, if a non-inclusive term in the documen-
tation refers to a code element, all instances need changing in other
documentation and code needs refactoring. The problem becomes
even more challenging when composite words have problematic
language e.g. ‘abort_signal’.

We wanted to support GitHub repository users to inclusify lan-
guage in diverse repository artefacts including README and re-
lated files; PDFs; code comments; code elements (class, method,
variable, property etc names); and – in future – even images with
non-inclusive terms and/or representations. We wanted to provide
GitHub users a user-friendly interface to locate non-inclusive lan-
guage in a variety of artefacts; summarise the type of non-inclusive
language; help them to modify the problematic language by suggest-
ing changes; make the changes to impacted artefacts; and commit
the changes to the repository.

3 OUR APPROACH
GitHubInclusifier is a web application designed to support the
use of inclusive language in GitHub Repository hosted artefacts.
GitHubInclusifier’s target users are software developers working
collaboratively on software projects. It provides them with fea-
tures for both recognising, and rectifying usages of non-inclusive
language within these projects.

3.1 Inclusification Process
The key features of GitHubInclusifier which enable the recognition
of non-inclusive language usage within software projects include:

• Repository-wide search for non-inclusive language terms
using whole word and substring pattern matching;

• Automated reporting of non-inclusive language usage as a
GitHub issue;

• Repository explorer with non-inclusive language usages vis-
ibly indicated;

• Non-inclusive language report on a per-file basis;
• Code-specific non-inclusive language report for Python and
Java source code files on a per-file basis, as well as a repository-
wide basis;

• Export of non-inclusive language reports for findings by both
word-boundary, and substring pattern matching algorithms,
on a repository-wide basis.

The key features of GitHubInclusifier which permit software
developers to rectify the usage of non-inclusive language are:

• Non-inclusive to inclusive language update suggestion by
user’s choice of LLM;

• Code refactoring feature for variable, function, and class
declaration and usage renaming for Python source code on
a repository-wide basis;

• Automated commit & pull request creation after refactoring.

3.2 GitHubInclusifier Implementation
GitHubInclusifier is implemented as a client-server architecture,
consisting of a front-end built with React and a back-end built
using Django, outlined in Figure 2 (i). The front-end provides

React front-end

Django back-
end

GitHub API

alpaca-lora-7b
API

Third-Party
LLM APIs

Target Repository

Obtains
rewording

suggestions
from

Performs
operations (clone,

raise issue,
create branch,

commit, raise pull
request) on

Accesses
repo via

<other LLM>

...

Parse source code
into abstract syntax

tree (AST)

Walk AST, modifying
nodes based on name,

context, and type

Unparse modified AST
into new source code

Statically analyse
modified code

Undo
modifications to

source code

Update code

Error(s)
flagged

Log changes in
pull request

No errors

Log cautionary
message in pull

request
Figure 2: (i) Architecture, (ii) Inclusifying code process

an interactive interface for users to link a GitHub repository to
GitHubInclusifier, explore the repository’s file tree, view and ex-
port non-inclusive language reports, as well as generate suggested
changes and efficiently refactor the code via a simple form. The
back-end handles interaction with GitHub’s API and third-party
LLM APIs, performs non-inclusive language analyses, and carries
out the refactors orchestrated by the user. We chose to use two
fast, light-weight algorithms developed in a previous large scale
github analysis project for simplicity and low overhead: a simple
word-boundary pattern matching (WBPM) algorithm to search for
whole word non-inclusive words and short phrases using a database
of over 100 non-inclusive language phrases and words e.g. ‘cripple’
in Figure 1. A less precise sub-string pattern matching (SSPM) al-
gorithm is used to detect potential non-inclusive sub-strings that
are part of whole words e.g. ‘abort_signal’ in Figure 1.

Interaction with GitHub’s API occurs via the PyGithub library.
Upon linking a repository to GitHubInclusifier, the repository is
cloned, and an issue is raised to the repository reporting the non-
inclusive language usages. Following any refactors decided by the
user, the back-end commits the changes to a new branch, and raises
a pull request which details the changes made. The back-end han-
dles interaction with third-party LLM APIs to generate sugges-
tions for passages featuring non-inclusive language. As a proof-of-
concept, a simple API was implemented to expose a relatively small
LLM (alpaca-lora-7b) to generate suggestions. GitHubInclusifier has
been built to be highly extendable to be used with any number of
third-party LLMs offering web-APIs.

The back-end implements the refactorings requested by the user,
outlined in Figure 2 (ii). This is done by generating an abstract
syntax tree (AST) of the target Python file, selectively renaming
nodes, followed by unparsing the modified AST into a new string of
code and writing it back to the file. As the process of unparsing the
syntax tree rids the file of any formatting, the autopep8 formatter
is used to reformat the code and check it for syntax errors. In some
instances, syntax errors will occur due to the ambiguous nature
of Python imports, whereby the type of an imported object is not
known. In these cases, the file’s content is left untouched, and a
cautionary message is written in the pull-request’s description.

4 USAGE EXAMPLE
Consider John, a conscientious software developer with a strong
commitment to inclusivity and diversity. He understands that using
inclusive language is a vital aspect of creating a welcoming and

GitHubInclusifier: Finding and fixing non-inclusive language in GitHub Repositories ICSE2024, April 14-20, 2024, Lisbon, Portugal

(A)

(B)

(C)

Figure 3: (a) Example problem, (b) summary, (c) suggested fix

respectful work environment. John is currently collaborating on a
software project with a diverse team of developers and contributors
from different walks of life. He is motivated to make the artefacts in
the GitHub repositorymore inclusive, as he is committed to creating
a virtual workspace where everyone feels valued and respected.

As a first step, John intends to find all instances of non-inclusive
language within the GitHub repository, a task that would be incredi-
bly time-consuming and daunting if done manually. Sifting through
every line of code and documentation, searching for non-inclusive
language, and suggesting replacements is impractical, given that
the repository contains over 10,000 lines of code and documenta-
tion. Thus, John decides to leverage GitHubInclusifier. Upon linking
the repository, GitHubInclusifier carries out comprehensive checks
for non-inclusive language on the repository’s artefacts, including
code files and documentation.

In addition to locating usages of non-inclusive language, GitHu-
bInclusifier also automates the process of reporting these usages as
a GitHub issue, as shown in Figure 3 (A). This can be seen by all the
repository’s collaborators as actionable items that can be addressed.
This streamlines the communication within John’s team and makes
the necessary changes more visible and manageable. For each file in
the repository containing non-inclusive language, GitHubInclusi-
fier provides a detailed report, highlighting instances and details of
such occurrences, as in Figure 3 (B). In the repository’s README
file, the racially charged terms ‘black-box’ and ‘native’ are found to
be used twice each, while the ableist term ‘cripple’ is used once, by
the Word-Boundary Pattern-Matching algorithm. The violent term

‘hang’ was identified once by the Sub-String Pattern-Matching al-
gorithm, however this was found to be a false-flag, as it occurred in
the word ‘changes’. GitHubInclusifier goes beyond simply pointing
out instances of non-inclusive language; it offers John suggestions
of alternative wordings, using a large language model (LLM) of his
choice - especially useful for altering documentation files. Using
the llama-7b LLM, John obtains suggestions for how to reword the
non-inclusive language instances found in the README file, as
illustrated in Figure 3 (C).

(B)

(C)

(A)

Figure 4: (a) Code analysis request, (b) issues detected, (c)
code refactorings made to fix issues.

For code files, GitHubInclusifier offers a code-specific report,
allowing John to pinpoint usages of non-inclusive language in such
a way that is tailored to the specific language. Within a number
of code files, a function containing the violent term ‘terminate’ is
located, while a variable named ‘abort_signal’ - also containing vio-
lent language - is found. Using GitHubInclusifier’s code refactoring
feature, as shown in Figure 4 (A), John asks to automatically remove
these non-inclusive language instances, without needing to man-
ually read or edit the code himself. GitHubInclusifier uses a third
party Python refactoring tool to do this refactoring, and generates
a commit and a pull request with a detailed report of the changes
(see Figures 4 (B, C)). This level of automation ensures that the
inclusive language improvements are integrated into the project,
and ensure that the problems identified within the repository can
be rectified with minimal effort on John’s part.

5 PRELIMINARY EVALUATION
GitHubInclusifier was evaluated by linking it to clones of four popu-
lar open source GitHub repositories – termux, bitcoin-wallet, brave

ICSE2024, April 14-20, 2024, Lisbon, Portugal Todd et al.

(a) techniques
Category WBPM# SSPM#

Ableist 41 177
Gendered 0 9
Violent 94 2018
Ageist 0 4
Racially charged 114 351
Biased 200 636
Military 1 1
Other 1 87

Total 451 3283

(b) bitcoin wallet
Term Occur. Files

normal 30 25
master 23 4
disabled 7 6
native 6 3
special 6 3
dumb 2 2
dummy 2 1
hit 2 2
terminate 2 1

(c) brave
Term Occur. Files

master 15 4
terminate 2 1
special 1 1

(d) pixel dungeon
Term Occur. Files

hit 39 22
kill 29 18
normal 27 7
cripple 24 10
special 17 10
disabled 4 2
crazy 3 2
dummy 3 1
terminate 2 1
master 2 2

(e) termux
Term Occur. Files

disabled 58 19
native 36 11
master 28 10
special 26 11
normal 23 13
kill 16 7
primitive 3 1
abort 2 2
dummy 1 1
slave 1 1

(f) terms
Term Category #

normal Biased 80
disabled Biased 69
master Racially charged 68
special Biased 50
kill Violent 45
native Racially charged 42
hit Violent 41
cripple Ableist 24
dummy Ableist 6
terminate Violent 6
crazy Ableist 4
primitive Racially charged 3

(g) bitcoin wallet
file name #

README.specs.md 21
bip39-wordlist.txt 11
CHANGES 8
COPYING 7
README.md 4
SendCoinsFragment.java 3
SendCoinsViewModel.java 3
strings.xml 2
strings.xml 2
FeeCategory.java 2
SweepWalletFragment.java 2

(h) brave
file name #

CONTRIBUTING.md 11
LICENSE 3
conf.py 2
PULL_REQUEST_TEMPLATE.md 1
package.json 1

(i) pixel dungeon
file name #

HighlightedText.java 12
LICENSE.txt 7
Wound.java 7
Char.java 6
ClassArmor.java 5
GrippingTrap.java 5
StartScene.java 5
PlantSprite.java 5
Hero.java 4
FloatingText.java 4
SpellSprite.java 4
WndBag.java 4

(j) termux
file name #

TerminalView.java 26
README.md 19
TermuxTerminalViewClient.java 15
LocalSocketManager.java 10
KeyboardUtils.java 10
AppShell.java 8
strings.xml 7
JNI.java 7
FileTypes.java 6
PackageUtils.java 5
ArgumentTokenizer.java 5

Figure 5: (a) # potential non-inclusive language found WBPM vs SSPM techniques; (b-e) most common non-inclusive words per
repo (WBPM); (f) most common non-inclusive terms overall (WBPM); (g-j) # non-inclusive terms per file per repo (WBPM)
and pixel dungeon – each with over three thousand stars, to per-
form a non-inclusive language analysis on the artefacts in each. The
goal was to see howmany instances of non-inclusive language were
identified by GitHubInclusifier in the repositories, to determine if
using GitHubInclusifier could assist in making a marked difference
to each one, through its suggestion and refactoring features.

Overall, GitHubInclusifier flagged 451 suspected occurrences
of non-inclusive language using the WBPM algorithm. 3,283 were
found by the SSPM algorithm, across the four repositories. The
most commonly identified type of non-inclusive language was bi-
ased language (200 occurrences), followed by racially charged (114
occurrences), violent (94 occurrences), and ableist (41 occurrences)
language byWBPM (see Figure 5 (i)). The most commonly identified
terms by WBPM were ‘normal’, ‘disabled’, ‘master’, ‘special’, and
‘kill’ (see Figure 5 (ii)). We manually checked these WBPM results
and all were true positives. Figure 5 (iii) shows a breakdown of
whole word matching approach found non-inclusive terms in each
of the four repositories. Figure ?? shows number of non-inclusive
words found by whole word matching per file (top number of occu-
rances only shown forWBPM technique). There is some variation in
the artefacts with potential non-inclusive language e.g. many .java
files in termux and pixel dugeon, but README, CONTRIBUTING,
CHANGES etc in bitcoin wallet and brave.

The same categories of non-inclusive language were most often
found by SSPM too, albeit in a different order (2018, 636, 351, and
177 occurrences of violent, biased, racially charged, and ableist
language, respectively). Terms ‘hang’, ‘kill’, ‘normal’, ‘special’, and
‘hit’ were most frequently found by the SSPM algorithm. However,
the very high frequencies of some of these terms is due to the fact
that they are substrings of other commonly used, not non-inclusive
terms, such as ‘hang’ being a substring of ‘change’. Thus in practice
the SSPM approach flags many false positives. However, it does pick
up many non-inclusive language examples, as shown in Figure 1, of

composite code names. Further refinement of our SSPM algorithm
could reduce false positives e.g. looking at only capitalised words
in class/method/variable names; underscore delimiters, etc, at the
risk of missing some true positive non-inclusive language.

We evaluated our Python refactoring tool on the above four
Python programs hosted in GitHub repositories, as well as GitHu-
bInclusifier’s own repository. When the user is offered a code refac-
toring change to class, method and property names, GitHubInclusi-
fier successfully applied these to all declaration and usage instances
in the whole programme and created a repository commit to reflect
these changes. However, it currently requires a separate user re-
quest to update code comments and related documentation artefacts
to reflect the code refactorings made.

6 SUMMARY
GitHubInclusifier is a proof of concept tool to aid detecting and
correcting use of non-inclusive language in a range of GitHub
repository artefacts, including code. The high incidence rate of
non-inclusive language within the evaluated repositories implies
that GitHubInclusifier could play a valuable role in improving these
virtual workplaces such that they are more welcoming, respectful
and inclusive to individuals from different walks of life. Our future
work includes more precise location of non-inclusive language,
supporting other language refactoring tools, making code and doc-
umentation updates in a single user request, refinement of LLM
prompts to aid suggestion of non-inclusive language usage, and
further repository artefact support for analysis.

Acknowledgements: Many thanks to Christian Marchetta and
Mohak Malhotra who implemented a preliminary inclusive lan-
guage README file checking algorithm in their 2022 FIT4003
project. Grundy and Todd were supported by ARC Laureate Fellow-
ship FL190100035.

GitHubInclusifier: Finding and fixing non-inclusive language in GitHub Repositories ICSE2024, April 14-20, 2024, Lisbon, Portugal

REFERENCES
[1] ACM. 2023. Words matter. https://www.acm.org/diversity-inclusion/words-

matter
[2] Sebastian Baltes, George Park, and Alexander Serebrenik. 2020. Is 40 the new

60? How popular media portrays the employability of older software developers.
IEEE Software 37, 6 (2020).

[3] Margaret Burnett, Anicia Peters, Charles Hill, and Noha Elarief. 2016. Finding
gender-inclusiveness software issues with GenderMag. In CHI2016.

[4] Amreeta Chatterjee, Mariam Guizani, Catherine Stevens, Jillian Emard, Mary Eve-
lyn May, Margaret Burnett, and Iftekhar Ahmed. 2021. AID: An automated
detector for gender-inclusivity bugs in OSS project pages. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 1423–1435.

[5] Google. 2023. Write inclusive documentation. https://developers.google.com/
style/inclusive-documentation

[6] Jane Hsieh, Joselyn Kim, Laura Dabbish, and Haiyi Zhu. 2023. " Nip it in the Bud":
Moderation Strategies in Open Source Software Projects and the Role of Bots.
Proceedings of the ACM on Human-Computer Interaction 7, CSCW2 (2023), 1–29.

[7] Renee Li, Pavitthra Pandurangan, Hana Frluckaj, and Laura Dabbish. 2021. Code
of conduct conversations in open source software projects on github. Proceedings
of the ACM on Human-computer Interaction 5, CSCW1 (2021), 1–31.

[8] Jennifer McIntosh, Xiaojiao Du, Zexian Wu, Giahuy Truong, Quang Ly, Richard
How, Sriram Viswanathan, and Tanjila Kanij. 2021. Evaluating age bias in e-
commerce. In CHASE2021.

[9] Microsoft. 2023. Bias-free communication. https://learn.microsoft.com/en-
us/style-guide/bias-free-communication

[10] Reza Nadri, Gema Rodríguez-Pérez, and Meiyappan Nagappan. 2021. On the
relationship between the developer’s perceptible race and ethnicity and the
evaluation of contributions in oss. IEEE TSE 48, 8 (2021).

[11] Hema Susmita Padala, Christopher Mendez, Felipe Fronchetti, Igor Steinmacher,
Zoe Steine-Hanson, Claudia Hilderbrand, Amber Horvath, Charles Hill, Logan
Simpson, Margaret Burnett, et al. [n. d.]. How gender-biased tools shape new-
comer experiences in oss projects. IEEE TSE 48, 1 ([n. d.]).

[12] Sayma Sultana, Asif Kamal Turzo, and Amiangshu Bosu. 2023. Code reviews in
open source projects: how do gender biases affect participation and outcomes?
EMSE 28, 4 (2023).

[13] Chih-Kai Ting, Karl Munson, SerenityWade, Anish Savla, Kiran Kate, and Kavitha
Srinivas. 2023. CodeStylist: a system for performing code style transfer using
neural networks. In AAAI, Vol. 37.

[14] Ewoenam Kwaku Tokpo and Toon Calders. 2022. Text style transfer for bias
mitigation using masked language modeling. arXiv arXiv:2201.08643 (2022).

[15] Christoph Treude and Hideaki Hata. 2023. She Elicits Requirements and He Tests:
Software Engineering Gender Bias in Large Language Models. In MSR2023.

[16] Bianca Trinkenreich, Igor Wiese, Anita Sarma, Marco Gerosa, and Igor Stein-
macher. 2022. Women’s participation in open source software: A survey of the
literature. TOSEM 31, 4 (2022).

https://www.acm.org/diversity-inclusion/words-matter
https://www.acm.org/diversity-inclusion/words-matter
https://developers.google.com/style/inclusive-documentation
https://developers.google.com/style/inclusive-documentation
https://learn.microsoft.com/en-us/style-guide/bias-free-communication
https://learn.microsoft.com/en-us/style-guide/bias-free-communication

	Abstract
	1 Introduction
	2 Motivation
	3 Our Approach
	3.1 Inclusification Process
	3.2 GitHubInclusifier Implementation

	4 Usage Example
	5 Preliminary Evaluation
	6 Summary
	References

