
Bootstrapping Mobile App Development
Scott Barnett, Rajesh Vasa, John Grundy

Centre for Computing and Engineering Software Systems & Software Innovation Lab
Swinburne University of Technology, Melbourne, Australia

Email: sbarnett@swin.edu.au, rvasa@swin.edu.au, jgrundy@swin.edu.au

Abstract—Modern IDEs provide limited support for developers

when starting a new data-driven mobile app. App developers

are currently required to write copious amounts of boilerplate

code, scripts, organise complex directories, and author actual

functionality. Although this scenario is ripe for automation,

current tools are yet to address it adequately. In this pa-

per we present RAPPT, a tool that generates the scaffolding

of a mobile app based on a high level description speci-

fied in a Domain Specific Language (DSL). We demonstrate

the feasibility of our approach by an example case study

and feedback from professional development team. Demo at:

https://www.youtube.com/watch?v=ffquVgBYpLM

I. INTRODUCTION

Modern IDEs for mobile app development have relatively
primitive code generation functionality. This is especially true
when starting a new mobile project, where code generation
offers a large benefit. A developer has four options when
starting a new project: a) Use the IDE to create a project
skeleton that contains the build files and one or two code
files, b) Use a custom generation script that provides a wider
range of project types and libraries e.g. Android bootstrap1, c)
Copy code from a similar previous project, or d) Use a Model
Driven Development (MDD) approach involving a VML [1]
or a DSL [2] to generate an app. Out of these options MDD
tools provide the most code generation, and theoretically offer
the higher productivity gains. However, developers choose to
use a combination of the other three approaches when building
an app. One explanation for this is that code generation tools
often have a bad reputation amongst developers due to their
limited flexibility and poor quality output.

In addition to limitations within the tooling, developers
have to contend and deal with two more common distractions
when building a typical data driven app – a) The existing
programming language, frameworks and SDK require many
repeating blocks of boilerplate code, and b) Functionality
implemented throughout an app is similar – in that data driven
apps tend to mostly get data from a source and render it to
the screen. Modern libraries alleviate these issues but they
can only do so much. Similar functionality in an app such as
rending a list with data involves many components that need to
be wired up correctly and each instance has slight differences
e.g each list displays different data. A data-driven app is an
app that predominantly passes data between one or more APIs
and screens displaying the necessary information to the user.
All Data-driven apps typically perform the following tasks:

1http://www.androidbootstrap.com/

• Connect to an online API to send and receive data.
• Retrieve content, usually predominantly from a single

API.
• Pass data between screens to allow users to perform

business workflows e.g. transfer money between bank
accounts.

• Validate user input and format data to display to the user.
• Capture some amount of input from the user and either

pass it to an API or store it locally.
These tasks are repeated through out the entire app. The end
result from developing a simple data-driven app that fulfils
the list above is copious amounts of boilerplate code - often
hundreds if not thousands of lines of code - that is to be written
by hand. Furthermore, a high quality app requires developers
to consider the concerns of a mobile app shown in Figure 1.
Each of these concerns have an influence on the design and
implementation of the app requiring careful attention from
developers. The choice on the type of app to build also impacts
the concerns to consider. There are three types of mobile
apps, native, hybrid, or a mobile web app and the decision
is determined by a range of constraints, including technical,
cultural background of engineers, as well as the business
requirements. A non-trivial proportion of teams choose to
build a native mobile application typically motivated by user
experience, or performance objectives. Our research focuses
on improving the quality and productivity of those native app
developers by removing the need to write boilerplate code.

We present RAPPT2, a bootstrapping tool for professional
Android app developers inspired by MDD techniques. RAPPT
generates scaffolding which is built upon and extended by the
developer to finish the app. Care has been taken to ensure that
generated code conforms with standards of high quality code
written by a professional. Developers describe an app using
a high-level Domain Specific Language (DSL) from which
RAPPT infers what needs to be generated. RAPPT needs
to understand many Android concepts shown in Figure 1 in
order to make smart inferences. Based on this large number
of concepts we decided to only target a single platform. Our
approach provides both the full capabilities of the Android
platform and the productivity benefits anticipated by MDD.

II. RELATED WORK

MDD has long been a an area of study that has promised
increased developer productivity and reduced costs [3]. In

2http://rappt.io/

jgrundy
2015 IEEE/ACM International Conference on Software Engineering (ICSE 2015), Florence, Italy, 18-23 May 2015 © IEEE 2015

jgrundy

Mobile App Concerns
User

Experience

Error
Handling

State
Models

Context

UI Guidelines

Session
Management

Navigation
Flow

Data
Model

Data Flow

Concurrency

Power
Consumption

3rd
Party

Libraries

Caching

Device
Fragmentation

SE
Best

Practices

Hardware
Constraints

XML layouts Build Scripts
XML drawable Activities
Intents UI patterns
Fragments Adapters
Dependencies Asynch tasks.
XML style files Error Reporting
Data Formatting XML string files
Permissions Logging code
Services Android themes
Error Handling Utilities
API connections Progress indicators
Event handling UI elements

Android SDK

Fig. 1. Concerns facing mobile app developers.

the context of mobile apps, Khambati et al. [4] created a
Visual Modelling Language to generate apps in the context
of a health care plan. The visual language was intended to
be used by health care professionals rather than developers
and the generated app code was not open for modification.
More recently, Nguyen et al.[5] developed a framework for
generating the master/detail Android design pattern. The focus
of this research was a small sub component of a final app
rather than creating a fully working app. In recent work
Ribeiro et al.[6] use a UML based approach to generate mobile
apps. The authors describe a multi-stage MDD approach to
app development that can generate a lot of boilerplate code
for multiple platforms. Other researchers also view MDD,
through the use of DSLs, as a way to address the issue of
platform fragmentation [7], [8], [9]. These approaches focus
on supporting a feature set that is common across all target
platforms. There are also a number of commercial products for
developing native apps Titanium3 and Xamarin4 being two of
the more popular ones. Both tools provide an alternative lan-
guage, for the purpose of cross-platform development, to build
Android apps (Javascript in Titanium and C# in Xamarin). For
developing an Android app the same level of effort is required
as using the Android SDK as these framework APIs map 1-
to-1 with the Android API.

Cross-platform frameworks, and most MDD approaches can
handle inconsistencies between platforms in one of three ways:
1) Only support functionality common to all platforms, 2) Pick
a base platform as the standard and implement missing features
on the other platforms or 3) Provide a means to specify
platform specific behaviour often with a plugin architecture
for each platform. These options either limit the capabilities
or greatly increase the complexity of using the tool. RAPPT
avoids these limitations by focusing on a single platform. As
a result RAPPT permits the inclusion of high level constructs
specifically for Android development and the full capabilities
of Android APIs are still available to developers by modifying

3http://www.appcelerator.com/titanium/
4http://xamarin.com/

generated code. In effect, we focus on a platform specific DSL,
as in we consider the platform (e.g. Android) as part of the
domain allowing us to generate native apps that map better to
developer expectations.

III. RAPPT
RAPPT differs from existing mobile app development tools

and MDD solutions for the mobile application development
domain. Key novel aspects of RAPPT include:

• RAPPT is aimed at improving productivity and quality
for professional app developers. Most other app develop-
ment tools target inexperienced developers or even non-
technical end-users [10], [11] – limiting their scope.

• Many MDD solutions require generated code to be re-
generated from their models or greatly limit (or prohibit)
code modification [7]. RAPPT code is designed to be
edited by software engineers.

• Rapid prototyping tools for mobile apps are designed
to generate throw-way prototypes5 again often limiting
generated code modification. RAPPT code is designed to
be incorporated into the finished app.

• MDD approaches for web and mobile app generation
tend to try and support all features in the DSL, to
obviate the need for modifying generated code, often
limiting generated app flexibility and generality. RAPPT
is designed specifically for generated code modification
so that very high quality professional apps can be built
leveraging RAPPT.

Developer
Architecture

Mobile
App

Concerns

Initial software
scaffolding

App Requirements

Given to

Considered by

Describes app
using DSL

RAPPT

Generates

Known by

Addresses

Fig. 2. RAPPT leverages an inference engine to assist developers in
generating the scaffolding for a new Android app.

Developers describe the app using a high-level Domain-
Specific Language (DSL) that allows them to express the app
design declaratively and at a very high level, see Figure 2.

The RAPPT DSL was designed to be used by professional
app developers, embody all of the key concerns of app devel-
opment outlined in Figure 1, support high-level, declarative
specification of all Android app features, and be used in
professional quality code generation. Professional developers

5https://www.fluidui.com/

modify the generated code to add fine-grained tailoring of UI,
layout, complex screen or processing logic, and use of third
party (non standard) APIs.

IV. RAPPT USAGE EXAMPLE

We walk through an example of how RAPPT is used
to bootstrap mobile app development. The example app is
MovieBase6 and can be downloaded from the Google Play
Store7. MovieBase is a data-driven app that displays movie
data from The Movie DB API8. Two screens showing the
popular movies and the details of a movie are shown in
Figure 3 on the left.

Consider Peter, a fictitious Android app developer who has
been tasked with building the MovieBase app. On receiving
the design for the app Peter begins to describe the app at a
high level using RAPPT. Peter starts by describing app-wide
features such as the landing page and global navigation pattern.
Next Peter describes the data source for the app, The Movie
DB API. RAPPT supports a couple of different authentication
methods and the inference engine decides which to implement
based on what information is specified by the developer. In this
case, The Movie DB API requires all requests to be made with
an API key which would be copied into the “api key” string.
DSL code for the app and the API is shown in Listing 1. Peter
then proceeds to describe all of the screens. The code for the
screen displaying the popular movies is displayed in Listing
2.

app {
landing�page MoviesScreen
drawer navDrawerId {

tab movieScreenTab ”Movies” to MoviesScreen
tab aboutTab ”About” to AboutScreen

}
}

api MovieDB ”https://api . themoviedb.org/3” {
api�key api key ”<api key>”
GET popularMovies ”/movie/popular” { list}
GET movieDetail ”/movie/{id}”

}
Listing 1. RAPPT DSL description code for the app wide details and API
for the MovieBase app.

When Peter has finished describing all of the screens he
generates the scaffolding for the app. The new project can be
imported directly into the official Android development IDE,
Android Studio9. Peter then builds the app and deploys it to his
phone to get an idea of what was generated. RAPPT generates
all code, build scripts and adheres to the conventions of the
platform. Now that the code has been generated Peter sets
about finishing off the app by building upon the scaffolding
thankful he doesn’t need to write everything from scratch –
yet again! MovieBase required approximately 83 lines of code
to implement in RAPPT generating 35 project files including
source, resources and layouts or 1400 lines of code.

6https://play.google.com/store/apps/details?id=de.linuxwhatelse.android
.moviebase&hl=en

7https://play.google.com
8http://docs.themoviedb.apiary.io/
9https://developer.android.com/sdk/installing/studio.html

screen MoviesScreen ”Movies” {
group moviesLayout {

on�load {
call MovieDB.popularMovies

}
list results : list {

row rowId {
label title : string
label ratingId ”Rating:”
label vote average : string
label releaseDateId ”Released on:”
image poster path :image
label release date : string
button toDetail ” Details ” {

to MovieDetailScreen pass idParam id : string
}

}
}

}
}

Listing 2. RAPPT DSL describing the popular movies screen.

V. RAPPT ARCHITECTURE AND IMPLEMENTATION

Internally RAPPT consists of three major components,
the parser, an inference engine and a code generator. The
relationship between these components is shown in Figure 4
and consists of four major steps. 1) RAPPT takes, as input, a
description of the app to generate written in a custom DSL. 2)
From this description an Abstract Syntax Tree (AST) is created
and then fed into the inference engine. 3) The inference engine

1. Describe app
using DSL

2. Build Abstract
Syntax Tree (AST)

3. Query AST
and

use rules to
build

model of app

4. Model merged
with templates to

generate app

Parser

Inference
Engine

Code
Generator

…
@EFragment(R.layout.myplaces)
@OptionsMenu(R.menu.myplaces)
public class MyPlaces extends Fragment {
...

app {
 tabbar tabbarID {
 …
}

public class $class$ extends
...
$implement(interface)$
{ ...

(APP (NAVIGATION
tabbar) ...

Android
Model

Rules
Rules

Rules

App Description

Code Templates

Code for Android app

Fig. 4. The internal process of RAPPT that converts the DSL description to
an Android project.

is responsible for constructing a model of the Android app to
generate. The Android model is constructed by querying the
AST and applying rules that determine implementation details.
Inferring which Android components make up a given screen
and which dependencies need to be added to the generated
project are two example rules. There are also more complex
rules that check if the app needs to implement a sophisticated
UI pattern or check for a network connection. 4) Once the
Android model has been created it is then passed to the

Fig. 3. MovieBase example screens (left) and RAPPT generated screens (right).

code generator component that also accepts a collection of
templates. The Android Model is then used to populate the
templates that constitute the Android app scaffolding.

A rich meta-model that captures all of the elements of an
app was designed to underpin the RAPPT DSL. This meta-
model was created from studying a wide range of existing
apps that also informed the design of DSL and the tool chain.
RAPPT and its meta-model were refined progressively by
building many apps that highlighted gaps to be closed.

VI. PRELIMINARY EVALUATION

RAPPT was used in the development of the commercial
app, Prompa available for download from the Google Play
Store10. Informal feedback from developers indicated that
the generated code was easy to work with and that RAPPT
provided a significant productivity improvement. The main
limitation cited was that RAPPT cannot be used after the code
has been modified. In future work, we plan to evaluate the
scalability of the DSL, the robustness of the underlying meta-
model, and run trials with software engineers to ensure that
the language is learable, and the generated code quality meets
expectations, and finally ensure that the tool chain and the
approach fits within the workflow of a professional mobile
application developer.

VII. CONCLUSION

State of the art mobile app IDEs offer little code generation
for bootstrapping development of a new app. Data-intensive
apps in particularly would benefit from better code generation
tools as they contain a significant portion of boilerplate code.
Additionally, app developers must also strive to satisfy a
number of often conflicting concerns of a mobile app. To
address these concerns we present RAPPT an MDD based tool
that generates the scaffolding for an Android app. RAPPT gen-
erates standard Android code maintaining the full capabilities
of the framework. Initial feedback from developing the Prompa

10https://play.google.com/store/apps/details?id=net.prompa.production.release
&hl=en

app showed that it increases developer productivity and is
suitable for commercial projects. A more rigorous evaluation is
planned to verify the concerns of a mobile app and to quantify
the productivity increase.

ACKNOWLEDGEMENT

The first author would like to thank Swinburne University
for scholarship support. We thank Prompa and SSI/NICTA lab
members for their feedback on RAPPT.

REFERENCES

[1] D. L. Moody, “The physics of notations: Toward a scientific basis for
constructing visual notations in software engineering,” IEEE Transac-
tions on Software Engineering, vol. 35, no. 6, pp. 756–779, 2009.

[2] M. Fowler, Domain-specific languages. Pearson Education, 2010.
[3] M. Brambilla, J. Cabot, and M. Wimmer, “Model-driven software

engineering in practice,” Synthesis Lectures on Software Engineering,
vol. 1, no. 1, pp. 1–182, 2012.

[4] A. Khambati, J. Grundy, J. Warren, and J. Hosking, “Model-driven de-
velopment of mobile personal health care applications,” in Proceedings
of the 2008 23rd IEEE/ACM International Conference on Automated
Software Engineering. IEEE Computer Society, 2008, pp. 467–470.

[5] T.-D. Nguyen and J. Vanderdonckt, “User interface master detail pattern
on android,” in Proceedings of the 4th ACM SIGCHI symposium on
Engineering interactive computing systems. ACM, 2012, pp. 299–304.

[6] A. Ribeiro and A. R. da Silva, “Evaluation of xis-mobile, a domain spe-
cific language for mobile application development,” Journal of Software
Engineering and Applications, vol. 7, no. 11, p. 906, 2014.

[7] H. Heitkötter, T. A. Majchrzak, and H. Kuchen, “Cross-platform model-
driven development of mobile applications with md 2,” in Proceedings
of the 28th Annual ACM Symposium on Applied Computing. ACM,
2013, pp. 526–533.

[8] O. Le Goaer and S. Waltham, “Yet another dsl for cross-platforms
mobile development,” in Proceedings of the First Workshop on the
Globalization of Domain Specific Languages, ser. GlobalDSL ’13.
New York, NY, USA: ACM, 2013, pp. 28–33. [Online]. Available:
http://doi.acm.org/10.1145/2489812.2489819

[9] D. Steiner, C. Ţurlea, C. Culea, and S. Selinger, “Model-driven devel-
opment of cloud-connected mobile applications using dsls with xtext,”
in Computer Aided Systems Theory-EUROCAST 2013. Springer, 2013,
pp. 409–416.

[10] J. Danado and F. Paternò, “A prototype for eud in touch-based mobile de-
vices,” in Visual Languages and Human-Centric Computing (VL/HCC),
2012 IEEE Symposium on. IEEE, 2012, pp. 83–86.

[11] F. T. Balagtas-Fernandez and H. Hussmann, “Model-driven development
of mobile applications,” in Automated Software Engineering, 2008. ASE
2008. 23rd IEEE/ACM International Conference on. IEEE, 2008, pp.
509–512.

