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Abstract— Reviewing software system architecture to pinpoint 

potential security flaws before proceeding with system 

development is a critical milestone in secure software 

development lifecycles. This includes identifying possible attacks 

or threat scenarios that target the system and may result in 

breaching of system security. Additionally we may also assess the 

strength of the system and its security architecture using well-

known security metrics such as system attack surface, 

Compartmentalization, least-privilege, etc. However, existing 

efforts are limited to specific, predefined security properties or 

scenarios that are checked either manually or using limited 

toolsets. We introduce a new approach to support architecture 

security analysis using security scenarios and metrics. Our 

approach is based on formalizing attack scenarios and security 

metrics signature specification using the Object Constraint 

Language (OCL). Using formal signatures we analyse a target 

system to locate signature matches (for attack scenarios), or to 

take measurements (for security metrics). New scenarios and 

metrics can be incorporated and calculated provided that a 

formal signature can be specified. Our approach supports 

defining security metrics and scenarios at architecture, design, 

and code levels. We have developed a prototype software system 

architecture security analysis tool. To the best of our knowledge 

this is the first extensible architecture security risk analysis tool 

that supports both metric-based and scenario-based architecture 

security analysis. We have validated our approach by using it to 

capture and evaluate signatures from the NIST security 

principals and attack scenarios defined in the CAPEC database. 

Index Terms—Software security, Architecture Security Risk 

analysis, Formal attack patterns specification, Common attack 

patterns enumeration and classification (CAPEC) 

I. INTRODUCTION 

Software architecture plays a vital role in the soundness and 

flexibility of complex software systems. While software 

architecture is usually expensive to change after system 

development, it is potentially cheaper to analyze early during 

system development [1]. This both helps in assuring that 

stakeholders’ requirements have been met and aids in 

discovering flaws while modification is still a fraction of time 

and cost compared with later updates [2]. 

Architecture analysis has different goals. This includes 

assessing system maintainability, usability, sustainability, and 

security and resilience against attacks. Existing efforts to assess 

and evaluate software architecture against these quality 

attributes are classified into two main techniques: (i) scenario-

based architectural analysis [1]-[3], focusing on generating 

(sometimes using brainstorming workshops) a set of evaluation 

scenarios based on the evaluation requirements; and (ii) 

metrics-based approaches [4]-[5], focusing on developing 

metrics that can be used in assessing software architecture. 

Evaluating the security properties of software at early 

development stages helps in identifying security risks, potential 

security-related weaknesses in the software architecture, and 

areas that violate security requirements of stakeholders. These 

architecture and design flaws represent 50% of total reported 

vulnerabilities [6]. Many of these flaws cannot yet be 

discovered using existing security analysis tools. The security 

analysis task is usually conducted at different phases of the 

software development lifecycle under different names and 

using different artifacts [7]. Architecture security risk analysis 

is usually conducted at design phase using system architecture 

and design models. It targets identifying architecture and 

design security flaws. Vulnerability analysis is usually applied 

during development and testing using source code, or after 

system development using system binaries. These efforts target 

identifying existing security bugs in the system under test.  

In this paper we focus on architecture security risk analysis. 

Most existing architecture security risk analysis efforts depend 

on a set of predefined metrics that have been hardcoded or 

implemented in the analysis tools [4, 8, 9]. Scenario-based 

efforts usually use security requirements and objectives as a 

source to develop the required security scenarios to be 

validated in a given software architecture [3, 10, 11]. Key 

problems are the lack of automated tool support for analyzing 

system architectures; lack of flexible and familiar architecture 

evaluation criteria specification language; limited consideration 

of the software operational environment capabilities’ details.  

To address these issues we introduce a new, comprehensive 

architecture security analysis schema. This schema captures 

details of a given system attack scenario including categories, 

preconditions, consequences, signatures, etc. A key entry is the 

attack signature. This signature specifies a set of invariants 

that, when matched, indicate that the given architecture 

vulnerable to the specified attack. We adopt the declarative and 

formal Object Constraint Language (OCL) [12] to capture such 

signatures. This makes it easier for a development team 

(usually familiar with OCL) to develop their own scenarios for 

assessing their software systems’ architectures. We also use 

OCL to specify architectural security metrics used in assessing 

978-1-4673-3076-3/13 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

662



system and security architecture soundness. Our approach 

supports extensible security metrics specification where new, 

user-defined, architectural security metrics can be introduced 

and evaluated without tool customization or development of 

new plug-ins. We have developed a system-security meta-

model that helps in validating the OCL-based scenarios’ and 

metrics’ signatures. This meta-model is extensible, enabling 

users to capture other perspectives relevant to their architecture 

analysis task. Each attack or metric can be assigned a specific 

weight. This helps in performing automated architectural trade-

off analysis between system potential architectures or between 

different systems. We capture system description and security 

in two different models to help in assessing security and 

architecture both separately and combined. The details of the 

system to be analyzed are captured in a system description 

model (SDM) using UML, with a UML profile that helps 

capturing interrelations between different system structure 

elements. Security details are captured in a separate security 

specification model (SSM). This captures security objectives, 

refined security requirements, security architecture (security 

zones, mechanisms, and services), and the security controls, 

patterns and functions used to realize the specified security.  

Section II introduces a set of security scenarios and metrics 

we have identified from existing architecture security analysis 

efforts and we discuss possible signatures for these. Section III 

discusses our approach covering the attack scenario schema, 

signature specification, and our OCL-based analysis tool. 

Section IV discusses implementation details of our approach 

and Section V summarizes our evaluation results. Section VI 

discusses key strengths and weaknesses, and areas for further 

research. Section VII reviews the key related efforts. 

II. ARCHITECTURAL SECURITY SCENARIOS AND METRICS 

We discuss some of the security attack scenarios and 

metrics commonly used in assessing software architecture 

during the security risk analysis task. This is neither a 

comprehensive nor a complete list of possible scenarios or 

metrics. However, we try and cover most well-known scenarios 

and metrics frequently used. The example signatures used here 

are not meant to be complete or sound. Security experts have to 

develop detailed signatures that can be reused by other 

software engineers in assessing different systems.  

A. Architecture Security Analysis Scenarios 

Developing security scenarios to be used in assessing 

software architecture is a key task in scenario-based 

architecture analysis approaches. However, it is a very 

complicated task because it requires deep knowledge of the 

security domain, which is usually not feasible for all software 

engineers. The STRIDE model and EOP Card Game [13] give 

guidance in identifying such security scenarios. However, they 

still depend heavily on engineers’ experience to analyze the 

architecture of the software under test. Recently, a new 

community effort introduced the Common Attack Pattern 

Enumeration and Classification (CAPEC) 
1
 as a reference that 

can be used in assessing systems’ security. It provides a 

                                                           
1
 http://capec.mitre.org 

comprehensive list of possible attack patterns that are 

frequently used to breach systems’ security. However, CAPEC 

is not yet formalized enough for use in automated architecture 

security analysis tools. We discuss below a few of the key 

patterns in this repository. We note that these attacks may have 

other signatures and specifications when it comes to source 

code level analysis (bugs) - i.e. for vulnerability analysis. 

Man-In-The-Middle Attack: This attack intercepts 

communications between two components. The attacker makes 

independent connections with the victims and relays messages 

between them, making them believe that they are talking 

directly to each other. The signature of such attack is to have an 

unsecure connection between two components, or if the 

components communicate in an untrusted zone. 

Denial-Of-Service (DOS) Attack: This attack aims to 

make a system or one of its key resources unavailable for 

legitimate users. DOS attacks have different formats with 

different signatures. Some use invalid inputs (in terms of type, 

format. Or size). Others overwhelm a system with requests. 

Possible signatures of such attack include: (i) a publicly 

accessible component that does not use input validation control 

(or firewall) to validate incoming requests, or (ii) a public 

interface that does not implement appropriate authentication 

control to filter requests. 

Data Tampering Attack:  An attacker can tamper with 

data at rest (storage), in transmission, or during processing if 

data is manipulated as plaintext. Possible signatures of these 

attacks include: (i) a system component that operates in an 

untrusted host (malicious insider), (ii) sending data between 

components or to a client in plaintext, or (iii) absence of 

appropriate security authorization control. 

Injection Attack: This attack exploits the lack of input 

validation controls to pass in malicious inputs that can be used 

to gain higher privileges, modify data, or crash a system. 

Different types of injection attacks include SQL Injection, OS 

Command Injection, and XML Injection. The signature is that 

system components do not apply suitable input filtration on 

user inputs or on inputs from other untrusted components. 

B. Architecture Security Metrics 

Developing security metrics to be used in assessing 

software architecture is also a very complicated task. Different 

security metrics exist with different scope of applicability. 

These include: static vulnerability analysis metrics, dynamic 

vulnerability analysis metrics, static architecture security 

metrics, and runtime security metrics. We discuss some well-

known metrics used in assessing architecture security. 

1) System Architecture Security Metrics: These metrics help 

assessing the soundness of the software architecture security. 

Examples include attack surface metric [14], total public 

classified attributes and methods, critical super-classes 

proportion, least privilege, and least common mechanisms [8]. 

These metrics can be used to assess the exposure, 

exploitability, and attack-ability of the software system given 

its architecture, design, and may be code details. New 

architectural patterns such as multi-tenancy require new 
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security metrics that can assess tenants’ data isolation, security 

elasticity, etc. Below we discuss examples of such metrics. 

Attack Surface Metric [14]:  This metric measures the 

proportion of the system that an attacker can use to attack the 

system. This can be measured as the number of system 

methods that receive data from the software environment, 

number of methods that return data to the software 

environment, number of communication channels, and number 

of untrusted data items. The larger the attack surface value, the 

more potentially insecure or vulnerable is the system. 

Compartmentalization Metric: Compartmentalization 

means that systems and their components run in different 

compartments, isolated from each other. Thus a compromise 

of any of them does not impact the others. This metric can be 

measured as the number of independent components that do 

not trust each other (performs authentication and authorization 

for requests/calls coming from other system components) that 

the system is based on to deliver its function. The higher the 

compartmentalization value, the more secure the system.  

Least Privilege Metric: This metric states that each 

component and user should be granted the minimal privileges 

required to complete their tasks. This metric can be assessed 

from two perspectives: from the security controls perspective 

we can review users’ granted privileges. From the 

architectural analysis perspective this can be assessed as how 

the system is broken down to minimal possible actions i.e. the 

number of components that can access critical data. The 

smaller the value, the more secure the system. 

Fail Securely Metric: The system does not disclose any 

data that should not be disclosed ordinarily at system failure. 

This includes system data as well as data about the system in 

case of exceptions. This metric can be evaluated from the 

security control responses – i.e. how the control behaves in 

case it failed to operate. From the system architecture 

perspective, we can assess it as the number of critical 

attributes and methods that can be accessed in a given 

component. The smaller the metric value, the likely more 

secure the system in case of failure. 

2) Security Architecture Metrics: These metrics help 

assessing the soundness of the system security architecture and 

mechanisms including: security functions and components, 

security patterns, and security controls. NIST [15] introduces a 

set of design principles that should be adopted in developing 

secure systems. These include: use layered security; simplicity 

of the security design; protect information while it is being 

processed, in transit, and in storage; and never trust external 

inputs. We discuss a few examples that can be used to judge 

such characteristics. 

Defense-In-Depth (Layered Security) Metric: This 

metric verifies that security controls are used at different 

points in the system chain including network security, host 

security, and application security. Components that have 

critical data should employ security controls in the network, 

host, and component layers. To assess this metric we need to 

capture system architecture and deployment models as well as 

the security architecture model. Then we can calculate the 

ratio of components with critical data that apply the layered 

security principle compared to number of critical components. 

Isolation Metric: This assesses the level of security 

isolation between system components. This means getting 

privileges to a component does not imply accessibility of other 

co-located components. This metric can be assessed using 

system architecture and deployment models. Components 

marked as confidential should not be hosted with non-

confidential (public) components. Methods that are not 

marked as confidential should not have access to confidential 

attributes or methods.  
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Fig. 1. Weaknesses Definition Schema 

III. OUR APPROACH 

In our previous work [16], we introduced an OCL-based 

static vulnerability analysis approach supported with a toolset. 

This was based on capturing software vulnerability signatures 

as OCL invariants. These expressions are used in conducting 

program analysis of program source code or binaries to identify 

matches to OCL-specified vulnerability signatures. Our 

approach succeeded in locating static vulnerabilities with high 

precision and accuracy rates.  

We now extend this approach here with a step up in the 

abstraction level. Instead of looking for signatures in source 

code we look for signatures (captured from security scenarios 

and metrics like those described above) in system architecture 

and design models. We integrate this with our original code 

vulnerability analysis approach. Our architectural security risk 

analysis approach is based on (i) a comprehensive security 

(attack) scenarios schema [16], shown in  Fig 1, that captures 

details of a given scenario including relevant platform, 

likelihood, preconditions, consequences, etc.; (ii) a formal 

signature specification approach that can capture security 

scenarios and metrics signatures. Signatures are part of the 

attack scenarios schema; and (iii) an architecture security 

analysis tool that performs signature-based models analysis. 

Below we focus on the most interesting signature attribute. 

A. Security Scenarios and Metrics’ Signature Specification 

Existing software security attack signatures in the Common 

Attack Patterns Enumeration and Classification (CAPEC) help 

understanding the nature of attacks. The same applies on 

existing security design principles and metrics. However, these 

are usually quite informally expressed and thus cannot be used 

in automatically locating potentials for such attacks in target 

systems. Applying them by hand is error-prone and time-

consuming. Formalizing these descriptions allows architecture 

analysis tools to (semi)automate the analysis process. Ideally, 
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the formalization approach used should be extensible enough to 

support capturing new attacks’ and metrics’ signatures for 

different domains and requirements.  

We use OCL as a well-known, extensible, and formal 

language to specify semantic signatures of security weaknesses 

and metrics. To support specifying and validating OCL-based 

signatures, we have developed a system-description meta-

model, described in detail in [15], which captures system and 

security details from the high level objectives down to the 

source code entities and realization security controls. This 

model captures the main entities in an object-oriented system 

including components, deployment package, hosting services 

(web server), storage, communication channels, classes, 

instances, inputs, input sources, output, output targets, 

methods, new objects, objects interactions, etc.  Moreover, it 

captures security concepts such as security objectives, 

requirements, architecture, zones, mechanisms, authentication, 

authorization, audit controls, etc. Each entity has a set of 

attributes, such as component name, provider, platform used, 

class name, accessibility, method name, accessibility, variable 

name, variable type, method call name, etc. This enables 

specifying of OCL-based scenarios’ and metrics’ signatures on 

different system entities with different abstraction levels. 

Table I shows some attack scenarios’ and simplified 

metrics’ signatures specified in OCL using our system 

description model. These signatures can be further improved to 

incorporate system design details and even source code details, 

if available. These signatures should initially be developed by 

security experts and captured in a knowledge base, while 

software developers can further extend such signatures using 

customized and user-defined scenario and metric signatures. 

B. OCL-based System Architecture Analyzer 

After formalizing security scenarios and metrics’ 

signatures in OCL an OCL-based analyzer component 

conducts static analysis of the system and security description 

details. This includes system source code represented in 

abstract syntax tee (optional); system design; architecture; and 

security models to locate and evaluate the specified security 

scenarios and metrics. Fig. 2. shows the architecture of our 

analysis component. To simplify the discussion of the analysis 

component architecture, we use example models from our test-

bed Galactic ERP multi-tenant cloud application, a web-based 

ERP system [16]. Below we discuss the main inputs/outputs 

and components of our architecture security analysis tool. 

System Description Model: Instead of using only the 

system architecture model to capture and apply security 

metrics, we use a detailed system description model – SDM. 

Fig. 3 shows the system description model of our exemplar 

Galactic ERP system [16]. The SDM is developed by system 

engineers using UML to describe details of the software. It 

describes system features, architecture, classes, behaviour, and 

deployment. These models cover most of the perspectives that 

may be required in analysing system architecture security 

soundness. Not all of these models are needed - it depends on 

system engineers and attack scenarios and metrics that they 

need to evaluate.  Some system description details, such as 

class diagrams, can be reverse-engineered from source code. 

TABLE I. EXAMPLES OF ARCHITECTURAL SECURITY SCENARIOS AND 

METRICS SIGNATURES IN OCL 
ID Metric Signature 

1 context System inv Man-in-the-Middle Attack: 

self.components->select(C1|  

          C1.DeploymentZoneType = 'Untrusted'   

   and self.components.exists(C2 |  

          C2.Channels->exists(Ch |  

             Ch.TargetComponent = C1  

         and Ch.EncryptionControlDeployed = false)  

   and C1.EncryptionControlDeployed = false  

   and C2.EncryptionControlDeployed = false)) 

Any two components that communicate through an unencrypted channel 

and one or both of them operate in an untrusted zone or do not apply 
cryptography controls on their communicated messages. 
2 context System inv Denial-of-Service Attack: 

self.components->select(C1|  

       C1.DeploymentZoneType = 'Untrusted'   

  and  C1.AuthenticationControlDeployed = false  

  and (C1.InputSanitizationControlDeployed = false      

  or C1.Host.Network.FirewallControlDeployed= false)) 

Any publicly accessible component that does not operate input sanitization 
control (or application firewall), and does not have authentication control. 
3 context System inv DataTampering: 

self.components->select(C1|  

     C1.DeploymentZoneType = 'Untrusted'   

 and self.components.exists(C2 |  

            C2.Channels->exists(Ch |  

                Ch.TargetComponent = C1  

           and Ch.EncryptionControlDeployed = false)  

       and C1.EncryptionControlDeployed = false  

       and C2.EncryptionControlDeployed = false)) 

Any component that is deployed on an untrusted host (malicious insider) or 

zone, sends data in plain text, or does not operate authorization control. 
4 context System inv AttackSurface: 

   self.components->select(C1| C1. DeploymentZoneType 

= 'Untrusted')->collect(C2 | C2.Functions)->size() 

Number of functions defined in the provided interfaces of the public system 

components and number of functions defined in the required interfaces of 
the system public components that are used by other components. 
5 context System inv Compartmentalization: 

self.components->select(C |  

      C.AuthenticationControlDeployed = true  

  and C.AuthorizationControlDeployed = true)->size() 

Number of architecture components that apply Authn. and Authz. controls 
on incoming calls (work independent and do not trust other components). 
6 context System inv FailSecurely: 

self.components->collect(C | C.Functions->select( F |  

   F.IsCritical = true)->size())->sum()/     

 self.components->collect(C |C.Functions->select( F |   

              F.IsCritical = true)->size())->siz() 

The average of critical methods and attributes in each system component. 

7 context System inv Defense-in-depth: 

self.select( C | C.IsCritical= true  

   and C.AuthenticationControlDeployed = true  

   and C.AuthorizationControlDeployed = true 

   and C.CryptographyControlDeployed = true  

   and C.Host.AuthenticationControlDeployed = true         

   and C. Host.AuthorizationControlDeployed = true  

   and C. Host.CryptographyControl = true)->size() /  

self.select( C | C.IsCritical = true)->size() 

The ratio of critical components that have layered security compared to the 

total number of critical components in the system. 
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Fig. 2. OCL-based static security scenarios and metrics analysis tool 
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Fig. 3. Example of Galactic system description model 

 

Fig. 4. Example of Galactic security specification model 
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To support mapping security specifications to system 

entities, we developed a new UML profile, shown in Fig. 3-A. 

This extends UML models with attributes that help in: (i) 

capturing relationships between different system entities in 

different models – e.g. a feature entity in a feature model with 

its related components in the component model and a 

component entity with its related classes in the class diagram; 

and (ii) capturing security entities (objectives, requirements, 

controls) mapped onto a system entity. It captures system 

features (Fig. 3-B) including customer, employee and order 

management features; system architecture including 

presentation, business and data access layers (Fig.3-C), system 

classes including CustomerBLL, OrderBLL, EmployeeBLL 

(Fig.3-D), and system deployment including web server, 

application server, and database server (Fig.3-E). 

Security Specification Model: security engineers capture 

security details in a separate security specification model 

(SSM). This enables evaluating both system architecture 

details and security architecture details both separately and 

combined. We have developed a new, comprehensive security 

domain-specific visual language (SecDSVL). SecDSVL 

covers most of the details required during the security 

engineering process including: security goals and objectives, 

security risks and threats, security requirements, security 

architecture for the operational environment and security 

controls/patterns to be enforced. Here we just focus on 

objectives, requirements, architecture and controls. Not all 

these models are mandatory. Engineers decide which models 

they need to check or incorporate in their security analysis.  

Fig.4 shows an example of the security specification model 

for the Galactic ERP system. This captures security objectives 

that should be satisfied (Fig.4-A), part of the security 

requirements (Fig.4-B), high level security architecture with 

security services and security mechanisms to be used in 

securing Galactic (Fig.4-C), and security controls and real 

implementations (Fig.4-D). The solid black lines between 

security entities reflect relationships between security entities 

– e.g. objectives and requirements, and requirements and 

realization controls/patterns. 

System-Security Mappings: Engineers map security 

entities (objectives, requirements, controls) on system entities 

(features, components, classes). We support many-to-many 

mappings between security and system entities – i.e. many 

security entities could be mapped on many system entities. 

Mapping of security entities onto high-level system entities, 

e.g. a system feature, means that the same security entities are 

mapped to low-level system entities, e.g. components and 

classes. Moreover, mapping security objective (O) to a system 

entity (E) implies that all security requirements and controls 

that are linked to (O) are also mapped on (E). The dashed red 

lines between Figures 3 and 4 show security to system 

mappings, such as placement of deployment nodes within 

security zones; security objectives that should be met on 

different components; and security solutions mapped to 

deployment node or system entities, etc. 

Source Code Abstract Program Representation: to 

avoid being specific to programs written in a specific 

programming language or with a specific coding style, we 

transform the given system code into an abstract syntax tree 

(AST) representation. The program AST abstracts most of the 

source code details away from specific language constructs. 

We perform further abstraction of this AST using our system 

description model. This enables evaluating the conformance of 

source code with system and security models. 

Signature Evaluator: This is the main component in our 

analysis tool. It receives the system and security details and 

security scenarios, vulnerabilities, and metrics to be evaluated, 

and generates a list of potential flaws, vulnerabilities, security 

holes, and security measures. During analysis, the signature 

evaluator loads the defined weaknesses and metrics in the 

signatures database (specified in OCL) and compiles these 

signatures into small analysis programs (using OCL_2_C# 

transformation that generates C# code from these signatures). 

These generated analysis programs analyze the fed in models 

to locate entities that match the specified signatures and 

calculate measurements specified. The user-defined OCL 

functions represent a repository of user-defined functions that 

can be used in developing complex scenarios and metrics 

signatures. This includes control flow analysis, data flow 

analysis, string analysis, taint-analysis, etc.  

Trade-Off Analysis: The previous step produces a security 

analysis report with a list of security flaws and measurements. 

This report can be used to conduct trade-off analysis between 

different potential software architectures. The trade-off 

analysis component compares different architectures’ metrics 

taking into account metrics weights. The output of is a 

recommendation on selected software architecture with 

rationale presented as a radar chart summarizing number of 

flaws and measurements between different systems or 

different system architectures, as shown in Fig. 5. 

IV. IMPLEMENTATION 

We briefly describe key implementation details of our 

formalized attack scenarios and metrics specification approach 

and supporting architectural risk analysis tool. We used 

Microsoft Visual Studio2010 UML modeler to capture system 

description models (as an SDM). We used Microsoft Visual 

Studio Modeling SDK to develop our SecDSVL, used in 

capturing security details, and our UML profile, used in 

mapping security details onto the target system SDM.  

We developed a UI component using Visual Studio to assist 

system and security engineers in capturing security scenarios 

and metrics signatures’ specified in OCL. This UI is based on 

our system description meta-model discussed in Section III. 

This checks the validity of OCL statements and tests 

specifications on simple target application models and source 

code. We use an existing OCL parser to parse and validate 

signatures against our system description model. Once 

validated, the signature is compiled into C# code that traverses 

system and security models to find matched flaws or to 

calculate security metrics’ values. To parse the given program 

source code and generate a system abstract model, we use an 

existing .NET parser NReFactory, which supports VB.NET 

and C#. Moreover we have used a C parser written in python 
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called pycparser. We currently support locating attack patterns 

in C#, VB.NET, C/C++. We are working on parsers for PhP 

and Java. For a system without source code - i.e. only binaries 

are available - we use an existing de-compilation tool ILSPY to 

generate source code from binaries using .NET Languages. 

V. EVALUATION 

We performed a detailed evaluation to assess the 

capabilities of our approach in capturing signatures of 

software systems’ architecture security evaluation criteria 

either as security scenarios or security metrics. Then we 

assessed its capabilities in identifying architecture flaws that 

match weakness scenarios and measure security metrics. 

TABLE II. BENCHMARK APPLICATIONS SUMMARY 

Benchmark Downloads KLOC Files Comps Classes Method 

BlogEngine >46,000 25.7 151 2 258 616 

BugTracer >500 10 19 2 298 223 

Galactic - 16.2 99 6 101 473 

KOOBOO >2,000 112 1178 13 7851 5083 

NopCommerce >10 Rel. 442 3781 8 5127 9110 

SplendidCRM >400 245 816 7 6177 6107 

A. Benchmark  Applications 

We could not find a repository or benchmark set of 

software architectures to evaluate our approach and so we 

decided to use existing open source applications on which to 

conduct our experiments. We used reverse engineering to 

retrieve systems’ architecture and performed manual analysis 

to identify security details from applications’ source code. We 

have selected a set of six open source applications developed 

in .NET as our benchmark to evaluate our approach. Table II 

summarizes these applications including known number of 

downloads, size in lines-of-code, number of files, number of 

components, number of classes, number of methods. These 

cover a wide spectrum including: Galactic (ERP system 

developed for internal testing purposes); SplendidCRM (open 

source CRM); KOOBOO (open source Enterprise CMS for 

websites); BlogEngine (open source ASP.NET 4.0 blogging 

engine); BugTracer (open-source, web-based bug tracking); 

and NopCommerce (open-source eCommerce solution). 

B. Evaluation Experiments Setup 

 To evaluate our benchmark applications’ architecture 

security, we selected a set of four security attack scenarios 

(Man-in-The-Middle, Denial of Service, Data Tampering, and 

Injection attacks), and four security metrics (Attack Surface, 

Compartmentalization, Fail Securely, and Defense-in-Depth), 

some exemplar signatures and metrics are presented earlier.  
We used a set of evaluation metrics to measure the soundness 

and completeness of our analysis technique. These metrics are 

precision rate, recall rate, and F-measure. The precision metric 

is used to assess the soundness of the approach. A high 

precision means that the approach returns more valid results 

(true positive - TP) than invalid results (false positive - FP). 

Thus the maximum precision is achieved when no false 

positives (Equation 1 below). The recall metric is used to 

assess the completeness. A high recall means the approach 

returns more valid results (true positive - TP) than misses valid 

results (false negative - FN), see Equation 2. The F-measure 

metric combines both precision and recall. We use it to 

measure the overall effectiveness (weighted harmonic mean). 

This metric depends on the importance of the recall rate and 

the precision rate e.g. if we are interested in high precision 

(more valid results) then we will give precision factor high 

weight, and vice-versa. In our evaluation, we assume that the 

importance of precision and recall is equal, see Equation 3.  

  Equation 1 

  Equation 2 

 Equation 3 

These evaluation metrics can be applied directly on attack-

scenario based approaches where we can count how many 

missed or invalid scenarios retrieved by our approach. 

However, most security metrics return values like average, 

min, max, etc. This means that we cannot apply our evaluation 

metrics directly on these security values – i.e. we cannot count 

how many system/security instances were missed or 

incorrectly selected. To overcome this, we have rewritten the 

metrics expressions (expand metrics’ expression) into separate 

factors that we can examine (in terms of FPs, FNs). 

C. Experimental Results 

Except for Galactic, we did not have experience with these 

benchmark applications and their architecture, design, and 

security details. We used reverse engineering to retrieve parts 

of the system description models (mainly class diagram, 

sequence diagram and component diagram) from their source 

code repositories using Altova UModel. These benchmark 

applications were already developed with built in security 

functions. We performed manual analysis to identify security 

controls used in such systems (we use these details to develop 

systems’ security specification models) and where they are 

currently applied (these details represent mappings between 

the security entities and system entities). 

Table III summarizes the results of our experiments from 

our security scenarios and metrics analysis evaluation. Table 

III is divided into two parts: security scenarios, and security 

metrics. Columns represent IDs of the benchmark 

applications: (1) BlogEngine, (2) BugTracer, (3) Galactic, (4) 

KOOBOO, (5) NopeCommerce, (6) SplendidCRM. Rows 

represent flaws and metrics. We summarize for each 

application and each attack scenario or security metric 

analyzed the number of discovered flaws or the metric 

measured value; number of false positives (reported as flaw 

but the manual analysis showed it is not a flaw); and number 

of false negatives (a flaw, but missed by our tool).  

From our experiments we found that our approach 

achieves on average (90%) precision over both security 

scenarios and security metrics, and on average (89%) recall 

rate on both. This means that in every reported (100) scenario 

instances our tool reports (90) valid scenarios and around (10) 

scenarios are missed.  These values depend on the soundness 

of the scenarios and metrics’ signatures.  
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TABLE III. EXPERIMENTAL RESULTS OF APPLYING OUR OCL-BASED 

ARCHITECTURAL SECURITY RISK ANALYSIS TOOL ON BENCHMARK 

APPLICATIONS. D: DISCOVERED FLAWS, M: METRIC MEASURED VALUE, 

FP: FALSE POSITIVES; AND FN: FALSE NEGATIVES 

Scenario / Metric [1] [2] [3] [4] [5] [6] Total 

Security Scenarios 

Man-in-The-

Middle (↓) 

D 1 1 4 8 3 5 22 

FP 0 0 0 1 0 0 1 

FN 0 0 0 1 0 1 2 

Denial of Service 

(↓) 

D 1 1 3 2 1 2 10 

FP 0 0 0 0 0 1 1 

FN 0 0 0 1 1 0 2 

Data Tampering 

(↓) 

   

D 1 1 3 5 3 3 16 

FP 0 0 0 2 0 0 2 

FN 0 0 1 0 1 0 2 

Injection Attack 

(↓) 

D 2 1 3 5 4 3 18 

FP 0 0 1 1 0 1 3 

FN 0 1 1 1 0 0 3 

Total 

D 5 4 13 20 11 13 66 

FP 0 0 1 4 0 2 7 

FN 0 1 2 3 2 1 9 

Average Precision = 90%,  Recall = 87%, and F-Measure = 88% 

Security Metrics 

Attack Surface 

(↓) 

M 8 11 17 23 18 24 101 

FP 1 2 2 1 2 4 12 

FN 0 0 1 3 2 1 7 

Compartmental-

ization (↑) 

M 1 1 3 3 4 3 14 

FP 0 0 0 0 1 0 1 

FN 0 0 1 1 0 0 2 

Fail Securely (↓) 

M 0.3 0.2 0.5 0.5 0.4 0.6 - 

FP 2 1 0 0 0 1 4 

FN 1 0 0 0 1 1 3 

Defence-in-

Depth (↑) 

M 0.5 0.5 0.8 0.4 0.3 0.5 - 

FP 0 1 0 0 1 0 2 

FN 0 2 0 1 0 1 4 

Average Precision = 91% ,  Recall = 89%, and F-Measure = 90% 
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Fig 5. Example of the radar chart for applications 1,3, and 4 
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Fig 6. Performance of the analysis component  

Table III also shows indicators associated with security 

metrics. If the indicator is (↑), it means that the higher the 

metric value, the more secure the architecture. The (↓) 

indicator means that the lower the metric value, the more 

secure the architecture. Totaling the security metrics has no 

sensible meaning as many have different units (some count, 

others use average or ratio). Table III shows that the man-in-

the-middle attack is the most frequent vulnerability. We also 

have injection attack vulnerabilities including SQL Injection, 

OS Command Injection, XPath Injection. Denial-of-service 

was the least frequent injection attack vulnberability. When 

we compare these results with OWSAP TOP10 vulnerabilities, 

we found that they reflect relatively the same ranking where 

injection attacks are ranked number 1.  

Although security metrics are helpful in comparing two 

different architectures for the same system (trade-off analysis), 

they are misleading as they depend on the application scale. 

Furthermore, in the security domain having just one flaw may 

result in breach of the whole system. Fig. 5 shows a radar 

chart of the attack scenarios and metrics reported for the 

applications in our benchmark. This chart assists in conducting 

trade-off analysis between different applications or different 

system architectures because it visualizes the different 

metrics’ values for different application. Thus users can easily 

compare and select the best architecture from the security 

perspective. From this figure, one may decide to use 

application 1 instead of 4 (assuming both are in the same 

business domain) as it is more secure. 

D. Performance Evaluation 

Fig. 6 shows the time (in sec) required to analyze the 

benchmark applications’ architectures to assessing specified 

security attack scenarios and metrics using the given set of 

scenarios and signatures shown in Table I. It is clear that the 

defense-in-depth metric takes much more time to identify than 

other metrics. The system criticality takes the lowest time. The 

time required to estimate a given security metric expression 

depends on the complexity of the specified OCL signature 

(transformed into C# code) and system size.  

VI. DISCUSSION 

To the best of our knowledge our approach is the first 

extensible architecture security risk analysis approach that 

supports both metric-based and scenario-based architecture 

security analysis. Using OCL provides a flexible, formal, 

familiar and extensible specification approach that can capture 

both metrics and scenarios signatures. These can be generic 

(applied on different systems and provide a knowledgebase), 

or application-specific (apply only to a specific application). A 

static scenario and metric analyser was developed based on 

our vulnerability signatures specification approach to perform 

analysis on system models at architecture, design and code 

levels. The scenarios and metrics database can be the 

responsibility of system engineers or even a community of 

security organizations to build up this repository. We have 

developed an architecture security analysis tool that can be 

extended without a need for new algorithms, modules, or 
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patches. Our current static analyzer achieves a precision rate 

of (90%) and recall rate (89%). These can be further improved 

using additional and more detailed signatures and more 

accurate description of a target system and its security details.  

From our experiments we conclude that, in assessing 

application security, we cannot use measurements in 

percentages or ratios as they give misleading indicators as raw 

values. This is because results depend on system size. 

Moreover, we cannot use percentage metrics to assess 

different systems for the same reason. Although the number of 

found flaws is an important indicator, having one weak point 

as an attack surface means that the system can be attacked 

from this point. Some attack points are also much more 

vulnerable and likely to be exploited than others. These points 

can be measured using specialized metrics. We might then use 

an overall security metric for a target system [8] using 

weighted sum of the used measurements. 

A key problem with our approach is that the results 

returned by the analysis tool depend on the soundness of the 

scenario and metric specifications (i.e. the OCL expressions). 

This can be mitigated by: (i) supporting a knowledge base with 

a set of covering metrics, allowing engineers to select metrics 

of interest; and (ii) developing a model-based security scenario 

and metrics-builder tool where engineers can build complex 

scenarios and metrics from existing small constructs – e.g. 

predefined scenarios and base measures. 

Our security analysis tool works on XML representation of 

the software description model. This XML representation may 

be extracted from system architecture developed using UML, 

sysML, or user-defined domain-specific language. Moreover, 

we plan to try and automate the security attacks’ scenarios and 

metrics’ signatures from the existing attack’ repository –e.g. 

CAPEC that violate customer security objectives. 

VII. RELATED WORK 

Existing efforts in architecture analysis can be categorized 

into two main groups: scenario-based approaches and metrics-

based approaches. Both have limitations related to approach 

formality in describing metrics or scenarios, extensibility to 

capture new metrics or scenarios to be assessed, and in 

automation of the architecture analysis process. A key notice 

from the existing efforts is that they focus mostly on scenario-

based analysis. A possible justification of this tendency is that 

developing security metrics is a hard problem. Moreover, it 

limits capabilities of the approach compared to user-defined or 

tool-supported scenarios. 

Scenario-based Analysis: Kazman et al. [17], Dobrica et 

al. [18], and Babar et al [19] introduce comprehensive 

software architecture analysis methods for different 

milestones. Kazman et al. introduce a set of criteria that can be 

used in developing or evaluating an architecture analysis 

method including identification of the goals, properties under 

examination, analysis support, and analysis outcomes. Babar 

et al. compare and contrast eight different existing architecture 

analysis approaches. A key weakness of all these approaches 

is a lack of tool support. Kazman et al. [20] introduce ATAM 

to identify trade-offs between quality attributes of a given 

system and report sensitivity points in its architecture. The 

approach is based on collaboration of stakeholders to define 

scenarios to evaluate architecture against. The analysis is 

expected to be manually. Faniyi et al. [21] extend the ATAM 

approach to support architecture analysis in unpredictable 

environments such as cloud computing platforms. They 

improve the scenario elicitation process using security testing 

with implied scenarios (unanticipated scenarios of components 

interactions). This generates potential scenarios that may lead 

to security attacks. Although this improved the scenario 

elicitation process, it still requires manual analysis. A further 

extension to our approach could be to integrate this approach 

as the source of our attack and metrics signatures. Halkidis et 

al. [11] introduce an architectural risk analysis approach based 

on locating the existing security patterns in the given system 

architecture using architecture annotation. Then, they use the 

STRIDE model to generate the set of possible attacks along 

with their likelihood. These security attacks can be mitigated 

using security patterns. Thus the lack of specific security 

patterns will cause violation of certain security objectives in 

the underlying system architecture. However, their approach 

does not support developing custom security scenarios to be 

analyzed in the target system. Admodisastro et al. [3] 

introduce a scenario-driven architectural analysis approach for 

black-box component based systems. Their analysis 

framework is extensible to support different pluggable 

analyzers that perform structure checking, quality checking, 

and conformance checking. However their proposed 

framework is high-level and lacks details of its components. 

Alkussayer et al. [2, 10] introduce a scenario-based security 

evaluation framework of software architecture. They use 

mapping of security goals/requirements, security patterns, and 

security threats to identify security scenarios used in 

evaluating (and improving) the given system architecture. 

Metrics-based Analysis: Antonino et al. [4] introduce an 

indicator-based approach to evaluate architecture-level 

security in SOA. They use reverse engineering to extract 

security-relevant facts. They then use system-independent 

indicators and a knowledge base which maintains list of 

security goals and indicators relevant for every goal. Although 

the approach is extensible, it does not support automated 

analysis. Sant’anna et al. [9] describe a concern-driven 

quantitative framework for assessing architecture modularity. 

They introduce a set of modularity metrics that are used to 

assess a given system architecture. Alshammari et al. [8, 22] 

introduce a hierarchical security assessment model for object-

oriented programs. They define a set of dependent metrics that 

capture security attributes of the given system. The proposed 

metrics are well organized. However, they are not extensible 

(i.e. are predefined metrics). Moreover, they do not consider 

security architecture details analysis. Heyman et al. [23] 

introduce an approach to identify security metrics to 

measure/assess based on mapping user security requirements 

on security objectives. For each security objective, they define 

security patterns that are expected to satisfy such objectives. 

Each security pattern has a set of security metrics that are 

satisfied by the pattern. The metrics specification approach is 
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informal so it does not enable automating the analysis phase. 

Sohr et al. [24] describe an architecture-centric security 

analysis approach. They reverse engineer system architecture 

from source code using the Bauhaus tool. They conduct 

manual analysis to identify security flaws existing in the given 

system architecture. Liu [25] introduce a service-oriented 

framework to analyze attack-ability of given software. They 

develop a new language to capture system architecture and 

security details. Using this model, they defined a set of built-in 

security metrics to be assesses in a given system architecture. 

VIII. SUMMARY 

We introduced a new architecture security analysis approach 

based on formalizing system architectural security attack 

scenarios and security metrics using OCL. Target system 

architecture and security details are captured using UML and 

our SecDSVL respectively. We have developed a prototype 

architecture security analysis tool that succeeds in analyzing 

different systems against different sets of security scenarios 

and metrics. We are able to apply these at source code, design 

and architecture levels. Our experiments show that security 

metrics should not be specified as ratio or percentage metrics 

as this gives misleading figures of a system’s actual security. 
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