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Abstract—API developers have been working hard to evolve
APIs to provide more simple, powerful, and robust API libraries.
Although API evolution has been studied for multiple domains,
such as Web and Android development, API evolution for deep
learning frameworks has not yet been studied. It is not very
clear how and why APIs evolve in deep learning frameworks,
and yet these are being more and more heavily used in industry.
To fill this gap, we conduct a large-scale and in-depth study on
the API evolution of Tensorflow 2, which is currently the most
popular deep learning framework. We first extract 6,329 API
changes by mining API documentation of Tensorflow 2 across
multiple versions and mapping API changes into functional
categories on the Tensorflow 2 framework to analyze their API
evolution trends. We then investigate the key reasons for API
changes by referring to multiple information sources, e.g., API
documentation, commits and StackOverflow. Finally, we compare
API evolution in non-deep learning projects to that of Tensorflow
2, and identify some key implications for users, researchers, and
API developers.

Index Terms—API evolution, API documentation, Deep learn-
ing, Tensorflow 2

I. INTRODUCTION

API libraries have always played an important role in
efficiently writing programs. To provide simple, powerful, and
robust API libraries, API developers continually attempt to
evolve their APIs. Researchers have investigated API evolution
in various domains, e.g., Web API [1], [2] and Java API [3].
Dig et al. [4] found that over 80% of breaking changes
are refactorings, and suggested to develop refactoring-based
migration tools. Brito et al. [3] found that 39% of breaking
change candidates may affect clients, and the motivations
are to support new features, simplify the APIs, and improve
maintainability.

Currently, deep learning has attracted widespread attention
and made major breakthroughs in many fields, e.g., computer
vision [5], natural language processing [6] and software en-
gineering [7], [8]. Several popular deep learning frameworks
have emerged, and many versions have been released. How-
ever, API evolution in deep learning frameworks has not been
investigated. There is no clear picture of how and why APIs
evolve in deep learning frameworks.
§Corresponding author.

To fill this gap, we conduct a case study of API evolu-
tion on Tensorflow 2. Tensorflow is the most popular deep
learning framework on Github [9]. Specifically, the number
of Github projects using Tensorflow is 89,918 before 1th
September, 2020, which is more than that of other deep
learning frameworks (e.g., PyTorch [10] and Theano [11]),
and the number of stars in Tensorflow is about 150, 000,
which is the largest among all deep learning frameworks.
Moreover, TensorFlow 2 is a major leap from the existing
TensorFlow 1 with the following key differences: ease of use,
eager execution, intuitive higher-level APIs, and flexible model
building on any platform [12].

Prior studies on API evolution have three limitations. First,
their research objectives are limited. Specifically, they do not
consider many versions of API evolution [1], or they only
focus on a specific category of API changes, e.g., deprecation
and compatibility [13], [14]. Second, they omit some API
changes, e.g., some studies mainly extract syntax of API
changes without considering code changes with the same
API signatures [15], [16], [1]. Other researchers extract API
changes based on API artifacts, e.g., release notes, which only
contains some API changes and some descriptions are too
short to understand [4]. Finally, they ignore the reasons for
API evolution but mainly focus on how API changes affect
programs [16] and reflect on software artifacts [1].

To alleviate the above limitations, we propose to mine
API changes based on API documentation of all versions on
Tensorflow 2 to ensure consideration of more API changes
than release notes and change logs. Also, API documentation
contains rich information, e.g., API declaration and description
of the function, parameter, and return value. Therefore, we
can extract syntax API changes based on API declaration and
more code changes from their natural language descriptions
than prior studies. Moreover, Tensorflow API documentation
offers the link to API source code. We can localize commits
that are related to API changes, which can help us analyze the
reason for API changes.

In this paper, we mine 6,329 API changes based on API
documentation of all versions on Tensorflow 2. And then we
associate these API changes with Tensorflow 2 framework



by classifying different modules into 6 functional categories
with card sorting approach [17], which is because Tensorflow
uses modules to aggregate APIs with similar functions. Then,
we analyze reasons for API changes by referring to multiple
information sources (e.g., commits and StackOverflow) and
classify 10 reasons based on card sorting approach. Our study
finds the number of API additions is increasing and the number
of API deletions is decreasing with the update of API version.
And the major API changes are related to low-level APIs of
Tensorflow (e.g., data structures and error handling) [18] and
model-related APIs (e.g., model training and evaluation) [19].
Furthermore, the main reasons for API changes are efficiency
and compatibility.

We also discuss the difference between non-deep learning
projects and deep learning framework-Tensorflow 2. Then, by
analyzing the data distribution of the reasons for API changes,
we find Tensorflow 2 makes changes to better support de-
bugging, ease-to-use high-level APIs to quickly develop deep
learning programs, and high-performance APIs to accelerate
program runtime. Moreover, we analyze one potential problem
and suggest that API developers consider migrating Keras into
Tensorflow entirely in the future to prevent unexpected errors
of "tf.keras" module. Finally, we find 3 common problems in
API documentation and provide corresponding suggestions for
researchers.

This work makes the following key contributions:
• To the best of our knowledge, we are the first to conduct a

case study of API evolution in deep learning frameworks.
• We perform quantitative studies to classify API changes

and investigate the reasons for API changes.
• We find differences between non-deep learning projects

and a deep learning framework-Tensorflow 2, and provide
practical implications for users, API developers, and
researchers.

II. MOTIVATION

Deep learning has made breakthroughs in many areas of
software engineering, such as code search [8], defect predic-
tion [20], and code migration [7]. However, it is difficult for
developers to write an effective deep learning program from
scratch. One reason is that deep learning requires programmers
to have a certain mathematical foundation. Another is that
deep learning programs involve multiple stages (e.g., data
preparation, model setup and model training), a wide variety
of layers (e.g., convolutional layer, pooling layer and fully
connected layer), massive hyperparameters (e.g., learning rate
and batch size), etc.. To overcome these difficulties, many
deep learning frameworks provide high-level APIs, support
distributed computing, and offer friendly debugging tools for
users.

Tensorflow is a popular deep learning framework and con-
tains substantial APIs to help users develop deep learning
programs. Figure 1 presents the framework of Tensorflow
2 1. Core Tensorflow supports distributed running on multiple

1http://tiny.cc/pt2zsz

High-level APIs

Abstraction Layer

Core TF
(distribution)

CPU GPU

TPU

SavedModel

Tensorboard

TF Serving
(Cloud, on-prem)

TF Lite

TF JS

(Android, iOS)

(Browser, Node)

Fig. 1: Tensorflow Framework

devices (e.g., CPUs, GPUs and TPUs). The next layer is the
abstract layer, which provides components for users to build
neural network models, and set metrics and losses for model
evaluation. The third layer contains high-level APIs, e.g., keras
and estimator, to help users construct and train models quickly.
When there is a model, Tensorflow now standardizes the Saved
Model, which can run on a variety of runtimes, e.g., cloud, web
browsers ,and mobile devices. Besides, Tensorflow provides
tensorboard to help users to analyze programs visually. For
example, users can see metrics in real-time during training.

Given its widespread popularity in industry, we wanted to
answer the following two research questions about Tensor-
Flow:
• RQ1: How do API changes evolve on Tensorflow 2?

Prior studies investigated the API evolution of non-deep
learning projects. To understand the API evolution of deep
learning framework-Tensorflow 2, we mine different API
changes (e.g., API addition) and then map API changes into
Tensorflow 2 architecture.
• RQ2: What are reasons for API evolution on Tensorflow
2?

Prior studies analyzed reasons for few API changes in non-
deep learning projects. To analyze the reasons for many API
changes in Tensorflow 2, we use card sorting approach to
make classification. In this way, users can understand and
use Tensorflow 2 better and help developers can evolve APIs
better.

III. METHODOLOGY

A. Data Collection

Previous API evolution works mainly analyzed the syntax
changes of API declaration, which omits code changes of APIs
with the same API declaration. Since Tensorflow API doc-
umentation contains description of the function, parameters,
and return value, we can find code changes by comparing
the description between the two consecutive versions, such
as changes in functions and types of parameters and return
values. Particularly, Tensorflow has APIs available in several
languages, e.g., Python and Java, but Python API is at present
the most complete and the easiest to use 2. Therefore, we

2http://tiny.cc/emmzsz
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Note: V1 and V2 are two adjacent API versions, A1 is “API addition”, A2 is “API
removal”, A3 is “API name’s modification”, A4 is “API move”, B1 is “Parameter
addition”, B2 is “Parameter removal”, B3 is “Parameter name’s modification”, C1 is
“Parameter description’s modification”, C2 is “Method description’s modification”, C3

is “Return value’s modification”.

extract API changes based on Python API documentation of
all versions (i.e., version 2.0 to 2.3) on Tensorflow 2 [21].

B. Mining API changes

By reading a range of API documentation, we find it
mainly contains API declaration and description of methods,
parameters and return values. Thus we focus on mining 10
types of API changes.

Figure 2 illustrates our API mining process. Below we ex-
plain concrete concepts using the “tf.Tensor.set_shape (shape)”
API as an example. The API full-qualified name consists
of module name, class name and API name, corresponding
to “tf”, “Tensor”, “set_shape” respectively. API declaration
consists of API full-qualified name and parameter lists.

We first mine descriptions of modifications to method,
parameter, and return value, based on the difference of the
corresponding descriptions with the same API declaration of
two APIs in V1 and V2. This can reflect code changes with the
same API declaration of two APIs. Next, we extract parameter-
related changes by finding different parameter names with the
same API full-qualified names in V1 and V2. We first compare
their parameter descriptions in adjacent versions, if parameter
descriptions are same, the corresponding parameter pairs are
parameter names’ modification. Otherwise, we determine the
corresponding parameter category according to which version
the parameter name appears in. Finally, for remaining APIs,
we mine API name-related changes based on API name.
Specifically, if there are API pairs with the same API names,
they are API move. For remaining API-name related changes
(i.e., API addition, API removal and API name’s modification),
the approach is the same as the approach of mining parameter-
related changes. According to the process, we mine a total of
6,329 API changes.

C. Mapping API changes

After mining the API changes, we map them onto the
Tensorflow 2 framework. Tensorflow uses modules to aggre-
gate APIs with similar functions, so we can make functional
categories based on all modules of Tensorflow 2. One author
refered to Tensorflow 2 architecture in Figure 1 and topics of
deep learning [19] to divide all modules into different cate-
gories. Another author then verifies the information and then

provides suggestions for improvements. After incorporating
suggestions, the two authors discuss to reach an agreement.
We classify API changes into 6 functional categories in the
Tensorflow 2 framework:

(1) Model-related changes: API changes that are related to
deep learning that do not depend on any programming
framework. Specifically, it includes the stacking of various
layers, parameters initialization, neural network operations
(loss, activation, and optimization function), training, testing,
predicting, evaluating, loading and saving models (e.g., tf.keras
and tf.nn) [19], [22].
(2) Data processing-related changes: API changes that in-
volve data-related operations before the model training phase.
It contains data reading and data preprocessing (e.g., tf.data
and tf.io) [23].
(3) Framework-related changes: API changes are related to
low-level APIs of the Tensorflow 2 framework. Different
deep learning frameworks may design and implement different
APIs, or users do not commonly use these APIs. However,
these APIs are the foundation that users write and run deep
learning programs. It contains the data type and structure,
error handling, testing and debugging, basic configuration
information, and raw mathematical calculation (e.g., tf and
tf.math). [18], [21]
(4) Utility-related changes: API changes that are related to
summarizing and analyzing deep learning programs (e.g.,
tf.summary and tf.profiler). [18]
(5) Distributed computing-related changes: API changes
that are related to distributed computing from multiple CPUs,
GPUs and TPUs (e.g., tf.distribute and tf.tpu) [24].
(6) Deployment-related changes: API changes that concern
the deploying of Tensorflow models on mobile, embedded, and
IoT devices in tf.lite module [25].

D. Identifying reasons for API changes

1) Information sources for change reasons: When analyz-
ing API changes, we find it is not enough to obtain reasons
only from API documentation. We identify the reasons for
API changes from the following six information resources:
Tensorflow API documentation, commits, issue reports, pull
requests, Tensorflow community, and StackOverflow.

When extracting API changes from the previous version
to the current version, we first read API documentation to
analyze reasons. If the description is not enough to infer
reasons, we use code links in the API documentation to
localize commits related to API changes. As commit messages
may mention issues or pull requests, we also refer to the
information to analyze reasons. If the information is still not
enough to give the reason, we manually find related questions
in StackOverflow or Tensorflow community [26].

2) Reason categories for API changes: Since there are no
predefined reason categories for API evolution, we use a card
sorting approach [17] to identify the reason types of API
changes. There are two iterations and we used two evaluators.



TABLE I: An example of the reason for an API change
tf.linalg.matvec
Method description change:
2.0: ...we must have shape(b) = shape(a)[:-2] + [shape(a)[-1]]...API change

2.1: ..., and shape(a)[:-2] able to broadcast with shape(b)[:-1]...
A1 annotation correct false constraint information that doc is inconsistent with code
A2 annotation “must have” information is wrong because 2.0 version supports broadcast

Iteration 1: In the first iteration, we randomly sample 362
API changes 3 to make reason categories. There are two steps:
Step 1 Annotation of reason: Two authors separately anno-
tate the reason with a short description. For example, Table I
shows the two authors’ annotations about changes of the
method description of “tf.linalg.matvec” API from version 2.0
to 2.1. Then, two authors discuss the disagreements to reach
an agreement.
Step 2 Reason category for API changes: They work to-
gether to group all annotations, and then give the two types
of information for each group: category and corresponding
definition, which are inspired by the quality attributes of
software systems [27].

Iteration 2: In the second iteration, two of the authors
independently annotate API changes with reason categories.
If there are no existing categories that can cover new API
changes, they annotate the API changes with reason an-
notations. After gathering all reason annotations, they find
that there are no new categories. We use Cohen’s Kappa
measure [28] to examine the agreement between the two
authors. The Kappa value is 0.87, which indicates a high
agreement between two authors. Then, two authors discuss
the disagreements to reach an agreement.

IV. RESULTS

A. RQ1 Classification of API Changes

Table II shows the numbers of the 10 types of API changes
for two consecutive versions. There are 6,329 API changes in
total from version 2.0~2.3. As the version updates, the total
number of API changes increases, the number of API additions
increases, the number of API removals descreases, and the
number of other types of API changes fluctuates.

We explain notable API changes in all versions. API addi-
tion accounts for 39% of changes from version 2.1~2.2. By
examining the API changes, we find many APIs were added
into the “tf.raws” module that contains raw operations used by
Tensorflow library writers. This accounts for 58% of changes
from version 2.2~2.3 because a third-party library “NumPy”
is integrated into the Tensorflow framework as “Tnp”. API
removal accounts for a large portion from version 2.0~2.1
because developers hide many APIs from the documentation.
There are no API name modifications, which is reasonable
because the change can affect users’ usages. The proportion
of API move is generally relatively small. We find that most of
APIs are moved from experimental APIs into stable APIs, e.g.,
“tf.random.experimental.get_global_generator” is moved to
“tf.random.get_global_generator”. The number of Parameter

3the sample size are statistically significant with a confidence level of 95%
and a confidence interval of 5

TABLE II: The number of Tensorflow 2 API changes from
version 2.0 to 2.3

Version A1 A2 A3 A4 B1 B2 B3 C1 C2 C3 Total
2.0~2.1 142 200 0 21 23 8 0 101 186 50 731
2.1~2.2 1489 16 0 20 276 94 0 508 176 136 2715
2.2~2.3 2222 10 0 10 83 8 4 327 164 55 2883

TABLE III: The numbers of functional categories of API
changes based on Tensorflow 2 framework from version 2.0
to 2.3

Version Model Data Utility Distribute Tensor Deployment Total
2.0~2.1 348 186 1 22 174 1 732
2.1~2.2 686 325 9 152 1543 0 2715
2.2~2.3 267 259 7 108 2240 1 2882

Total 1301 770 17 282 3957 2 6329

removal from version 2.1~2.2 is larger than other phases, be-
cause developers fold Keras into Tensorflow, which also leads
to an increase in Parameter addition from version 2.1~2.2, e.g.,
“*args” parameter of “tf.keras.applications.Xception” is re-
placed with parameters of the same API of Keras. The number
of Parameter addition from version 2.1~2.2 is larger than other
phases because developers make an extension for old APIs and
the reason above for folding Keras into Tensorflow. Besides,
Parameter name’s modification accounts for a low percentage.
The percentage of Parameter description’s modification from
version 2.1~2.2 is larger than other phases because developers
modify and supplement description in Dataset and Keras. The
distribution of Method description modification in multiple
phases is even. The percentage of return value’s description
from version 2.1~2.2 is also higher than other phases because
developers supplement the description in Keras and Estimator.

Table III depicts the numbers of distributions of the func-
tional category of API changes based on the Tensorflow
framework from version 2.0 to 2.3. “Model-related”, “Data
processing-related” and “Framework-related” APIs are con-
stantly evolved in all versions, account for 21%, 12% and
63% respectively; “Distributed computing-related”, “Utility-
related” and “Deployment-related” API changes account for
less than 5%. Specifically, “Model-related” changes are focus
on high-level APIs in “keras” and “estimator” modules, which
involve various operations such as components for building
neural networks, training, testing, predicting, and evaluating
models. And the portion of “Model-related” API changes
in 2.1~2.2 is higher than other phases because developers
mainly improve APIs of existing models (e.g., resnet); “Data
processing-related” changes focus on data preprocessing such
as data transformation, shuffling, splitting, and augmenta-
tion; “Distributed computing-related” changes mainly focus
on supporting distributed running on TPUs; “Framework-
related” changes are mainly low-level APIs for developers and
numerical computation; “Utility-related” changes mainly focus
on helping users analyze programs visually; “Deployment-
related” changes are only two about mobile devices and
embedded devices.

By analyzing all API changes, we find Tensorflow API
developers are creating a more friendly framework for users



and developers. Specifically, to improve usability, they contin-
ually improve high-level APIs (e.g., Keras and Estimator); To
provide convenience for developers, they group low-level APIs
into specific modules such as "tf.raw_ops". In API evolution,
they avoid making API changes (e.g. API name’s modification
and move) that can affect users in different versions, and
continually improve the documentation quality.

B. RQ2 Reasons for API Changes

Table IV presents the distribution of reasons for differ-
ent API change categories. “Efficiency” and “Compatibility”
account for a large portion about 54%; “Convenience” and
“Robustness” only account for less than 1%, other reasons
account for 44%. We explain the 10 reasons for Tensorflow
API evolution in detail.
1. Efficiency: API changes are for accelerating program
runtime or saving resources. Developers mainly introduce
third-party libraries or support distributed running to improve
efficiency. The major functional category of the reason is
framework-related change.

When users write deep learning programs, they usually
need to use computation-related APIs such as customiz-
ing loss functions [29] or layers of neural networks [30].
Although users can use APIs of “Numpy” (np) that is a
popular and strong computation tool such as “np.random”
and “np.linspace”, the efficiency is limited for deep learning
programs. Since deep learning needs massive data, calculation
and iterations, it takes a longer time than traditional programs.
To solve the problem, developers integrate many APIs of “np”
into Tensorflow as “Tensorflow NumPy” (Tnp). “Tnp” per-
forms many compiler optimization and uses highly optimized
Tensorflow kernels [31], which can make programs that use
“np” run faster.

Google develops Tensor Processing Unit (TPU) to accel-
erate machine learning workloads for Tensorflow [32]. To
support distributed running on TPUs, developers continually
develop related APIs from Tensorflow API version 2.0 to 2.3.
Specifically, developers add initialiation-related classes such
as “TPUClusterResolver” to connect a remote cluster and
initialize TPUs. And then they add “TPUStrategy” class to
distribute data on TPUs. Besides, developers add many APIs
to support custom distributed training. For example, users can
use “TPUStrategy.run” API to define their own functions 4.
Finally, developers make existing functions run on TPUs. For
example, they add “TPUEmbedding” class to support large
embedding that turns data into vectors on TPUs.
2. Convenience: API changes are for helping programmers
analyze, configure or debug programs. The major cate-
gories of the reason are framework-related and utility-related
changes.

If deep learning programs produce problems such as low
performance and wrong or poor results, it is more difficult for
developers to analyze deep learning programs than traditional
programs because deep learning programs have lots of layers,

4http://tiny.cc/gt2zsz

neurons and parameters. To overcome the difficulty, developers
continually add a series of APIs to show various program
states in a visualization way. For example, developers add
the “tf.profiler.Trace” class to show a timeline of durations
of Tensorflow operations or functions, and which part of the
system executed an operations. In this way, users can easily
observe problematic operations or functions that influence
performance, and then solve problems faster.

Developers develop a number of compilers and optimizers to
improve performance, so they need to add many APIs to help
users conveniently configure programs, or get the configure
information. For example, they add “is_built_with_xla” API
in version 2.2 to help users know whether the program
uses accelerated linear algebra (XLA) to speed linear alge-
bra computation. Besides, to bridge heterogeneous ecosys-
tem, they develop a multi-level intermediate representation
(MLIR), which leads to the emergence of new APIs of
supporting MLIR optimization. For example, developers add
“enable_mlir_graph_optimization” API in version 2.3 to turn
on MLIR function.

Tensorflow at first requires users to build a graph and then to
create one session to execute programs. It is very inconvenient
especially when users write a big model and need to directly
get results of programs without creating sessions. To solve
the problem, developers introduce eager execution that is an
imperative environment to evaluate operations immediately.
So, users can directly get results and use Python debugging
tools to debug programs. The new mode makes developers
add new APIs to support the eager execution of features.
For example, developers add “tf.config.run_functions_eagerly”
API in version 2.3 to make users use “tf.function” in an eager
execution instead of a graph function.

3. Powerfulness: API changes are for enriching APIs
with new functionalities to meet the different needs of
developing programs. The major categories of the reason are
framework-related, model-related and data-related changes.

API developers continually add attributes to existing classes
such as various data structures and mathematical functions.
For example, developers at first do not contain the length
attribute in “tf.data.Dataset” class. As a result, many users
propose that how to get the dataset size 5 and then de-
velopers add “tf.data.Dataset.__len__” API in version 2.3.
Actually, the attribute is common to many classes of object-
oriented languages (e.g., Java classes). However, Tensorflow
API developers initially ignore the attribute. The similar cir-
cumstances that classes lack important attributes are common
in Tensorflow, i.e., Tensorflow also adds getting eigenvalues
and condition number in the matrix computation. On the
other hand, API developers add a variety of functionalities to
meet the different needs of users. For example, deep learning
requires lots of data sets, but large size of data is not easy to
come by. To allievate the problem, developers add many image
preprocessing methods to augment datasets. Also, initialization

5http://tiny.cc/pl2zsz



TABLE IV: The numbers of reasons for API changes within different functional categories

Efficiency Convenience Powerfulness Robustness Expandability Compatibility Completeness Conciseness Correctness Friendliness
Model 1 2 116 7 75 26 390 219 349 103
Data processing 28 0 81 7 82 81 277 72 136 6
Utility 0 10 3 0 13 0 2 0 2 0
Distribution 79 1 0 1 31 30 47 10 83 0
Framework 1872 20 247 3 76 1318 169 6 212 34
Deployment 0 0 0 0 1 0 1 0 0 0
Total 1980 33 447 18 278 1455 886 307 782 143

of weights can affect performace, so developers add many
random functions for users to choose.

Although there are APIs to help users implement certain
functions, sometimes users need easier APIs to implement the
same functions. For example, initializing weights are important
parts of deep learning. Before version 2.3, if users want to
initialize the weights with one external model, they need to
use the constructor to initialize these parameters, which is
troublesome and error-prone. Therefore, developers add the
“from_config” API in version 2.3 for users to instantiate
weights by importing the configuration of models directly.

Users not only need high-level APIs to build models quickly,
but also need to customize functions. Therefore, developers
add many APIs to support flexibility. For example, develop-
ers add “tf.keras.Sequential.train_step” API in version 2.2 to
support custom many training logics, e.g., metrics updates and
loss computation.

4. Robustness: API changes are for handling various wrong
input or negative circumstances. The major categories of the
reason are model-related and data-related changes.

Deep learning programs usually have many hyperparameters
(e.g., mean value in normal distribution), but users sometimes
only need or know a few hyperparameters. To solve the
problem, developers set parameters to default values as much
as possible. Therefore, the program can still run normally
when users ignore unfamiliar parameters. For example, in
version 2.2, developers set default value of “padded_shape”
parameter in “tf.data.Dataset.padded_batch” API as “None”.
When users do not set the parameter, programs will automat-
ically pad all dimensions of all components to the maximum
size. On the other hand, users know there are errors in deep
learning programs, but they expect programs to ignore errors
and continue running. Therefore, developers add parameters
for users to select whether skipping errors. For example,
when users use “tf.keras.Sequential.load_weights” API to load
weights and the shape of some layers’ weights is not consistent
with their models, they want to skip these mismatched layers.
Hence, users can set “skip_mismatch” parameter added in
version 2.1 to make sure the program can run.

When training models, optimization may take a long time
to find a satisfactory result. If the program is interrupted, the
model needs to be retrained, which will waste a lot of time.
Therefore, developers need to backup some important and
necessary information. For example, developers add “Back-
upAndRestore” class in version 2.3 to make models restored
to a previous checkpoint from interruptions.

5. Expandability: API changes are for making extensions
based on the original API code instead of writing APIs

from scratch. The major difference between powefulness and
expandability is that powerfullness leads to the emergence of
new features, which does not depend on the original APIs,
while expandability is to make extensions to original APIs. We
find developers make non-functional extensions and functional
extensions.

For the non-functional extension, on the one hand, the
emergence of new technologies (e.g., distribution and eager ex-
ecution) has led to API changes. For example, distributed com-
puting support data run and stored on many devices, so users
need to specify devices to load data. Under the circumstances,
developers generally add parameters into original APIs to sup-
port distributed setting. For example, developers add “option”
parameter for the “tf.keras.Sequential.load_weights” API in
version 2.3. With the “option”, users can specify a device
they want to load model weights. On the other hand, it is for
expanding the original APIs’ function scope, e.g., supporting
more data types or operations on multiple dimensions. In this
case, developers generally do not change API declaration, but
they need to add the related description of the method, param-
eter, and return value to clarify code changes. For example, in
version 2.3, the “x” parameter in “tf.test.compute_gradient”
API also supports tuple data type, so developers add the
parameter’s description for the information.

For the functional extension, although developers provide
certain functions, the options of function are limited to meet
the needs of users, e.g., not supporting adjusting learning
rate, explicit padding and grouped convolution. An example
is that users have the requirements of grouped convolution
for convolution operations because it can reduce computation
cost [33] and also help people easily migrate from Caffe to
Tensorflow 6. Therefore, developers add “groups” parameter
into “tf.keras.layers.Conv3D” API to support the function.

6. Compatibility: API changes are for supporting different
platforms, systems, devices, and API versions. The major
categories of the reason are framework-related and data-related
changes. We find there are mainly backward compatibility and
forward compatibility.

Backward compatibility is to make changed APIs in new
versions that could normally run on old versions. When
developers make API changes in API evolution, they gen-
erally consider whether changed APIs can run on the old
version. Otherwise, users have to manually modify the old
version’s code to adapt to the new version, which is time-
consuming and laboursome. For example, when developers
add one “tf.data.TFRecordDataset.__len__” API, they also add

6http://tiny.cc/xl2zsz



one “__len__” API in “tf.compat.v1.data.TFRecordDataset”
class so that users can use the new API in previous versions.

Forward compatibility is to make APIs in the current version
can also run on future versions. In this way, users and devel-
opers can directly reuse these APIs in the future. For example,
developers add the lowest APIs into “tf.raw_ops” module that
never change semantic. Such stable APIs are convenient for
developers to develop library APIs. And separately adding the
module can make users automatically enjoy the benefits of
optimized APIs. For example, both “tf.math” and “tf.raw_ops”
contains the “Add” API. Since the module will not change
the semantic of APIs, so developers add “tf.raw_ops.AddV2”
API to make optimization. If they do not add the module
but directly add the API in “tf.math” module, users who use
the “Add” API cannot automatically enjoy the optimization
benefits.
7. Completeness: API changes are for supplementing miss-
ing or important information. Without the information, users
cannot obtain the information from documentation because
previous documentation does not contain the information. The
major categories of the reason are model-related, data-related
and framework-related changes. We find developers mainly
supplement three types of information in API documentation.

Developers usually supplement information about specific
values of parameters. First, they supplement parameters’ de-
fault values in the parameter description. Second, for pa-
rameters with a fixed set of options, developers clarify all
options. For example, developers add the description-“supports
batch_shape and batch_input_shape” for “**kwargs” parame-
ter of “tf.keras.Input” API in version 2.1. In this way, users
can see options parameters support to prevent from using
non-existent options. The last is that they specify specific
values and corresponding meaning for parameters with a
group of constant values. For example, the “value” parameter
of “tf.keras.backend.learning_phase_scope” API only has 0
and 1. Developers supplement description-“0=test, 1=train” to
make users know the specific meaning of parameter values.

Developers often supplement function-related information
to make users clearly know the function of APIs. Developers
usually explain the specific behavior of APIs on specific
cases. For example, for “tf.Tensor.__div__” API in version
2.3, developers add description-“if x and y are both integers,
then the result will be an integer”, to stress it is integer
division. On the other hand, developers add additional notes
to prevent users from inefficient or wrong usages of APIs.
For example, “tf.keras.layers.Lambda” API can make users
write arbitrary function as a layer. In version 2.1, developers
add the description-“while it is possible to use Variables with
Lambda layers, this practice is discouraged as it can easily
lead to bugs”, to advise users not to use the API but to write
a subclass layer for complex and state computation to avoid
bugs 7

Developers also add other important information, e.g., sup-
plementing important attributes and constraints of values,

7http://tiny.cc/8s2zsz

- @keras_modules_injection                                                                 
- def ResNet101(*args, **kwargs):                                                       
-    return resnet.ResNet101(*args, **kwargs)                                                               

+ def ResNet101(include_top=True,..., classes=1000): 
+ """Instantiates the ResNet101 architecture."""

...  
- from keras_applications import resnet   

Fig. 3: API changes for resnet API
value range and datatypes parameters support, purposes and
benefits of APIs, and variables’ changes APIs can bring. For
example, developers add description-“this must be a floating
point type” for “t” parameter of “tf.clip_by_norm” API in
version 2.3 to clarify the constraints.
8. Conciseness: API changes are for removing redundant
or useless information, or modifying tedious information.
The major category of the reason is model-related change.
We find developers mainly integrate Keras to Tensorflow and
deprecate some APIs.

Previous Tensorflow API developers write implementation
by mixing up Tensorflow and Keras. Now, they are replacing
Keras with the “tf.keras” module, which can simplify the
complexity of code. For example, Figure 3 describes that de-
velopers change the way of keras_modules_injection decorator
into implementing detailed code such as specifying parameters
of “resnet101” in version 2.28 because it is unnecessary to
share the implementation in Keras and “tf.keras” module.

We observe that developers generally deprecate some APIs
to recommend users to use other existing APIs because other
APIs also implement the same or similar functions. Such API
changes can remove redundant APIs and help users prevent
confusion about similar APIs. For example, the “fit” API and
the “fit_generator” API are both to train models. Users previ-
ously raised confusion about the difference between the two
APIs on StackOverflow 9 and found the difference is small-
the “fit” API does not support generator but “fit_generator”
supports. To avoid the confusion, developers made “fit” API
support generator. Then, developers deprecated “fit_generator”
API in version 2.1 to keep simplicity.

9. Correctness: API changes are for fixing errors, modi-
fying unreasonable API information, or updating obsolete
information. The major categories of the reason are model-
related, framework-related and data-related changes. We find
developers mainly use three ways to correct mistakes.

Developers can wrongly expose some APIs in the documen-
tation. On the one hand, these APIs are outdated APIs. For ex-
ample, “tf.distribute.StrategyExtended.non_slot_devices” API
is hid in Tensorflow 2.3 because it is only a Tensorflow
1 API. On the other hand, developers wrongly expose
some APIs of subclasses from the base class. For example,
“tf.keras.callbacks.ReduceLROnPlateau.on_batch_end” API is
inherited from the “tf.keras.callbacks.Callback” class, but it is
exposed to version 2.0. So, developers hide the API from the
documentation.

8http://tiny.cc/bs2zsz
9http://tiny.cc/gs2zsz



In API evolution, developers find they wrongly place APIs
into improper modules, so they move them into proper mod-
ules. They generally check based on whether the API in the
module is functionally similar to many APIs on another mod-
ule. For example, the “tf.image.encode_png” API is moved
to the “tf.io” module because the module contains substantial
encoding APIs. On the other hand, when developers integrate
APIs of the third-party libraries into Tensorflow, they check
whether the current APIs conform to norms of APIs of third-
party libraries. For instance, Keras has various initializer
classes, and Tensorflow developers reimplement them due to
technical details. They at first placed them into other modules,
which make these classes disconnect with Keras. To correct the
error, they move initializer classes into the “tf.keras.initializer”
module.

We find developers often provide wrong information in
description of methods, parameters and return values. One
particularly frequent error is about the description of data
type. Developers at first roughly describe data type in API
documentation, and then they begin precisely describe the
information. For example, "x" parameter description about
data type in “tf.Variable.__and__” API from version 2.2
is “Tensor”, developers correct it as “tf.Tensor” in version
2.3. On the other hand, the original data type is out-
dated. For example, in version 2.2, the “iterator” parame-
ter type of “tf.data.experimental.get_next_as_optional” API
is “tf.data.DataSet”, but it is updated to “tf.data.iterator” in
version 2.3. So, the parameter description is be modified
accordingly. Besides, outdated information also exists in func-
tion description. For example, developers modify method
description of “tf.linalg.matvec” API-“...shape(a)[:-2] able to
broadcast with shape(b)[:-1]” into “tf.linalg.matvec...” in ver-
sion 2.1 because the broadcast mechanism has be supported
very early, but developers forget to update the information in
documentation.

10. Friendliness: API changes are for programmers to
understand better, remember, and use APIs by adding
auxiliary information. Specifically, documentation does not
lack the information, but adding information can help users un-
derstand better. The major categories of the reason are model-
related and framework-related changes. We observe developers
mainly supplement two types of reference information to help
users further understand the function and usage of APIs.

The first is to add code examples with run results10. In this
way, users can intuitively know how to use these APIs and
can easily use the code examples by copying and pasting.
The second is to add links of paper, Wiki and other APIs to
help users further understand the APIs in depth. For example,
developers add links of other APIs into the description of
“tf.ones” API because they represent similar functions 11. In
this way, users can not only employ previous experience to
understand the API and also use the link to understand more
similar APIs.

10http://tiny.cc/ms2zsz
11http://tiny.cc/qs2zsz

V. DISCUSSION

A. Comparison With Non-Deep learning projects

Our study analyzes API evolution in the Tensorflow 2
framework by mining different types of API changes and
analyze their reasons. Prior studies investigate API evolution
on non-deep learning projects from their perspectives. So we
inspect their differences and similarities between deep learning
frameworks and non-deep learning projects.

For breaking changes that break backward compatibility
(i.e., API removal and move, parameter addition, and removal),
non-deep learning projects account for about 28% [34], Ten-
sorflow 2 frameworks account for about 12%, which shows
Tensorflow API developers pay more attention to avoid making
breaking changes.

For reasons for API changes, Rediana et al. [1] and Brito
et al. [3] investigated reasons for API evolution on DHIS2,
which is an open source and web-based health management
system, and on Java libraries and frameworks respectively.
We find that the reasons they raised do not involve conve-
nience and compatibility. Specifically, for convenience, since
deep learning programs have lots of iterations, layers, and
parameters, and their results are uncertain, it is difficult to
find problems by only observing a program point. For exam-
ple, when users check whether deep learning programs run
normally, one important step is to monitor changing trends
of accuracy and loss instead of checking a single value. To
allievate the problem, Tensorflow continually includes a series
of APIs to help users debug and analyze programs by showing
program states visually. For compatibility, since Tensorflow 2
is a major leap from Tensorflow 1, it continually adds many
APIs to help programs using Tensorflow 1 run on Tensorflow
2. Particularly, we find Tensorflow 2 pays more attention
to efficiency than non-deep learning projects, especially in
accelerating numerical computing and distributed computing.

B. Implications

Through the analysis of API evolution on Tensorflow 2,
we found many of its advantages and its improvements to
previous weaknesses, which is very friendly to Tensorflow
2 users. We find that the number of Tensorflow 2 API changes
due to convenience is relatively small, not only because visual
debugging is a difficult point, but also because its debugging
tools are relatively good. More importantly, it has alleviated
some debugging challenges, e.g., providing Debugger V2
GUI to help users work through bugs involving NaNs 12

proposed by Zhang et al. [35]. Also, for efficiency, Tensorflow
2 supports Numpy-related functions to be dispatched on GPUs
and distributed computing on TPUs, which can accelerate
program runtime. Besides, users can easily upgrade code
from Tensorflow 1 to 2 because developers have made many
API changes for compatibility. Finally, we find Tensorflow 2
continually improves ease of use in developing deep learn-
ing programs by making many API changes in high-level
APIs (e.g., introduced Keras into "tf.keras" and independently

12http://tiny.cc/v38zsz



+ @keras_export('keras.preprocessing.text.text_to_word_sequence')
+ def text_to_word_sequence(text, filters='!"#$%&()*+,-
                            ./:;<=>?@[\\]^_`{|}~\t\n',
+                          lower=True, split=" "):
+ """Converts a text to a sequence of words (or tokens)..."""                    
+    return text.text_to_word_sequence(....)

from keras_preprocessing import text
...
- keras_export(
-   'keras.preprocessing.text.text_to_word_sequence')(text_to_word_sequence)

...

...

Fig. 4: Unexpected errors during migrating Keras into Tensor-
flow 13

developt "tf.estimator") due to powerfulness, expandability,
robustness, conciseness, correctness, and completeness, which
is a weak point proposed by Nguyen et al. [36].

For Tensorflow API developers, considering correctness,
we suggest they could consider reducing the dependency
on Keras as much as possible by migrating Keras to Ten-
sorflow entirely in the future. Specifically, Keras provides a
series of high-level APIs, which is very convenient for users to
construct and run neural networks quickly. So, developers cur-
rently introduces Keras into "tf.keras". To reduce the workload,
they often depend on APIs of Keras, which can lead to unex-
pected errors. For example, Tensorflow contributors add com-
ments for “tf.keras.preprocessing.text.text_to_word_sequence”
API. Then, they submit a piece of code in Figure 4. Un-
expectedly, the code cannot be successfully built because
the “text” parameter conflicts with “from keras_preprocessing
import text”. Namely, when executing the return code, pro-
gram mistakenly calls the “text” parameter instead of the
“keras_processing.text” class. To eliminate the error, contribu-
tors temporarily modify the “text” into “input_text”. Actually,
reducing the dependency on Keras and migrating Keras into
Tensorflow entirely can prevent many similar problems from
occurring in the future.

For researchers, considering correctness, we suggest they
could consider providing a tool to automatically detect and
generate data type information in the description of API
documentation such as parameter description. Since we
notice API documentation frequently exists wrong or outdated
descriptions about data type, developers need to manually
correct the information, which is time-consuming, laboursome
and error-prone. Considering friendliness, researchers could
consider providing a tool to automatically recommend code
examples to API developers because huge APIs and a few
API developers can lead to lagging effects and uneven
quality of code examples. For example, API developers add a
piece of code example for “tf.keras.backend.random_uniform”
API, which comes from users’ requirements 14. Although
the code example provides the API attributes, it lacks real
scenarios of API usages. Actually, the above API can be used
in data preprocessing such as rotating images randomly by
generating random numbers from Github 15. Besides, API
developers could consider supplementing API version in-

13http://tiny.cc/xrszsz
14http://tiny.cc/6t2zsz
15http://tiny.cc/bt2zsz

formation in API documentation for each API to help users
analyze programs. For example, deep learning users ask how
to implement a function and then use a piece of code from
StackOverflow, sometimes the code can not run successfully
because some APIs are not available on the current Tensorflow
version.

C. Threats to Validity

Internal validity. The one is related to errors of our code
of mining 10 types of API changes. To alleviate the problem,
we manually check all API changes. The second is that card
sorting of classification for API changes and corresponding
reasons is subjected to subjective bias. To allievate the prob-
lem, two authors independently examine their results at least
twice and annotate important information for verification.

External validity. It is related to the generalization of
the functional category of API changes and corresponding
reason categories. Our study is conducted on one deep learn-
ing framework-Tensorflow. The classification maybe not be
applied to other popular frameworks. However, deep learning
frameworks contain a lot of commonality [37], and we conduct
a case study for 6,329 API changes. Therefore, we think
that the classification can be adapted to other deep learning
frameworks with some revisions.

VI. RELATED WORK

API evolution has been studied in multiple domains. Danny
Dig et al. [4] manually analyzed API changes from software
artifacts, such as release notes and change logs, for four
frameworks and one library. They found more than 80% of
breaking changes are refactorings. Kim et al. [38] analyzed
the relationship between API refactorings and bug fixes on
Eclipse JDT. They found there is a growing number of bug
fixes after API-level refactorings. Tyler et al. [39] analyzed
the pace of Android API changes and adopting new APIs by
users. They found adopting new versions needs a longer time
than evolving APIs, and using new APIs to write programs is
more error-prone than programs without API usage adaptation.
Wei et al. [16] studied API changes and usages together on
Apache and Eclipse Ecosystems. They found missing classes
and methods occur more often and missing interfaces happen
rarely. Laerte et al. [34] extracted syntax of API changes
between two versions of many Java libraries. They found
the number of breaking changes increases in API evolution,
and few client applications are affected by breaking changes.
Aline et al. [3] extracted API changes from 400 popular Java
libraries and frameworks. They found API changes are mainly
for new features and improving maintainability. Rediana et
al. [1] extracted 38 API changes of Web API between version
2.26 and 2.27. They found these changes do not completely
reflect on software artifacts, e.g., release notes and issues.
From the above empirical studies on API evolution, we can
see current studies focus on non-deep learning projects and do
not conduct a large-scale and fine-grained study on reasons of
API evolution.



VII. CONCLUSION AND FUTURE WORK

In this paper, we conduct a case study on Tensorflow
2 API evolution based on API documentation. By mining
6, 329 API changes, we find the number of API addition
increases, and the number of API removal decreases with the
update of versions. And then we map these API changes into
6 functional categories based on Tensorflow 2. The results
show that model-related, distribution-related, and low-level
Tensorflow APIs are changed the most. Then, we categorize
reasons for API changes into 10 reason categories and find the
main reasons for API changes are efficiency and compatibility.
Finally, we compare the difference between non-deep learning
frameworks and Tensorflow 2 on API evolution. By analyzing
Tensorflow 2 API evolution, we find Tensorflow 2 makes
changes to better support high-level APIs, friendly debugging,
and high-performance APIs for users to develop deep learning
programs. Also, we recommend Tensorflow API developers
considering migrating Keras into Tensorflow entirely in the
future and give researchers new suggestions about improving
API documentation. In the future, we plan to investigate more
deep learning frameworks, such as PyTorch and Theano, to
analyze their commonality and difference in API evolution. We
expect to help users better choose deep learning frameworks,
help API developers evolve efficiently, and inspire researchers
to reduce API evolution’s workload on deep learning.
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