
Interpreting Cloud Computer Vision Pain-Points:
A Mining Study of Stack Overflow

Alex Cummaudo
ca@deakin.edu.au

Applied Artificial Intelligence Inst.
Deakin University

Geelong, Victoria, Australia

Rajesh Vasa
rajesh.vasa@deakin.edu.au

Applied Artificial Intelligence Inst.
Deakin University

Geelong, Victoria, Australia

Scott Barnett
scott.barnett@deakin.edu.au

Applied Artificial Intelligence Inst.
Deakin University

Geelong, Victoria, Australia

John Grundy
john.grundy@monash.edu

Faculty of Information Technology
Monash University

Clayton, Victoria, Australia

Mohamed Abdelrazek
mohamed.abdelrazek@deakin.edu.au
School of Information Technology

Deakin University
Geelong, Victoria, Australia

ABSTRACT
Intelligent services are becoming increasingly more pervasive; ap-
plication developers want to leverage the latest advances in areas
such as computer vision to provide new services and products to
users, and large technology firms enable this via RESTful APIs.
While such APIs promise an easy-to-integrate on-demand machine
intelligence, their current design, documentation and developer in-
terface hides much of the underlying machine learning techniques
that power them. Such APIs look and feel like conventional APIs
but abstract away data-driven probabilistic behaviour—the implica-
tions of a developer treating these APIs in the same way as other,
traditional cloud services, such as cloud storage, is of concern. The
objective of this study is to determine the various pain-points de-
velopers face when implementing systems that rely on the most
mature of these intelligent services, specifically those that provide
computer vision. We use Stack Overflow to mine indications of the
frustrations that developers appear to face when using computer
vision services, classifying their questions against two recent classi-
fication taxonomies (documentation-related and general questions).
We find that, unlike mature fields like mobile development, there
is a contrast in the types of questions asked by developers. These
indicate a shallow understanding of the underlying technology that
empower such systems. We discuss several implications of these
findings via the lens of learning taxonomies to suggest how the
software engineering community can improve these services and
comment on the nature by which developers use them.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380404

CCS CONCEPTS
• Information systems → Web services; Data mining; • Soft-
ware and its engineering → Software creation and manage-
ment; • General and reference → Empirical studies; • Comput-
ing methodologies → Artificial intelligence.
KEYWORDS
intelligent services, computer vision, documentation, pain points,
stack overflow, empirical study

ACM Reference Format:
Alex Cummaudo, Rajesh Vasa, Scott Barnett, John Grundy, and Mohamed
Abdelrazek. 2020. Interpreting Cloud Computer Vision Pain-Points: A Min-
ing Study of Stack Overflow. In 42nd International Conference on Software
Engineering (ICSE ’20), May 23–29, 2020, Seoul, Republic of Korea. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3377811.3380404

1 INTRODUCTION
The availability of recent advances in artificial intelligence (AI) over
simple RESTful end-points offers application developers new oppor-
tunities. These new intelligent services (AI components) abstract
complex machine learning (ML) and AI techniques behind simpler
API calls. In particular, they hide (either explicitly or implicitly)
any data-driven and non-deterministic properties inherent to the
process of their construction. The promise is that software engi-
neers can incorporate complex machine learnt capabilities, such as
computer vision, by simply calling an API end-point.

The expectation is that application developers can use these AI-
powered services like they use other conventional software compo-
nents and cloud services (e.g., object storage like AWS S3). Further-
more, the documentation of these AI components is still anchored
to the traditional approach of briefly explaining the end-points with
some information about the expected inputs and responses. The
presupposition is that developers can reason and work with this
high level information. These services are also marketed to suggest
that application developers do not need to fully understand how
these components were created (i.e., assumptions in training data
and training algorithms), the ways in which the components can
fail, and when such components should and should not be used.

The nuances of ML and AI powering intelligent services have to
be appreciated, as there are real-world consequences to software

https://doi.org/10.1145/3377811.3380404
https://doi.org/10.1145/3377811.3380404

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Alex Cummaudo et al.

quality for applications that depend on them if they are ignored [16].
This is especially true when ML and AI are abstracted and masked
behind a conventional-looking API call, yet the mechanisms be-
hind the API are data-dependent, probabilistic and potentially non-
deterministic [29]. We are yet to discover what long-term impacts
exist during development and production due to poor documenta-
tion that do not capture these traits, nor do we know the depth of
understanding application developers have for these components.
Given the way AI-powered services are currently presented, de-
velopers are also likely to reason about these new services much
like a string library or a cloud data storage service. That is, they
may not fully consider the implications of the underlying statistical
nature of these new abstractions or the consequent impacts on
productivity and quality.

Typically, when developers are unable to correctly align to the
mindset of the API designer, they attempt to resolve issues by
(re-)reading the API documentation. If they are still unable to re-
solve these issues on their own after some internet searching,
they consider online discussion platforms (e.g., Stack Overflow,
GitHub Issues, Mailing Lists) where they seek technological advice
from their peers [1]. Capturing what developers discuss on these
platforms offers an insight into the frustrations developers face
when using different software components as shown by recent
works [10, 22, 32, 35, 41]. However, to our knowledge, no studies
have yet analysed what developers struggle with when using the
new generation of intelligent services. Given the re-emergent in-
terest in AI and the anticipated value from this technology [27],
a better understanding of issues faced by developers will help us
improve the quality of services. Our hypothesis is that application
developers do not fully appreciate the probabilistic nature of these
services, nor do they have sufficient appreciation of necessary back-
ground knowledge—however, we do not know the specific areas of
concern. The motivation for our study is to inform API designers
on which aspects to focus in their documentation, education, and
potentially refine the design of the end-points.

This study involves an investigation of 1,825 Stack Overflow (SO)
posts regarding one of themostmature types of intelligent services—
computer vision services—dating from November 2012 to June 2019.
We adapt existing methodologies of prior SO analyses [10, 37] to
extract posts related to computer vision services. We then apply
two existing SO question classification schemes presented at ICPC
and ICSE in 2018 and 2019 [1, 9]. These previous studies focused on
mobile apps and web applications. Although not a direct motivation,
our work also serves as a validation of the applicability of these two
issue classification taxonomies [1, 9] in the context of intelligent
services (hence potential for generalisation). Additionally our work
is the first—to our knowledge—to test the applicability of these
taxonomies in a new study.

The taxonomies in previous works focus on the specific aspects
from the domain (e.g. API usage, specificity within the documenta-
tion etc.) and as such do not deeply consider the learning gap of
an application developer. To explore the API learning implications
raised by our SO analysis, we applied an additional lens of two
taxonomies from the field of pedagogy. This was motivated by the
need to offer an insight into the work needed to help developers
learn how to use these relatively new services.

The key findings of our study are:

• The primary areas that developers raise as issues reflect a
relatively primitive understanding of the underlying con-
cepts of data-driven ML approaches used. We note this via
the issues raised due to conceptual misunderstanding and
confusion in interpreting errors,

• Developers predominantly encounter a different distribution
of issue types than were reported in previous studies, indicat-
ing the complexity of the technical domain has a non-trivial
influence on intelligent API usage; and

• Most of these issues can be resolved with better documenta-
tion, based on our analysis.

The paper also offers a data-set as an additional contribution to
the research community and to permit replication [42]. The paper
structure is as follows: section 2 provides motivational examples
to highlight the core focus of our study; section 3 provides a back-
ground on prior studies that have mined SO to gather insight into
the SE community; section 4 describes our study design in detail;
section 5 presents the findings from the SO extraction; section 6
offers an interpretation of the results in addition to potential impli-
cations that arise from our work; section 7 outlines the limitations
of our study; concluding remarks are given in section 8.

2 MOTIVATION
“Intelligent” services are often available as a cloud end-point and
provide developers a friendly approach to access recent AI/ML ad-
vances without being experts in the underlying processes. Figure 1
highlights how these services abstract away much of the technical
know-how needed to create and operationalise these intelligent
services [30]. In particular, they hide information about the training
algorithm and data-sets used in training, the evaluation procedures,
the optimisations undertaken, and—surprisingly—they often do not
offer a properly versioned end-point [16, 29]. That is, the cloud ven-
dors may change the behaviour of the services without sufficient
transparency.

The trade-off towards ease of use for application developers,
coupled with the current state of documentation (and assumed
developer background) has a cost as reflected in the increasing
discussions on developer communities such as SO (see fig. 2). To
illustrate the key concerns, we list below a few up-voted questions:

• unsure ofML specific vocabulary: “Though it’s now not so
clear to me what ‘score’ actually means.” [43]; “I’m trying out
the [intelligent service], and there’s a score field that returns
that I’m not sure how to interpret [it].” [44]

• frustrated about non-deterministic results: “Often the
API has troubles in recognizing single digits... At other times
Vision confuses digits with letters.” [45]; “Is there a way to help
the program recognize numbers better, for example limit the
results to a specific format, or to numbers only?” [46]

• unaware of the limitations behind the services: “Is there
any API available where we can recognize human other body
parts (Chest, hand, legs and other parts of the body), because
as per the Google vision API it’s only able to detect face of the
human not other parts.” [47]

• seeking further documentation: “Does anybody know if
Google has published their full list of labels ([‘produce’,
‘meal’, ...]) and where I could find that? Are those labels

Interpreting Cloud Computer Vision Pain-Points: A Mining Study of Stack Overflow ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Absolute Control
Verbose Codebase
Self-Sourced Data

Detailed Infrastructure
Quick to Write
Easy to Integrate
Pre-Trained Models
Cloud-Based API Calls

M
L

Fr
am

ew
or

ks

In
te

lli
ge

nt
 Se

rv
ice

s

Do
-It

-Y
ou

rs
el

f M
L

Figure 1: Some traits of Intelligent Services vs. ‘Do-It-
Yourself’ ML. Green-to-red arrows indicate the presence of
these traits. Adapted from Ortiz [30].

structured in any way? - e.g. is it known that ‘food’ is a
superset of ‘produce’, for example.” [48]

The objective of our study is to better understand the nature
of the questions that developers raise when using intelligent ser-
vices, in order to inform the service designers and documenters. In
particular, the knowledge we identify can be used to improve the
documentation, educational material and (potentially) the informa-
tion contained in the services’ response objects—these are the main
avenues developers have to learn and reason about when using
these services. There is previous work that has investigated issues
raised by developers [1, 9, 37]. We build on top of this work by
adapting the study methodology and apply the taxonomies offered
to identify the nature of the issues and this results in the following
research questions in this paper:
RQ1. How do developers mis-comprehend intelligent ser-

vices as presentedwithin StackOverflowpain-points?
While the AI community is well aware in the the nuances
that empower intelligent services, such services are being
released for application developers who may not be aware
of their limitations or how they work. This is especially the
case when machine intelligence is accessed via web-based
APIs where such details are not fully exposed.

RQ2. Are the distribution of issues similar to prior studies?
We compare how the distributions of previous studies’ of
posts about conventional, deterministic API services differ
from those of intelligent services. By assessing the distri-
bution of intelligent services’ issues against similar studies
that focus on mobile and web development, we identify
whether a new taxonomy is needed specific to AI-based ser-
vices, and if gaps specific to AI knowledge exist that need
to be captured in these taxonomies.

3 BACKGROUND
The primary goal of analysing issues is to better understand the root
causes. Hence, a good issue classification taxonomy should ideally
capture the underlying causal aspects (instead of pure functional
groupings) [13]. Although this idea (of cause related classification) is
not new (Chillarege advocated for it in this TSE paper in 1992), this
is not a universally followed approach when studying online dis-
cussions and some recent works have largely classified issues into
the “what is” and not “how to fix it” [7, 10, 39]. They typically (man-
ually) classify discussion into either functional areas (e.g., Website
Design/CSS, Mobile App Development, .NET Framework, Java [7])

or descriptive areas (e.g., Coding Style/Practice, Problem/Solution,
Design, QA [7, 39]). As a result, many of these studies do not give us
a prioritised means of targeted attack on how to resolve these issues
with, for example, improved documentation. Interestingly, recent
taxonomies that studied SO data (Aghajani et al. [1] and Beyer et al.
[9]) were causal in nature and developed to understand discussions
related to mobile and web applications. However, issues that arise
when developers use intelligent services have not been studied, nor
do we know if existing issue classification taxonomies are sufficient
in this domain.

Researchers studying APIs have also attempted to understand
developer’s opinions towards APIs [39], categorise the questions
they ask about these APIs [7–9, 32], and understand API related
documentation and usage issues [1–3, 7, 19, 37]. These studies often
employ automation to assist in the data analysis stages of their
research. Latent Dirichlet Allocation [3, 7, 32, 39] is applied for topic
modelling and other ML techniques such as Random Forests [9],
Conditional Random Fields [2] or Support Vector Machines [9, 19]
are also used.

However, automatic techniques are tuned to classify into de-
scriptive categories, that is, they help paint a landscape of what
is, but generally do not address the causal factors to address the
issues in great detail. For example, functional areas such as ‘Website
Design’ [7], ‘User Interface’ [10] or ‘Design’ [40] result from such
analyses. These automatic approaches are generally non-causal,
making it hard to address reasons for why developers are asking
such questions. However, not all studies in the space use automatic
techniques; other studies employmanual thematic analysis [1, 8, 37]
(e.g., card sorting) or a combination of both [9, 10, 32, 38]. Our work
uses a manual approach for classification, and we use taxonomies
that are more causally aligned allowing our findings to be directly
useful in terms of addressing the issues.

Evidence-based SE [23] has helped shape the last 15 years worth
of research, but the reliability of such evidence has been ques-
tioned [20, 21, 33]. Replication studies, especially in empirical works,
can give us the confidence that existing results are adaptable to
new domains; in this context, we extend (to intelligent services)
and work with study methods developed in previous works.

4 METHOD
4.1 Data Extraction
This study initially attempted to capture SO posts on a broad range
of many intelligent services by identifying issues related to four
popular intelligent service cloud providers: Google Cloud [49],
AWS [50], Azure [51] and IBM Cloud [52]. We based our selection
criteria on the prominence of the providers in industry (Google,
Amazon, Microsoft, IBM) and their ubiquity in cloud platform ser-
vices. Additionally, in 2018, these services were considered the most
adopted cloud vendors for enterprise applications [31].

However, during the filtering stage (see section 4.2), we decided
to focus on a subset of these services, computer vision, as these
are one of the more mature and stable ML/AI-based services with
widespread and increasing adoption in the developer community
(see fig. 2). We acknowledge other services beyond the four anal-
ysed provide similar capabilities [53–58] and only English-speaking
services have been selected, excluding popular services from Asia

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Alex Cummaudo et al.

Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2
2015 2015 2016 2016 2016 2016 2017 2017 2017 2017 2018 2018 2018 2018 2019 2019

IBM 1 0 4 5 8 7 4 5 9 6 5 6 4 0 5 3
MS 0 2 1 5 5 13 26 23 27 27 33 52 59 43 47 33

GCV 4 3 23 25 36 38 49 71 61 71 80 90 95 71 95 85
AWS 0 0 0 1 0 4 7 10 20 16 13 31 30 16 34 28
Total 5 5 28 36 49 62 86 109 117 120 131 179 188 130 181 149

0

40

80

120

160

200

Figure 2: Trend of posts, where IBM = IBMWatson Visual Recognition, MS = Azure Computer Vision, AWS = AWSRekognition
and GCV = Google Cloud Vision. Three MS posts from Q4 2012, Q3 2013 and Q4 2013 have been removed for graph clarity.

(e.g., [59–63])—see section 7. For comprehensiveness, we explain
below our initial attempts to extract all intelligent services.

4.1.1 Defining a list of intelligent services. As there exists no global
‘list’ of intelligent services to search on, we needed to derive a corpus
of initial terms to allow us to know what to search for on the Stack
Exchange Data Explorer1 (SEDE). We began by looking at different
brand names of cloud services and their permutations (e.g., Google
Cloud Services and GCS) as well as various ML-related products
(e.g., Google Cloud ML). To do this, we performed extensive Google
searches2 in addition to manually reviewing six ‘overview’ pages
of the relevant cloud platforms. We identified 91 initial intelligent
services to incorporate into our search terms3.

4.1.2 Manual search for relevant, related terms. We then ran a
manual search2 on each term to determine if these terms were
relevant. We did this by querying each term within SO’s search
feature, reviewing the titles and body post previews of the first three
pages of results (we did not review the answers, only the questions).
We also noted down the user-defined Tags of each post (up to five
per question); by clicking into each tag, we could review similar
tags (e.g., ‘project-oxford’ for ‘azure-cognitive-services’) and check
if the tag had synonyms (e.g., ‘aws-lex’ and ‘amazon-lex’). We then
compiled a corpus of tags consisting of 31 terms.

4.1.3 Developing a search query. We recognise that searching SEDE
via Tags exclusively can be ineffective (see [7, 37]). To mitigate this,
we produced a corpus of title and body terms. Such terms are those
that exist within the title and body of the posts to reflect the ways
in which individual developers commonly use to refer to differ-
ent intelligent services. To derive at such a list, we performed a
search2,3 of the 31 tags above in SEDE, filtering out posts that were
not answers (i.e., questions only) as we wanted to see how develop-
ers phrase their questions. For each search, we extracted a random
sample of 100 questions (400 total for each service) and reviewed
each question. We noted many patterns in the permutations of how
developers refer to these services, such as: common misspellings
(‘bind’ vs. ‘bing’); brand misunderstanding (‘Microsoft computer
vision’ vs. ‘Azure computer vision’); hyphenation (‘Auto-ML’ vs.
‘Auto ML’); UK and US English (‘Watson Analyser’ vs. ‘Watson
Analyzer’); and, the use of apostrophes, plurals, and abbreviations

1http://data.stackexchange.com/stackoverflow
2This search was conducted on 17 January 2019
3For reproducibility, this is available at http://bit.ly/2ZcwNJO.

(‘Microsoft’s Computer Vision API’, ‘Microsoft Computer Vision
Services, ‘GCV’ vs. ‘Google Cloud Vision’). We arrived at a final list
of 229 terms compromising all of the intelligent services provided
by Google, Amazon, Microsoft and IBM as of January 20193.

4.1.4 Executing our search query. Our next step was to perform a
case-insensitive search of all 229 terms within the body or title of
posts. We used Google BigQuery’s public data-set of SO posts4 to
overcome SEDE’s 50,000 row limit and to conduct a case-insensitive
search. This search was conducted on 10 May 2019, where we
extracted 21,226 results. We then performed several filtering steps
to cleanse our extracted data, as explained below.

4.2 Data Filtering
4.2.1 Refining our inclusion/exclusion criteria. We performed an
initial manual filtering of the 50 most recent posts (sorted by de-
scending CreationDate values) of the 21,226 posts above, assessing
the suitability of the results and to help further refine our inclusion
and exclusion criteria. We did note that some abbreviations used
in the search terms (e.g., ‘GCV’, ‘WCS’5), resulting in irrelevant
questions in our result set. We therefore removed abbreviations
from our search query and consolidated all overlapping terms (e.g.,
‘Google Vision API’ was collapsed into ‘Google Vision’).

We also recognised that 21,226 results would be non-trivial to
analyse without automated techniques. As we wanted to do manual
qualitative analysis, we reduced our search space to 27 search terms
of just the computer vision services within the original corpus of
229 terms. These were Google Cloud Vision [49], AWS Rekogni-
tion [50], Azure Computer Vision [51], and IBM Watson Visual
Recognition [52]. This resulted in 1,425 results that were extracted
on 21 June 2019. The query used and raw results are available online
in our supplementary materials [42].

4.2.2 Duplicates. Within 1,425 results, no duplicate questions were
noted, as determined by unique post ID, title or timestamp.

4.2.3 Automated and manual filtering. To assess the suitability and
nature of the 1,425 questions extracted, the first author began with
a manual check on a randomised sample of 50 questions. As the
questions were exported in a raw CSV format (with HTML tags in-
cluded in the post’s body), we parsed the questions through an ERB

4http://bit.ly/2LrN7OA
5Watson Cognitive Services

http://data.stackexchange.com/stackoverflow
http://bit.ly/2ZcwNJO

Interpreting Cloud Computer Vision Pain-Points: A Mining Study of Stack Overflow ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

templating engine script6 in which the ID, title, body, tags, created
date, and view, answer and comment counts were rendered for each
post in an easily-readable format. Additionally, SQL matches in the
extraction process were also highlighted in yellow (i.e., in the body
of the post) and listed at the top of each post. These visual cues
helped to identify 3 false positive matches where library imports or
stack traces included terms within our corpus of 26 computer vision
service terms. For example, aws-java-sdk-rekognition:jar is
falsely matched as a dependency within an unrelated question. As
such exact matches would be hard to remove without the use of
regular expressions, and due to the low likelihood (6%) of their
appearance, we did not perform any followup automatic filtering.

4.2.4 Classification. Our 1,425 posts were then split into 4 addi-
tional random samples (in addition to the random sample of 50
above). 475 posts were classified by the first author and three other
research assistants, software engineers with at least 2 years industry
experience, assisted to classify the remaining 900. This left a total
of 1,375 classifications made by four people plus an additional 450
classifications made from reliability analysis, in which the remain-
ing 50 posts were classified nine times (as detailed in section 4.3.1).
Thus, a total of 1,825 classifications were made from the original
1,425 posts extracted.

Whilst we could have chosen to employ topic modelling, these
are too descriptive in nature (as discussed in section 3). Moreover,
we wanted to see if prior taxonomies can be applied to intelligent
services (as opposed to creating a new one) and compare if their
distributions are similar. Therefore, we applied the two existing
taxonomies described in section 3 to each post; (i) a documentation-
specific taxonomy that addresses issues directly resulting from
documentation, and (ii) a generalised taxonomy that covers a broad
range of SO issues in a well-defined SE area (specifically mobile app
development). Aghajani et al.’s documentation-specific taxonomy
(Taxonomy A) is multi-layered consisting of four dimensions and
16 sub-categories [1]. Similarly, Beyer’s SO generalised post classi-
fication taxonomy (Taxonomy B) consists of seven dimensions [9].
We code each dimension with a number, X , and each sub-category
with a letter y: (Xy). We describe both taxonomies in detail within
table 1. Where a post was included in our results but not appli-
cable to intelligent services (see section 4.2.3) or not applicable
to a taxonomy dimension/category, then the post was flagged for
removal in further analysis. Table 1 presents our understanding of
the respective taxonomies; our intent is not to methodologically
replicate Aghajani et al. or Beyer et al.’s studies in the intelligent
service domain, rather to acknowledge related work in the area
of SO classification and reduce the need to synthesise a new tax-
onomy. We baseline all coding against our interpretation only. Our
classifications are therefore independent of the previous authors’
findings.

4.3 Data Analysis
4.3.1 Reliability of Classification. To measure consistency of the
categories assigned by each rater to each post, we utilised both
intra- and inter-rater reliability [28]. As verbatim descriptions from
dimensions and sub-categories were considered quite lengthy from

6We make this available for future use at: http://bit.ly/2NqBB70

their original sources, all raters met to agree on a shared interpreta-
tion of the descriptions, which were then paraphrased as discussed
in the previous subsection and tabulated in table 1. To perform
statistical calculations of reliability, each category was assigned a
nominal value and a random sample of 50 posts were extracted.
Two-phase reliability analysis followed.

Firstly, intra-rater agreement by the first author was conducted
twice on 28 June 2019 and 9 August 2019. Secondly, inter-rater
agreement was conducted with the remaining four co-authors in
addition to three research assistants within our research group in
mid-August 2019. Thus, the 50 posts were classified an additional
nine times, resulting in 450 classifications for reliability analysis.
We include these classifications in our overall analysis.

At first, we followed methods of reliability analysis similar to
previous SO studies (e.g., [37]) using the percentage agreement
metric that divides the number of agreed categories assigned per
post by the total number of raters [28]. However, percentage agree-
ment is generally rejected as an inadequate measure of reliability
analysis [14, 18, 24] in statistical communities. As we used more
than 2 coders and our reliability analysis was conducted under the
same random sample of 50 posts, we applied Light’s Kappa [26] to
our ratings, which indicates an overall index of agreement. This
was done using the irr computational R package [17] as suggested
in [18].

4.3.2 Distribution Analysis. In order to compare the distribution
of categories from our study with previous studies we carried out
a χ2 test. We selected a χ2 test as the following assumptions [34]
are satisfied: (i) the data is categorical, (ii) all counts are greater
than 5, and (iii) we can assume simple random sampling. The null
hypothesis describes the case where each population has the same
proportion of observations and the alternative hypothesis is where
at least one of the null hypothesis statements is false. We chose a
significance value, α , of 0.05 following a standard rule of thumb. As
to the best of our knowledge this is the first statistical comparison
using Taxonomy A and B on SO posts. To report the effect size we
selected Cramer’s Phi, ϕc which is well suited for use on nominal
data [34].

5 FINDINGS
We present our findings from classifying a total of 1,825 SO posts
aimed at answering RQs 1 and 2. 450 posts were classified using Tax-
onomies A and B for reliability analysis as described in section 4.3.1
and the remaining 1,375 posts were classified as per section 4.2.4. A
summary of our classification using Taxonomies A and B is shown
in fig. 3.

5.1 Post classification and reliability analysis
When undertaking the classification, we found that 238 issues
(13.04%) did not relate to intelligent services directly. For exam-
ple, library dependencies were still included in a number of results
(see section 4.2.3), and we found there to be many posts discussing
Android’s Mobile Vision API as Google (Cloud) Vision. These issues
were flagged and ignored for further analysis (see section 4.2.4).

For our reliability analysis, we classified a total of 450 posts of
which 70 posts were flagged as irrelevant. Landis and Koch [25]
provide guidelines to interpret kappa reliability statistics, where

http://bit.ly/2NqBB70

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Alex Cummaudo et al.

Table 1: Descriptions of dimensions (■) and sub-categories (↪→) from both taxonomies used.

A Documentation-specific classification (Aghajani et al. [1])

A-1 ■ Information Content (What) Issues related to what is written in the documentation
A-1a ↪→ Correctness What exists in the documentation actually matches what is implemented in code
A-1b ↪→ Completeness The documentation fully covers all aspects of the API’s components
A-1c ↪→ Up-to-dateness What is documented is accurate to the current version of the API
A-2 ■ Information Content (How) . Issues related to how the document is written and organised
A-2a ↪→Maintainability The upkeep effort to ensure the documentation remains up to date
A-2b ↪→ Readability The extent to which the documentation is interpretable
A-2c ↪→ Usability How useable the organisation, look and feel of the documentation is
A-2d ↪→ Usefulness The usefulness of the documentation, avoiding misinformation.
A-3 ■ Process-Related Issues related to the documentation process
A-3a ↪→ Internationalisation Translating the documentation into other languages
A-3b ↪→ Contribution-Related Contribution issues encountered when people contribute to the documentation
A-3c ↪→ Configuration-Related Configuration issues of the documentation tool
A-3d ↪→ Implementation-Related Unwanted development issues caused by (poor) documentation
A-3e ↪→ Traceability Tracing documentation changes (when, when, who and why)
A-4 ■ Tool-Related Issues related to documentation tools (e.g., Javadoc)
A-4a ↪→ Tooling Bugs Bugs that exist within the documentation tooling
A-3b ↪→ Tooling Discrepancy Support as expectations not being fulfilled by these documentation tools
A-3c ↪→ Tooling Help Required Help required due to improper usage of the tools
A-3d ↪→ Tooling Migration Issues migrating the tool to a new version or another tool

B Generalised classification (Beyer et al. [9])

B-1 ■ API usage Issue on how to implement something using a specific component provided by the API
B-2 ■ Discrepancy The questioner’s expected behaviour of the API does not reflect the API’s actual behaviour
B-3 ■ Errors . Issue regarding some form of error when using the API, and provides an exception and/or

stack trace to help understand why it is occurring
B-4 ■ Review . The questioner is seeking insight from the developer community on what the best

practices are using a specific API or decisions they should make given their specific
situation

B-5 ■ Conceptual The questioner is trying to ascertain limitations of the API and its behaviour and rectify
issues in their conceptual understanding on the background of the API’s functionality

B-6 ■ API change Issue regarding changes in the API from a previous version
B-7 ■ Learning . The questioner is seeking for learning resources to self-learn further functionality in the

API, and unlike discrepancy, there is no specific problem they are seeking a solution for

0.00 ≤ κ ≤ 0.20 indicates slight agreement and 0.21 ≤ κ ≤ 0.40
indicates fair agreement. Despite all raters meeting to agree on
a shared interpretation of the taxonomies (see section 4.3.1) our
inter-rater measures aligned slightly (0.148) for Taxonomy A and
fairly (0.295) for Taxonomy B. We report further in section 7.

5.2 Developer Frustrations
We found Beyer et al.’s high-level abstraction taxonomy (Taxonomy
B) was able to classify 86.52% of posts. 10.30% posts were assigned
exclusively under Aghajani et al.’s documentation-specific taxon-
omy (Taxonomy A). We found that developers do not generally
ask questions exclusive to documentation, and typically either pair
documentation-related issues to their own code or context. The fol-
lowing two subsections further explain results from both Taxonomy
A and B’s perspective.

5.2.1 Results from Aghajani et al.’s taxonomy. Results for Aghajani
et al.’s low-level documentation taxonomy (Taxonomy A), indicates

that most discussion on SO does not directly relate to documen-
tation about an intelligent service. We did not find any process-
related (A-3) or tool-related (A-4) questions as, understandably, the
developers who write the documentation of the intelligent services
would not be posting questions of such nature on SO. One can infer
documentation-related issues from posts (i.e., parts of the documen-
tation lacking that may cause the issue posted). However, there are
few questions that directly relate to documentation of intelligent
services.

Few developers question or ask questions directly about the
API documentation, but some (47.87%) posts ask for additional
information to understand the API (completeness (A-1b)), for
example: “Is there a full list of potential labels that Google’s Vision API
will return?” [48]; “There seems to be very little to no documentation
for AWS iOS text recognition inside an image” [64].

22.87% of posts question the accuracy (A-1a) of certain parts of
the cloud documentation, especially in relation to incorrect quotas
and limitations: “Are the Cloud Vision API limits in documentation

Interpreting Cloud Computer Vision Pain-Points: A Mining Study of Stack Overflow ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
22

.8
7%

47
.8

7%

4.
26

%

1.
06

%

4.
79

%

5.
32

%

13
.8

3%

6.
87

%

25
.5

7%

18
.1

3%

2.
00

% 10
.2

1%

13
.1

7%

1.
91

%

[A
-1

a]
 C

or
re

ct
ne

ss

[A
-1

b]
 C

om
pl

et
en

es
s

[A
-1

c]
 U

p-
to

-d
at

en
es

s

[A
-2

a]
 M

ai
nt

ai
na

bi
lit

y

[A
-2

b]
 R

ea
da

bi
lit

y

[A
-2

c]
 U

sa
bi

lit
y

[A
-2

d]
 U

se
fu

ln
es

s

Intelligent Services
Aghajani et al. (2019) [1]

22
.2

9%

16
.3

4%

32
.0

5%

15
.1

4%

11
.0

2%

1.
08

%

2.
09

%

28
.9

3%

18
.1

2%

13
.0

6%

11
.1

0%

20
.3

7%

4.
21

%

4.
21

%

[B
-1

]
AP

I U
sa

ge

[B
-2

]
D

is
cr

ep
an

cy

[B
-3

]
Er

ro
rs

[B
-4

]
Re

vi
ew

[B
-5

]
C

on
ce

pt
ua

l

[B
-6

]
AP

I C
ha

ng
e

[B
-7

]
Le

ar
ni

ng

Intelligent Services
Beyer et al. (2018) [9]

Figure 3: Left: Documentation-specific classification taxonomy results highlights amostly similar distribution to that of Agha-
jani et al.’s findings [1]. Right: Generalised classification taxonomy results highlight differences frommore mature fields (i.e.,
Android APIs in Beyer et al. [9]) to less mature fields (i.e., intelligent services).

correct?” [65], “According to the Google Vision documentation, the
maximum number of image files per request is 16. Elsewhere, however,
I’m finding that the maximum number of requests per minute is as
high as 1800.” [66].

There are also many references (23.94%) addressing the confus-
ing nature of some documentation, indicating that the readability,
usability and usefulness of the documentation (A-2b, A-2c
and A-2d) could be improved. For example, “Am I encoding it cor-
rectly? The docs are quite vague.” [67], “The aws docs for this are
really confusing.” [68].

5.2.2 Results from Beyer et al.’s taxonomy. We found that a major-
ity (32.05%) of posts are primarily error-related questions (B-3),
including a dump of the stack trace or exception message from the
service’s programming-language SDK (usually Java, Python or C#)
that relates to a specific error. For example: “I can’t fix an error that’s
causing us to fall behind.” [69]; “I’m using the Java Google Vision
API to run through a batch of images... I’m now getting a channel
closed and ClosedChannelException error on the request.” [70].

API usage questions (B-1) were the second highest category
at 22.29% of posts. Reading the questions revealed that many de-
velopers present an insufficient understanding of the behaviour,
functional capability and limitation of these services and the need
for further data processing. For example, while Azure provides
an image captioning service, this is not universal to all computer
vision services: “In Amazon Rekognition for image processing how
do I get the caption for an image?” [71]. Similarly, OCR-related and
label-related questions often indicate interest in cross-language
translation, where a separate translation service would be required:
“Can Google Cloud Vision generate labels in Spanish via its API?” [72];
“[How can I] specify language for response in Google Cloud Vision
API” [73]; “When I request a text detection of an image, it gives only
English Alphabet characters (characters without accents) which is not
enough for me. How can I get the UTF-32 characters?” [74].

It was commonplace to see questions that demonstrate a lack
of depth in understanding and appreciating how these services
work, instead posting simple debugging questions. For instance,
in the 11.02% of conceptual-related questions (B-5) that we cat-
egorised, we noticed causal links to a misunderstanding (or lack
of awareness) of the vocabulary used within computer vision. For
example: “The problem is that I need to know not only what is on the
image but also the position of that object. Some of those APIs have
such feature but only for face detection.” [75]; “I want to know if the
new image has a face similar to the original image.... [the service] can
identify faces, but can I use it to get similar faces to the identified face
in other images?” [76]. It is evident that some application developers
are not aware of conceptual differences in computer vision such as
object/face detection versus localisation versus recognition.

In the 16.34% of discrepancy-related questions (B-2), we see
further unawareness from developers in how the underlying sys-
tems work. In OCR-related questions, developers do not understand
the pre-processing steps required before an OCR is performed. In in-
stances where text is separated into multiple columns, for example,
text is read top-down rather than left-to-right and segmentation
would be required to achieve the expected results. For example, “it
appears that the API is using some kind of logic that makes it scan
top to bottom on the left side and moving to right side and doing a
top to bottom scan.” [77]; “this method returns scanned text in wrong
sequence... please tell me how to get text in proper sequence.” [78].

A number of review-related questions (B-4) (15.14%) seem
to provide some further depth in understanding the context to
which these systems work, where training data (or training stages)
are needed to understand how inferences are made: “How can we
find an exhaustive list (or graph) of all logos which are effectively
recognized using Google Vision logo detection feature?” [79]; “when
object banana is detected with accuracy greater than certain value,
then next action will be dispatched... how can I confidently define and
validate the threshold value for each item?” [80].

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Alex Cummaudo et al.

API change (B-6) was shown in 1.08% of posts, with evolution
of the services occurring (e.g., due to new training data) but not
necessarily documented “Recently something about the Google Vision
API changed... Suddenly, the API started to respond differently to my
requests. I sent the same picture to the API today, and I got a different
response (from the past).” [81].

5.3 Statistical Distribution Analysis
We obtained the following results χ2 = 131.86, α = 0.05, p value =
2.2 × 10−16 and ϕc = 0.362 from our distribution analysis with
Taxonomy A to compare our study with that of Aghajani et al. [1].
Comparing our study to Beyer et al. [9] produced the following
results χ2 = 145.58, α = 0.05, p value = 2.2 × 10−16 and
ϕc = 0.252. These results show that we are able to reject the null
hypothesis that the distribution of posts using each taxonomy was
the same as the comparison study. While there are limited guide-
lines for interpreting ϕc when there is no prior information for
effect size [36], Sun et al. suggests the following: 0.07 ≤ ϕc ≤ 0.20
indicates a small effect, 0.21 ≤ ϕc ≤ 0.35 indicates a medium
effect, and 0.35 > ϕc indicates a large effect. Based on this criteria
we obtained a large effect size for the documentation-specific classi-
fication (Taxonomy A) and a medium effect size for the generalised
classification (Taxonomy B).

6 DISCUSSION
6.1 Answers to Research Questions
RQ1.Howdodevelopersmis-comprehend intelligent services
as presented within Stack Overflow pain-points? Upon meet-
ing to discuss the discrepancies between our categorisation of in-
telligent service usage SO posts, we found that our interpretations
of the posts themselves were largely subjective. For example, many
posts presented multi-faceted dimensions for Taxonomy B; Beyer
et al. [9] argue that a post can have more than one question cate-
gory and therefore multi-label classification is appropriate at times.
We highlight this further in the threats to validity (section 7).

We have to define the context of intelligent services to address
RQ1. We use the concept of a “technical domain” [4] to define this
context. A technical domain captures the domain-specific concerns
that influence the non-functional requirements of a system [4]. In
the context of intelligent services, the technical domain includes
exploration, data engineering, distributed infrastructure, training
data, and model characteristics as first class citizens [4]. We would
then expect to see posts on SO related to these core concerns.

In fig. 3, for the documentation-specific classification, the ma-
jority of posts were classified as Completeness (A1-b) related
(47.87%). An interpretation for this is that the documentation does
not adequately cover the technical domain concerns. Comments by
developers such as “I’m searching for a list of all the possible image
labels that the Google Cloud Vision API can return?” [82] indicates
the documentation does not adequately describe the training data
for the API—developers do not know the required usage assump-
tions. Another quote from a developer, “Can Google Cloud Vision
generate labels in Spanish via its API? ... [Does the API] allow to
select which language to return the labels in?” [72] points to a lack
of details relating to the characteristics of the models used by the

API. It would seem that developers are unaware of aspects of the
technical domain concerns.

The next most frequent category is Correctness (A-1a) with
22.87% of posts. In the context of the technical domain there are
many limits that developers need to be aware of: range and incre-
ments of a model score [16]; required data pre-processing steps
for optimal performance; and features provided by the models (as
explained in section 5.2.2). Considering the relation between techni-
cal concerns and software quality, developers are right to question
providers on correctness; “Are the Cloud Vision API limits in docu-
mentation correct?” [65].

RQ2. Are the distribution of issues similar to prior studies?
Visual inspection of fig. 3 shows that the distributions for the
documentation-specific classification and the generalised classi-
fication are different (compared to prior studies). As a sanity check
we conducted a χ2 test and calculated the effect size ϕc . We were
able to reject the null hypothesis for both classification schemes,
that the distribution of issues were the same as the previous studies
(see section 5). We now discuss the most prominent differences
between our study and the previous studies.

In the context of intelligent service SO posts, Taxonomy B sug-
gests that Errors (B-3) are discussed most amongst developers.
These results are in contrast to similar studies made in moremature
API domains, such as Mobile Development [5, 6, 9, 10, 32] and Web
Development [38]. Here, API Usage (B-1) is much more frequently
discussed, followed by Conceptual (B-5), Discrepancy (B-2) and
Errors (B-3). We argue in the following section that an improved
developer understanding can be achieved by educating them about
the intelligent service lifecycle and the ‘whole’ system that wraps
such services.

In the Android study API usage questions (B-1) were the highest
category (28.93% compared to 22.29% in our study). As stated in the
analysis of the Error questions this discrepancy could be due to the
maturity of the domain. However, another explanation could be the
scope of the two individual studies. Beyer et al. [9] used a broad
search strategy consisting of posts tagged Android. This search
term fetches issues related to the entire Android platform which is
significantly larger than searching for computer vision APIs using
229 search terms. As a consequence of more posts and more APIs
there would be use cases resulting in additional posts related to
API Usage (B-1).

Applying existing SO taxonomies allowed us to better under-
stand the distribution of the issues across different domains. In
particular, the issues raised around intelligent services appear to be
primarily due to poor documentation, or insufficient explanation
around errors and limitations. Hence, many of the concerns could
be addressed by adding more details to the end-point descriptions,
and by providing additional information around how these services
are designed to work.

6.2 The Developer’s Learning Approach
In this subsection, we offer an explanation as to why developers
are complaining about certain things when trying to use intelligent
services on SO (RQ1), as characterised through the use of prior
SO classification frameworks (RQ2). This is described through the
theoretical lenses of two learning taxonomies: Bloom’s context

Interpreting Cloud Computer Vision Pain-Points: A Mining Study of Stack Overflow ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

complexity and intellectual ability taxonomy, and the SOLO taxon-
omy (i.e., the nature by which developer’s learn). We argue that the
issues with using intelligent services relating to the lower-levels
of these learning taxonomies are easily solvable by slight fixes and
improvements to the documentation of these services. However, the
higher dimensions of these taxonomies demand far more rigorous
mitigation strategies than documentation alone (potentially more
structured education). Thus, many of the questions posted are from
developers who are learning to understand the domain of intelligent
services and AI, and (hence) both SOLO and Bloom’s taxonomies
are applicable for this discussion—as described below within the
context of our domain—as pedagogical aides.

6.2.1 Bloom’s Taxonomy. The cognitive domain under Bloom’s
taxonomy [12] consists of six objectives. Within the context of
intelligent services, developers are likely to ask questions due to
causal links that exist in the following layers of Bloom’s taxonomy:
(i) knowledge, where the developer does not remember or know of
the basic concepts of computer vision and AI (in essence, they may
think that AI is as smart as a human); (ii) comprehension, where the
developer does not understand how to interpret basic concepts, or
they are mis-understanding how they are used in context; (iii) appli-
cation, where the developer is struggling to apply existing concepts
within the context of their own situation; (iv) analysis, where the de-
veloper is unable to analyse the results from intelligent services (i.e.,
understand response objects); (v) evaluation, where the developer
is unable to evaluate issues and make use of best-practices when
using intelligent services; and (vi) synthesise, where the developer
is posing creative questions to ask if new concepts are possible with
computer vision services.

6.2.2 SOLO Taxonomy. The SOLO taxonomy [11] consists of five
levels of understanding. The causal links behind the SO questions
we have found relate to the following layers of the SOLO taxon-
omy: (i) pre-structural, where the developer has a question indicat-
ing incompetence or has little understanding of computer vision;
(ii) uni-structural, where the developer is struggling with one key
aspect (i.e., a simple question about computer vision); (iii) multi-
structural, where the developer is questioning multiple concepts
(independently) to understand how to build their system (e.g., sys-
tem integration with the intelligent service); (iv) relational, where
the developer is comparing and contrasting the best ways to achieve
something with intelligent services; and (v) extended abstract, where
the developer poses a question theorising, formulating or postulat-
ing a new concept within intelligent services.

6.2.3 Aligning SO taxonomies to Bloom’s and SOLO taxonomies.
To understand our findings with the lenses of pedagogical aids,
we aligned Taxonomies A and B to Bloom’s and the SOLO tax-
onomies for a random sample of 50 issues described in section 4.3.1.
To do this, we reviewed all 50 of these SO posted questions and
applied both the Bloom and SOLO taxonomies. The primary author
assigned each of the 50 questions a level within the Bloom and
SOLO taxonomies, removed out noise (i.e., false positive posts of no
relevance to intelligent services) and unassigned dimensions from
reliability agreement, and then compared the relevant dimensions
of Taxonomy A and B dimensions (not sub-categories). The com-
parison of alignments of posts to the five SOLO dimensions and

35
.7
9%

29
.4
7%

30
.5
3%

4.
21

%

K
no

w
le
dg

e

C
om

pr
eh

en
si
on

A
pp

lic
at
io
n

A
na

ly
si
s

57
.3
7%

30
.7
9%

5.
26

%

6.
58

%

Pr
e-
St
ru
ct
ur
al

U
ni
-S
tr
uc

tu
ra
l

M
ul
ti-
St
ru
ct
ur
al

Re
la
tio

na
l

Figure 4: Alignment of Bloom (Orange) and SOLO (Blue) tax-
onomies against Taxonomy A and B dimensions against all
213 classifications made in the random sample of 50 posts.

six Bloom dimensions are shown in fig. 4. We acknowledge that
this is only an approximation of the current state of the developer’s
understanding of intelligent services. This early model will require
further studies to perform a more thorough analysis, but we offer
this interpretation for early discussion.

As shown in fig. 4, the bulk of the posts fall in the lower con-
structs of Bloom’s and the SOLO taxonomy. This indicates that
modification to certain documentation aspects can address many of
these issues. For example, many issues can be ratified with better
descriptions of response data and error messages: “I was exploring
google vision and in the specific function ‘detectCrops’, gives me the
crop hints. what does this means exactly?” [88]; “I am a making a
very simple API call to the Google Vision API, but all the time it’s
giving me error that ‘google.oauth2’ module not found.” [89]

However, and more importantly, the higher-construct questions
ranging from the middle of the third dimensions on are not as
easily solvable through improved documentation (i.e., apply and
multi-structural) which leaves 34.74% (Bloom’s) and 11.84% (SOLO)
unaccounted for, resolvable only through improved education prac-
tices.

6.3 Implications
6.3.1 Researchers. (i) Investigate the evolution of post classification:
Analysing how the distribution of the reported issues changes over
time would be an important study. This study could answer ques-
tions such as ‘Does the evolution of intelligent services follow the
same pattern as previous software engineering trends such as mobile
app or web development?’ As with any new emerging field, it is
key to analyse how developers perceive such issues over time. For
instance, early issues with web or mobile app development matured
as their respective domain matured, and we would expect similar
results to occur in the intelligent services space. Future researchers
could plan for a longitudinal study, such as a long-term survey with
developers to gather their insights in this evolving domain, review-
ing case studies of projects that use intelligent web services from
now into the future, or re-mining SO at a later date and compar-
ing the results to this study. This will help assess evolving trends
and characteristics, and determine how and if the nature of the
developer’s experience with intelligent services (and AI in general)
changes with time. (ii) Investigate the impact of technical challenges

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Alex Cummaudo et al.

Table 2: Example Alignments of Stack Overflow posts to Bloom’s and SOLO taxonomy.

Issue Quote Bloom SOLO

“I’m using Microsoft Face API for a small project and I was trying to detect a face inside a .jpg file in
the local system (say, stored in a directory D:\Image\abc.jpg)... but it does not work.” [83]

Knowledge Pre-
Structural

“The problem is that the response JSON is rather big and confusing. It says a lot about the picture but
doesn’t say what the whole picture is of (food or something like that).” [84]

Comprehension Uni-
Structural

“The bounding box around individual characters is sometimes accurate and sometimes not, often
within the same image. Is this a normal side-effect of a probabilistic nature of the vision algorithm, a
bug in the Vision API, or of course an issue with how I’m interpreting the response?” [85]

Comprehension Multi-
Structural

“I’m working on image processing. So far Google Cloud Vision and Clarifai are the best API’s to detect
objects from images and videos, but both API’s doesn’t support object detection from 360 degree images
and videos. Is there any solution for this problem?” [86]

Application Uni-
Structural

“Before I train Watson, I can delete pictures that may throw things off. Should I delete pictures of:
Multiple dogs, A dog with another animal, A dog with a person, A partially obscured dog, A dog
wearing glasses, Also, would dogs on a white background make for better training samples? Watson
also takes negative examples. Would cats and other small animals be good negative examples?” [87]

Analysis Relational

on API usage: As discussed above, intelligent services have char-
acteristics that may influence API usage patterns and should be
investigated as a further avenue of research. Further mining of open
source software repositories that make use of intelligent services
could be assessed, thereby investigating if API patterns evolve with
the rise of AI-based applications.

6.3.2 Educators. (i) Education on high-level aspects of intelligent
services: As demonstrated in our analysis of their SO posts, many
developers appear to be unaware of the higher-level concepts that
exist within the AI and ML realm. This includes the need to pre-
and post-process data, the data dependency and instability that
exists in these services, and the specific algorithms that empower
the underlying intelligence and hence their limitations and charac-
teristics. However, most developers don’t seem to complain about
these factors due to the lack of documentation (i.e., via Taxonomy
A). Rather, they are unaware that such information should be doc-
umentation and instead ask generalised and open questions (i.e.,
via Taxonomy B). Thus, documentation improvements alone may
not be enough to solve these issues. This results in uncertainty
during the preparation and operation (usage) of such services. Such
high-level conceptual information is currently largely missing in de-
veloper documentation for intelligent services. Furthermore, many
of the background ML and AI algorithm information needed to
understand and use intelligent systems in context are built within
data science (not SE) communities. A possible road-map to mitigate
this issue would be the development of a software engineer’s ‘crash-
course’ in ML and AI. The aim of such a course would encourage
software engineers to develop an appreciation of the nuances and
the inherent risks and implications that comes with using intelli-
gent services. This could be taught at an undergraduate level to
prepare the next generation of developers of a ‘programming 2.0’
era. However, the key aspects and implications that are presented
with AI would need to be well-understood before such a course
is developed, and determining the best strategy to curate the con-
tent to developers would be best left to the SE education domain.
Further investigation in applying educational taxonomies in the
area (such as our attempts to interpret our findings using Bloom’s

and the SOLO taxonomies) would need to be thoroughly explored
beforehand.

6.3.3 Software Engineers. (i) Better understanding of intelligent API
contextual usage: Our results show that developers are still learning
to use these APIs. We applied two learning perspectives to interpret
our results. In applying the two pedagogical taxonomies to our
findings, we see that most issues seem to fall into the pre-structural
and knowledge-based categories; little is asked of higher level con-
cepts and a majority of issues do not offer complex analysis from
developers. This suggests that developers are struggling as they
are unaware of the vocabulary needed to actually use such APIs,
further reinforcing the need for API providers to write overview
documentation (as noted in prior work [15]) and not just simple
endpoint documentation. This said, improved documentation isn’t
always enough—as suggested by our discussion in section 6.2, soft-
ware engineers should explore further education to attain a greater
appreciation of the nuances of ML when attempting to use these
services.

6.3.4 Intelligent Service Providers. (i) Clarify use cases for intelli-
gent services: Inspecting SO posts revealed that there is a level of
confusion around the capabilities of different intelligent services.
This needs to be clarified in associated API documentation. The
complication with this comes with targeting the documentation
such that software developers (who are untrained in the nuances
of AI and ML as per section 6.3.2) can to digest it and apply it in-
context to application development. (ii) Technical domain matters:
More needs to be provided than a simple endpoint description as
conventional APIs offer by describing the whole framework by
which the endpoint sits, giving further context. This said, compared
to traditional APIs, we find that developers complain less about
the documentation and more about shallower issues. All expected
pre-processing and post-processing needs to be clearly explained. A
possible mitigation to this could be an interactive tutorial that helps
developers fully understand the technical domain using a hands-on
approach. For example, websites offer interactive Git tutorials7 to

7For example, https://learngitbranching.js.org.

https://learngitbranching.js.org

Interpreting Cloud Computer Vision Pain-Points: A Mining Study of Stack Overflow ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

help developers understand and explore the technical domain mat-
ters under version control in their own pace. (iii) Clarify limitations:
API developers need to add clear limitations of the existing APIs.
Limitations include list of objects that can be returned from an
endpoint. We found that the cognitive anchors of how existing,
conventional API documentation is written has become ‘ported’
to the computer vision realm, however a lot more overview docu-
mentation than what is given at present (i.e., better descriptions
of errors, improved context of how these systems work in etc.)
needs to be given. Such documentation could be provided using
interactive tutorials.

7 THREATS TO VALIDITY
Construct validity: Some questions extracted from SO produced
false positives, as mentioned in sections 4.2.1, 4.2.3 and 5. However,
all non-relevant posts were marked as noise for our study, and thus
did not affect our findings. Moreover, SO is known to have issues
where developers simply ask basic questions without looking at
the actual documentation where the answer exists. Such questions,
although down-voted, were still included in our data-set analysis,
but as these were so few, it does not have a substantial impact on
categorised posts.

Internal validity: As detailed in section 4.3.1, Taxonomies A and
B present slight and fair agreement, respectively, when inter-rater
reliability was applied. The nature of our disagreements largely
fell due to the subjectivity in applying either taxonomies to posts.
Despite all coders agreeing to the shared interpretation of both
taxonomies, both taxonomies are subjective in their application,
which was not reported by either Aghajani et al. or Beyer et al.. In
many cases, multi-label classification seemed appropriate, however
both taxonomies use single-label mapping which we find results
in too much subjectivity. This subjectivity, therefore, ultimately
adversely affects IRR analysis. Thus, a future mitigation strategy for
similar work should explore multi-label classification to avoid this
issue; Beyer et al., for example, plan for multi-label classification
as future work. However, these studies would need to consider the
statistical challenges in calculating multi-rater, multi-label IRR for
thorough reliability analysis in addressing subjectivity. The selec-
tion of SO posts used for our labelling, chiefly in the subjectivity of
our classifications, is of concern. We mitigate this by an extensive
review process assessing the reliability of our results as per sec-
tion 4.3.1. The classification of our posts into the SOLO and Bloom’s
taxonomies was performed by the primary author only, and there-
fore no inter-rater reliability statistics were performed. However,
we used these pedagogy related taxonomies as a lens to gain an
additional perspective to interpret our results. Future studies should
attempt a more rigorous analysis of SO posts using Bloom’s and
SOLO taxonomies. We only aligned posts to one category for each
taxonomy and did not align these using multi-label classification.
This brings more complexity to the analysis, and our attempts to
repeat prior studies’ methodologies (see section 3). Multi-label clas-
sification for intelligent services SO posts is an avenue for future
research.

External validity: While every effort was made to select posts
from SO relevant to computer vision services, there are some cases
where we may have missed some posts. This is especially due to

the case where some developers mis-reference certain intelligent
services under different names (see section 4.2.1). Our SOLO and
Bloom’s taxonomy analysis has only been investigated through the
lenses of intelligent services, and not in terms of conventional APIs
(e.g., Andriod APIs). Therefore, we are not fully certain how these
results found would compare to other types of APIs. Two existing
SO classification taxonomies were used rather than developing our
own. We wanted to see if previous SO taxonomies could be applied
to intelligent services before developing a new, specific taxonomy,
and these taxonomies were applied based on our interpretation (see
section 4.2.4) and may not necessarily reflect the interpretation of
the original authors. Moreover, automated techniques such as topic
modelling were not utilised as we found these produce descriptive
classifications only (see section 3). Hence, manual analysis was
performed by humans to ensure categories could be aligned back
to causal factors. Only English-speaking intelligent services were
selected; the applicability of our analysis to other, non-English
speaking services may affect results. Use of computer vision in
this study is an illustrative example to focus on one area of the
intelligent services spectrum. While our narrow scope helps us
obtain more concrete findings, we suggest that wider issues exist
in other intelligent service domains may affect the genralisability
of this study, and suggest future work be explored in this space.

8 CONCLUSIONS
Intelligent services, such as computer vision services, offer pow-
erful capabilities that can be added into the developer’s toolkit
via simple RESTful APIs. However, certain technical nuances of
computer vision become abstracted away. We note that this abstrac-
tion comes at the expense of a full appreciation of the technical
domain, context and proper usage of these systems. We applied
two recent existing SO classification taxonomies (from 2018 and
2019) to see if existing taxonomies are able to fully categorise the
types of complaints developers have. Intelligent services have a
diverging distribution of the types of issues developers ask when
compared to more mature domains (i.e., mobile app development
and web development). Developers are more likely to complain
about shallower, simple debugging issues without a distinct under-
standing of the AI algorithms that actually empower the APIs they
use. Moreover, developers are more likely to complain about the
completeness and correctness of existing intelligent service docu-
mentation, thereby suggesting that the documentation approach
for these services should be reconsidered. Greater attention to edu-
cation in the use of AI-powered APIs and their limitations is needed,
and our discussion offered in section 6.2 motivates future work in
resolving these issues in the SE education space.

ACKNOWLEDGEMENTS
We acknowledge Zac Brannelly, Fayaz Beigh, and Vivian Dabre for
their assistance in categorising posts.

REFERENCES
[1] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-Vásquez,

Laura Moreno, Gabriele Bavota, and Michele Lanza. 2019. Software documentation
issues unveiled. In Proceedings of the 41st International Conference on Software
Engineering. IEEE Press, Montreal, QC, Canada, 1199–1210.

[2] Md Ahasanuzzaman, Muhammad Asaduzzaman, Chanchal K Roy, and Kevin A
Schneider. 2018. Classifying stack overflow posts on API issues. In 2018 IEEE

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Alex Cummaudo et al.

25th International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, Campobasso, Italy, 244–254.

[3] Miltiadis Allamanis and Charles Sutton. 2013. Why, when, and what: analyzing
stack overflow questions by topic, type, and code. In Proceedings of the 10thWorking
Conference on Mining Software Repositories. IEEE Press, San Francisco, CA, USA,
53–56.

[4] Scott Barnett. 2018. Extracting technical domain knowledge to improve software
architecture. Ph.D. Dissertation. Hawthorn, VIC, Australia.

[5] Scott Barnett, Rajesh Vasa, and John Grundy. 2015. Bootstrappingmobile app devel-
opment. In Proceedings of the 37th International Conference on Software Engineering
- Volume 2. IEEE Press, Florence, Italy, 657–660.

[6] Scott Barnett, Rajesh Vasa, and Antony Tang. 2015. A Conceptual Model for
ArchitectingMobile Applications. In 25thWorking IEEE/IFIP Conference on Software
Architecture. IEEE Computer Society, Montreal, QC, Canada, 105–114.

[7] Anton Barua, StephenWThomas, and Ahmed EHassan. 2014. What are developers
talking about? An analysis of topics and trends in Stack Overflow. Empirical
Software Engineering 19, 3 (2014), 619–654.

[8] Ohad Barzilay, Christoph Treude, and Alexey Zagalsky. 2013. Facilitating Crowd
Sourced Software Engineering via Stack Overflow. Finding Source Code on the
Web for Remix and Reuse 37, 4 (2013), 289–308.

[9] Stefanie Beyer, Christian Macho, Martin Pinzger, and Massimiliano Di Penta. 2018.
Automatically classifying posts into question categories on stack overflow. In the
26th Conference. ACM, Gothenburg, Sweden, 211–221.

[10] Stefanie Beyer and Martin Pinzger. 2014. A Manual Categorization of Android
App Development Issues on Stack Overflow. In 2014 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE Computer Society, Victoria,
BC, Canada, 531–535.

[11] John B. Biggs. 1987. Evaluating the Quality of Learning: The SOLO Taxonomy
(Structure of the Observed Learning Outcome). Management in Education 1, 4
(1987), 20–20.

[12] Benjamin S Bloom. 1956. Taxonomy of educational objectives. Vol. 1: Cognitive
domain. David McKay Co Inc., New York, NY, USA.

[13] Ram Chillarege, Inderpal S Bhandari, Jarir K Chaar, Michael J Halliday, Di-
ane S Moebus, Bonnie K Ray, and Man-Yuen Wong. 1992. Orthogonal Defect
Classification-A Concept for In-Process Measurements. IEEE Trans. Softw. Eng. 18,
11 (1992), 943–956.

[14] Jacob Cohen. 1960. A coefficient of agreement for nominal scales. Educational
and Psychological Measurement 20, 1 (1960), 37–46.

[15] Alex Cummaudo, Rajesh Vasa, and John Grundy. 2019. What should I document?
A preliminary systematic mapping study into API documentation knowledge. In
13th International Symposium on Empirical Software Engineering and Measurement
(ESEM). IEEE, Porto de Galinhas, Recife, Brazil, 1–6.

[16] Alex Cummaudo, Rajesh Vasa, John Grundy, Mohamed Abdelrazek, and Andrew
Cain. 2019. Losing Confidence in Quality: Unspoken Evolution of Computer
Vision Services. In 2019 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, Cleveland, OH, USA, 333–342.

[17] Matthias Gamer, Jim Lemon, and Ian Fellows Puspendra Singh. 2012. irr: Various
Coefficients of Interrater Reliability and Agreement. (2012).

[18] Kevin A Hallgren. 2012. Computing Inter-Rater Reliability for Observational
Data: An Overview and Tutorial. Tutorials in Quantitative Methods for Psychology
8, 1 (Feb. 2012), 23–34.

[19] Daqing Hou and Lingfeng Mo. 2013. Content Categorization of API Discus-
sions. In 2013 IEEE International Conference on Software Maintenance (ICSM). IEEE
Computer Society, Eindhoven, Netherlands, 60–69.

[20] Magne Jorgensen, Tore Dybå, Knut Liestøl, and Dag I K Sjøberg. 2016. Incorrect
results in software engineering experiments: How to improve research practices.
Journal of Systems and Software 116 (2016), 133–145.

[21] Natalia Juristo and Omar S Gómez. 2012. Replication of Software Engineering
Experiments. Empirical Software Engineering and Verification 7007, 5 (2012), 60–88.

[22] David Kavaler, Daryl Posnett, Clint Gibler, Hao Chen, Premkumar Devanbu, and
Vladimir Filkov. 2013. Using and Asking: APIs Used in the Android Market and
Asked about in StackOverflow. In International Conference on Social Informatics,
Adam Jatowt, Ee-Peng Lim, Ying Ding, Asako Miura, Taro Tezuka, Gaël Dias,
Katsumi Tanaka, Andrew Flanagin, and Bing TianDai (Eds.). Springer International
Publishing, Kyoto, Japan, 405–418.

[23] Barbara A Kitchenham, Tore Dybå, and Magne Jorgensen. 2004. Evidence-Based
Software Engineering. In Proceedings of the th International Conference on Software
Engineering. IEEE Computer Society, Edinburgh, UK, 273–281.

[24] Klaus Krippendorff. 2004. Content Analysis. SAGE.
[25] J Richard Landis and Gary G Koch. 1977. The Measurement of Observer Agree-

ment for Categorical Data. Biometrics 33, 1 (March 1977), 159–17.
[26] Richard J Light. 1971. Measures of response agreement for qualitative data: Some

generalizations and alternatives. Psychological Bulletin 76, 5 (1971), 365–377.
[27] Diego Lo Giudice, Christopher Mines, Amanda LeClair, Rowan Curran, and

Amy Homan. 2016. How AI Will Change Software Development And Applications.
Technical Report.

[28] Mary L McHugh. 2012. Interrater reliability: the kappa statistic. Biochemia
medica: Biochemia medica 22, 3 (2012), 276–282.

[29] Tomohiro Ohtake, Alex Cummaudo, Mohamed Abdelrazek, Rajesh Vasa, and
John Grundy. 2019. Merging Intelligent API Responses Using a Proportional
Representation Approach. In Empirical Software Engineering and Verification.
Springer International Publishing, Cham, 391–406.

[30] Andres L Martinez Ortiz. 2017. Curating Content with Google Machine Learning
Application Programming Interfaces. In EIAPortugal.

[31] RightScale Inc. 2018. RightScale 2018 State of the Cloud Report. Technical Report.
[32] Christoffer Rosen and Emad Shihab. 2016. What are mobile developers asking

about? A large scale study using stack overflow. Empirical Software Engineering
21, 3 (2016), 1192–1223.

[33] Martin Shepperd. 2018. Replication studies considered harmful. In the 40th
International Conference. ACM, Gothenburg, Sweden, 73–76.

[34] David J Sheskin. 2003. Handbook of parametric and nonparametric statistical
procedures. Chapman and Hall/CRC, New York, NY, USA.

[35] Ryan Stevens, Jonathan Ganz, Vladimir Filkov, Premkumar Devanbu, and Hao
Chen. 2013. Asking for (and about) permissions used by Android apps. Proceedings
of the 10th Working Conference on Mining Software Repositories (2013), 31–40.

[36] Shuyan Sun, Wei Pan, and Lihshing Leigh Wang. 2010. A comprehensive review
of effect size reporting and interpreting practices in academic journals in education
and psychology. Journal of Educational Psychology 102, 4 (2010), 989.

[37] Amjed Tahir, Aiko Yamashita, Sherlock Licorish, Jens Dietrich, and Steve Counsell.
2018. Can you tell me if it smells?: A study on how developers discuss code smells
and anti-patterns in Stack Overflow. In 22nd International Conference on Evaluation
and Assessment in Software Engineering (EASE). ACM, Christchurch, New Zealand,
68–78.

[38] Christoph Treude, Ohad Barzilay, and Margaret-Anne Storey. 2011. How do
programmers ask and answer questions on the web? (NIER track). In 33rd Inter-
national Conference on Software Engineering (ICSE). ACM, Waikiki, Honolulu, HI,
USA, 804–807.

[39] Gias Uddin and Foutse Khomh. 2019. Automatic Mining of Opinions Expressed
About APIs in Stack Overflow. International Software Engineering Research Network
PP, 99 (Feb. 2019), 1–1.

[40] Gias Uddin and Martin P Robillard. 2015. How API Documentation Fails. IEEE
Software 32, 4 (June 2015), 68–75.

[41] Wei Wang and Michael W Godfrey. 2013. Detecting API usage obstacles: a
study of iOS and Android developer questions. In Proceedings of the 10th Working
Conference on Mining Software Repositories. IEEE Press, San Francisco, CA, USA,
61–64.

ONLINE ARTEFACTS
[42] “ICSE 2020 Submission #564 Supplementary Materials,” http://bit.ly/2Z8zOKW.
[43] “Vision API topicality and score always the same,” http://bit.ly/2TD5As2.
[44] “Meaning of score in Microsoft Cognitive Service’s Entity Linking API,” http:

//bit.ly/2TD9vVw.
[45] “Google Vision API does not recognize single digits,” http://bit.ly/31Ws1Nj.
[46] “Google Cloud Vision - Numbers and Numerals OCR,” http://bit.ly/31P07mi.
[47] “Human body part detection in Android,” http://bit.ly/31T5pxd.
[48] “Is there a full list of potential labels that Google’s Vision API will return?”

http://bit.ly/2KNnJSB.
[49] “Vision API - Image Content Analysis Âă|Âă Cloud Vision API Âă|Âă Google

Cloud,” http://bit.ly/2TD9mBs.
[50] “Amazon Rekognition,” https://amzn.to/2TyT2BL.
[51] “Image Processing with the Computer Vision API | Microsoft Azure,” http://bit.

ly/2YqhkS6.
[52] “Watson visual recognition,” https://ibm.co/2TBNIO4.
[53] “Detecting labels in an image,” http://bit.ly/2UlkW9K.
[54] “Clarifai,” http://bit.ly/2TB3kSa.
[55] “Image Recognition API & Visual Search Results,” http://bit.ly/2UmNPCw.
[56] “Image Recognition API | DeepAI,” http://bit.ly/2TBNYgf.
[57] “Imagga - powerful image recognition apis for automated categorization & tag-

ging in the cloud and on-premises,” http://bit.ly/2TxsyRe.
[58] “Image recognition - talkwalker,” http://bit.ly/2TyT7W5.
[59] “Megvii,” http://bit.ly/2WJYFzk.
[60] “Tuputech,” http://bit.ly/2uF4IsN.
[61] “Yitu technology,” http://bit.ly/2uGvxgf.
[62] “Sensetime,” http://bit.ly/2WH6RjF.
[63] “Deepglint,” http://bit.ly/2uHHdPS.
[64] “aws Rekognition not initializing on iOS,” http://bit.ly/31UeqG9.
[65] “Are the Cloud Vision API limits in documentation correct?” http://bit.ly/

31SsNLg.
[66] “Multiple Google Vision OCR requests at once?” http://bit.ly/31P09dU.
[67] “AWS Rekognition PHP SDK gives invalid image encoding error,” http://bit.ly/

31Sgpec.
[68] “How to set up AWS mobile SDK in iOS project in Xcode,” http://bit.ly/31St2pE.
[69] “Google Api Vision, ""before_request"" error,” http://bit.ly/31Z27Zt.
[70] “Google Cloud Vision fails at batch annotate images. Getting Netty Shaded

ClosedChannelException error,” http://bit.ly/31UrBH9.

http://bit.ly/2Z8zOKW
http://bit.ly/2TD5As2
http://bit.ly/2TD9vVw
http://bit.ly/2TD9vVw
http://bit.ly/31Ws1Nj
http://bit.ly/31P07mi
http://bit.ly/31T5pxd
http://bit.ly/2KNnJSB
http://bit.ly/2TD9mBs
https://amzn.to/2TyT2BL
http://bit.ly/2YqhkS6
http://bit.ly/2YqhkS6
https://ibm.co/2TBNIO4
http://bit.ly/2UlkW9K
http://bit.ly/2TB3kSa
http://bit.ly/2UmNPCw
http://bit.ly/2TBNYgf
http://bit.ly/2TxsyRe
http://bit.ly/2TyT7W5
http://bit.ly/2WJYFzk
http://bit.ly/2uF4IsN
http://bit.ly/2uGvxgf
http://bit.ly/2WH6RjF
http://bit.ly/2uHHdPS
http://bit.ly/31UeqG9
http://bit.ly/31SsNLg
http://bit.ly/31SsNLg
http://bit.ly/31P09dU
http://bit.ly/31Sgpec
http://bit.ly/31Sgpec
http://bit.ly/31St2pE
http://bit.ly/31Z27Zt
http://bit.ly/31UrBH9

Interpreting Cloud Computer Vision Pain-Points: A Mining Study of Stack Overflow ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

[71] “Amazon Rekognition Image caption,” http://bit.ly/31P08qm.
[72] “Can Google Cloud Vision generate labels in Spanish via its API?” http://bit.ly/

31UcBsY.
[73] “Specify language for response in Google Cloud Vision API,” http://bit.ly/

31SsUGG.
[74] “Google Vision Accent Character Set NodeJs,” http://bit.ly/31TsVdp.
[75] “How to get a position of custom object on image using vision recognition api,”

http://bit.ly/3210Q49.
[76] “similar face recognition using google cloud vision API in android studio,” http:

//bit.ly/31WhMZy.
[77] “Text extraction - line-by-line,” http://bit.ly/31Yc21s.
[78] “Getting wrong text sequence when image scanned by offline google mobile

vision API,” http://bit.ly/31Sgr5O.
[79] “How can we find an exhaustive list (or graph) of all logos which are effectively

recognized using Google Vision logo detection feature?” http://bit.ly/31Z27IX.

[80] “How to confidently validate object detection results returned from Google Cloud
Vision,” http://bit.ly/31UcCNy.

[81] “Google Vision API text detection strange behaviour - Javascript,” http://bit.ly/
31Ucyxi.

[82] “All GoogleVision label possibilities?” http://bit.ly/31R4FZi.
[83] “Adding a local path to Microsoft Face API by Python,” http://bit.ly/2KLeMt3.
[84] “google cloud vision category detecting,” http://bit.ly/31Uf32t.
[85] “Google Cloud Vision OCR API returning incorrect values for bounding box/ver-

tices,” http://bit.ly/31UeZjf.
[86] “Google cloud Vision and Clarifai doesn’t Support tagging for 360 degree images

and videos,” http://bit.ly/31StuEm.
[87] “Image Selection for Training Visual Recognition,” http://bit.ly/31W8lcw.
[88] “Can i give aspect ratio in Google Vision api?” http://bit.ly/2KSJwsp.
[89] “Google Vision API: ModuleNotFoundError: module not found ’google.oauth2’,”

http://bit.ly/31VlZfU.

http://bit.ly/31P08qm
http://bit.ly/31UcBsY
http://bit.ly/31UcBsY
http://bit.ly/31SsUGG
http://bit.ly/31SsUGG
http://bit.ly/31TsVdp
http://bit.ly/3210Q49
http://bit.ly/31WhMZy
http://bit.ly/31WhMZy
http://bit.ly/31Yc21s
http://bit.ly/31Sgr5O
http://bit.ly/31Z27IX
http://bit.ly/31UcCNy
http://bit.ly/31Ucyxi
http://bit.ly/31Ucyxi
http://bit.ly/31R4FZi
http://bit.ly/2KLeMt3
http://bit.ly/31Uf32t
http://bit.ly/31UeZjf
http://bit.ly/31StuEm
http://bit.ly/31W8lcw
http://bit.ly/2KSJwsp
http://bit.ly/31VlZfU

