
Automated Software Architecture Security Risk

Analysis using Formalized Signatures

Mohamed Almorsy, John Grundy, and Amani S. Ibrahim

Centre for Computing and Engineering Software Systems

Swinburne University of Technology

Melbourne, Australia

[malmorsy, jgrundy, aibrahim]@swin.edu.au

Abstract— Reviewing software system architecture to pinpoint

potential security flaws before proceeding with system

development is a critical milestone in secure software

development lifecycles. This includes identifying possible attacks

or threat scenarios that target the system and may result in

breaching of system security. Additionally we may also assess the

strength of the system and its security architecture using well-

known security metrics such as system attack surface,

Compartmentalization, least-privilege, etc. However, existing

efforts are limited to specific, predefined security properties or

scenarios that are checked either manually or using limited

toolsets. We introduce a new approach to support architecture

security analysis using security scenarios and metrics. Our

approach is based on formalizing attack scenarios and security

metrics signature specification using the Object Constraint

Language (OCL). Using formal signatures we analyse a target

system to locate signature matches (for attack scenarios), or to

take measurements (for security metrics). New scenarios and

metrics can be incorporated and calculated provided that a

formal signature can be specified. Our approach supports

defining security metrics and scenarios at architecture, design,

and code levels. We have developed a prototype software system

architecture security analysis tool. To the best of our knowledge

this is the first extensible architecture security risk analysis tool

that supports both metric-based and scenario-based architecture

security analysis. We have validated our approach by using it to

capture and evaluate signatures from the NIST security

principals and attack scenarios defined in the CAPEC database.

Index Terms—Software security, Architecture Security Risk

analysis, Formal attack patterns specification, Common attack

patterns enumeration and classification (CAPEC)

I. INTRODUCTION

Software architecture plays a vital role in the soundness and

flexibility of complex software systems. While software

architecture is usually expensive to change after system

development, it is potentially cheaper to analyze early during

system development [1]. This both helps in assuring that

stakeholders’ requirements have been met and aids in

discovering flaws while modification is still a fraction of time

and cost compared with later updates [2].

Architecture analysis has different goals. This includes

assessing system maintainability, usability, sustainability, and

security and resilience against attacks. Existing efforts to assess

and evaluate software architecture against these quality

attributes are classified into two main techniques: (i) scenario-

based architectural analysis [1]-[3], focusing on generating

(sometimes using brainstorming workshops) a set of evaluation

scenarios based on the evaluation requirements; and (ii)

metrics-based approaches [4]-[5], focusing on developing

metrics that can be used in assessing software architecture.

Evaluating the security properties of software at early

development stages helps in identifying security risks, potential

security-related weaknesses in the software architecture, and

areas that violate security requirements of stakeholders. These

architecture and design flaws represent 50% of total reported

vulnerabilities [6]. Many of these flaws cannot yet be

discovered using existing security analysis tools. The security

analysis task is usually conducted at different phases of the

software development lifecycle under different names and

using different artifacts [7]. Architecture security risk analysis

is usually conducted at design phase using system architecture

and design models. It targets identifying architecture and

design security flaws. Vulnerability analysis is usually applied

during development and testing using source code, or after

system development using system binaries. These efforts target

identifying existing security bugs in the system under test.

In this paper we focus on architecture security risk analysis.

Most existing architecture security risk analysis efforts depend

on a set of predefined metrics that have been hardcoded or

implemented in the analysis tools [4, 8, 9]. Scenario-based

efforts usually use security requirements and objectives as a

source to develop the required security scenarios to be

validated in a given software architecture [3, 10, 11]. Key

problems are the lack of automated tool support for analyzing

system architectures; lack of flexible and familiar architecture

evaluation criteria specification language; limited consideration

of the software operational environment capabilities’ details.

To address these issues we introduce a new, comprehensive

architecture security analysis schema. This schema captures

details of a given system attack scenario including categories,

preconditions, consequences, signatures, etc. A key entry is the

attack signature. This signature specifies a set of invariants

that, when matched, indicate that the given architecture

vulnerable to the specified attack. We adopt the declarative and

formal Object Constraint Language (OCL) [12] to capture such

signatures. This makes it easier for a development team

(usually familiar with OCL) to develop their own scenarios for

assessing their software systems’ architectures. We also use

OCL to specify architectural security metrics used in assessing

978-1-4673-3076-3/13 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

662

system and security architecture soundness. Our approach

supports extensible security metrics specification where new,

user-defined, architectural security metrics can be introduced

and evaluated without tool customization or development of

new plug-ins. We have developed a system-security meta-

model that helps in validating the OCL-based scenarios’ and

metrics’ signatures. This meta-model is extensible, enabling

users to capture other perspectives relevant to their architecture

analysis task. Each attack or metric can be assigned a specific

weight. This helps in performing automated architectural trade-

off analysis between system potential architectures or between

different systems. We capture system description and security

in two different models to help in assessing security and

architecture both separately and combined. The details of the

system to be analyzed are captured in a system description

model (SDM) using UML, with a UML profile that helps

capturing interrelations between different system structure

elements. Security details are captured in a separate security

specification model (SSM). This captures security objectives,

refined security requirements, security architecture (security

zones, mechanisms, and services), and the security controls,

patterns and functions used to realize the specified security.

Section II introduces a set of security scenarios and metrics

we have identified from existing architecture security analysis

efforts and we discuss possible signatures for these. Section III

discusses our approach covering the attack scenario schema,

signature specification, and our OCL-based analysis tool.

Section IV discusses implementation details of our approach

and Section V summarizes our evaluation results. Section VI

discusses key strengths and weaknesses, and areas for further

research. Section VII reviews the key related efforts.

II. ARCHITECTURAL SECURITY SCENARIOS AND METRICS

We discuss some of the security attack scenarios and

metrics commonly used in assessing software architecture

during the security risk analysis task. This is neither a

comprehensive nor a complete list of possible scenarios or

metrics. However, we try and cover most well-known scenarios

and metrics frequently used. The example signatures used here

are not meant to be complete or sound. Security experts have to

develop detailed signatures that can be reused by other

software engineers in assessing different systems.

A. Architecture Security Analysis Scenarios

Developing security scenarios to be used in assessing

software architecture is a key task in scenario-based

architecture analysis approaches. However, it is a very

complicated task because it requires deep knowledge of the

security domain, which is usually not feasible for all software

engineers. The STRIDE model and EOP Card Game [13] give

guidance in identifying such security scenarios. However, they

still depend heavily on engineers’ experience to analyze the

architecture of the software under test. Recently, a new

community effort introduced the Common Attack Pattern

Enumeration and Classification (CAPEC)
1
 as a reference that

can be used in assessing systems’ security. It provides a

1
 http://capec.mitre.org

comprehensive list of possible attack patterns that are

frequently used to breach systems’ security. However, CAPEC

is not yet formalized enough for use in automated architecture

security analysis tools. We discuss below a few of the key

patterns in this repository. We note that these attacks may have

other signatures and specifications when it comes to source

code level analysis (bugs) - i.e. for vulnerability analysis.

Man-In-The-Middle Attack: This attack intercepts

communications between two components. The attacker makes

independent connections with the victims and relays messages

between them, making them believe that they are talking

directly to each other. The signature of such attack is to have an

unsecure connection between two components, or if the

components communicate in an untrusted zone.

Denial-Of-Service (DOS) Attack: This attack aims to

make a system or one of its key resources unavailable for

legitimate users. DOS attacks have different formats with

different signatures. Some use invalid inputs (in terms of type,

format. Or size). Others overwhelm a system with requests.

Possible signatures of such attack include: (i) a publicly

accessible component that does not use input validation control

(or firewall) to validate incoming requests, or (ii) a public

interface that does not implement appropriate authentication

control to filter requests.

Data Tampering Attack: An attacker can tamper with

data at rest (storage), in transmission, or during processing if

data is manipulated as plaintext. Possible signatures of these

attacks include: (i) a system component that operates in an

untrusted host (malicious insider), (ii) sending data between

components or to a client in plaintext, or (iii) absence of

appropriate security authorization control.

Injection Attack: This attack exploits the lack of input

validation controls to pass in malicious inputs that can be used

to gain higher privileges, modify data, or crash a system.

Different types of injection attacks include SQL Injection, OS

Command Injection, and XML Injection. The signature is that

system components do not apply suitable input filtration on

user inputs or on inputs from other untrusted components.

B. Architecture Security Metrics

Developing security metrics to be used in assessing

software architecture is also a very complicated task. Different

security metrics exist with different scope of applicability.

These include: static vulnerability analysis metrics, dynamic

vulnerability analysis metrics, static architecture security

metrics, and runtime security metrics. We discuss some well-

known metrics used in assessing architecture security.

1) System Architecture Security Metrics: These metrics help

assessing the soundness of the software architecture security.

Examples include attack surface metric [14], total public

classified attributes and methods, critical super-classes

proportion, least privilege, and least common mechanisms [8].

These metrics can be used to assess the exposure,

exploitability, and attack-ability of the software system given

its architecture, design, and may be code details. New

architectural patterns such as multi-tenancy require new

663

security metrics that can assess tenants’ data isolation, security

elasticity, etc. Below we discuss examples of such metrics.

Attack Surface Metric [14]: This metric measures the

proportion of the system that an attacker can use to attack the

system. This can be measured as the number of system

methods that receive data from the software environment,

number of methods that return data to the software

environment, number of communication channels, and number

of untrusted data items. The larger the attack surface value, the

more potentially insecure or vulnerable is the system.

Compartmentalization Metric: Compartmentalization

means that systems and their components run in different

compartments, isolated from each other. Thus a compromise

of any of them does not impact the others. This metric can be

measured as the number of independent components that do

not trust each other (performs authentication and authorization

for requests/calls coming from other system components) that

the system is based on to deliver its function. The higher the

compartmentalization value, the more secure the system.

Least Privilege Metric: This metric states that each

component and user should be granted the minimal privileges

required to complete their tasks. This metric can be assessed

from two perspectives: from the security controls perspective

we can review users’ granted privileges. From the

architectural analysis perspective this can be assessed as how

the system is broken down to minimal possible actions i.e. the

number of components that can access critical data. The

smaller the value, the more secure the system.

Fail Securely Metric: The system does not disclose any

data that should not be disclosed ordinarily at system failure.

This includes system data as well as data about the system in

case of exceptions. This metric can be evaluated from the

security control responses – i.e. how the control behaves in

case it failed to operate. From the system architecture

perspective, we can assess it as the number of critical

attributes and methods that can be accessed in a given

component. The smaller the metric value, the likely more

secure the system in case of failure.

2) Security Architecture Metrics: These metrics help

assessing the soundness of the system security architecture and

mechanisms including: security functions and components,

security patterns, and security controls. NIST [15] introduces a

set of design principles that should be adopted in developing

secure systems. These include: use layered security; simplicity

of the security design; protect information while it is being

processed, in transit, and in storage; and never trust external

inputs. We discuss a few examples that can be used to judge

such characteristics.

Defense-In-Depth (Layered Security) Metric: This

metric verifies that security controls are used at different

points in the system chain including network security, host

security, and application security. Components that have

critical data should employ security controls in the network,

host, and component layers. To assess this metric we need to

capture system architecture and deployment models as well as

the security architecture model. Then we can calculate the

ratio of components with critical data that apply the layered

security principle compared to number of critical components.

Isolation Metric: This assesses the level of security

isolation between system components. This means getting

privileges to a component does not imply accessibility of other

co-located components. This metric can be assessed using

system architecture and deployment models. Components

marked as confidential should not be hosted with non-

confidential (public) components. Methods that are not

marked as confidential should not have access to confidential

attributes or methods.

Weakness

Language/
Platform

Description

Category

Name

ID

Target
Resources

Likelihood

Consequences

Preconditions

Signature

Mitigation
Actions

Prevention
Actions

Fig. 1. Weaknesses Definition Schema

III. OUR APPROACH

In our previous work [16], we introduced an OCL-based

static vulnerability analysis approach supported with a toolset.

This was based on capturing software vulnerability signatures

as OCL invariants. These expressions are used in conducting

program analysis of program source code or binaries to identify

matches to OCL-specified vulnerability signatures. Our

approach succeeded in locating static vulnerabilities with high

precision and accuracy rates.

We now extend this approach here with a step up in the

abstraction level. Instead of looking for signatures in source

code we look for signatures (captured from security scenarios

and metrics like those described above) in system architecture

and design models. We integrate this with our original code

vulnerability analysis approach. Our architectural security risk

analysis approach is based on (i) a comprehensive security

(attack) scenarios schema [16], shown in Fig 1, that captures

details of a given scenario including relevant platform,

likelihood, preconditions, consequences, etc.; (ii) a formal

signature specification approach that can capture security

scenarios and metrics signatures. Signatures are part of the

attack scenarios schema; and (iii) an architecture security

analysis tool that performs signature-based models analysis.

Below we focus on the most interesting signature attribute.

A. Security Scenarios and Metrics’ Signature Specification

Existing software security attack signatures in the Common

Attack Patterns Enumeration and Classification (CAPEC) help

understanding the nature of attacks. The same applies on

existing security design principles and metrics. However, these

are usually quite informally expressed and thus cannot be used

in automatically locating potentials for such attacks in target

systems. Applying them by hand is error-prone and time-

consuming. Formalizing these descriptions allows architecture

analysis tools to (semi)automate the analysis process. Ideally,

664

the formalization approach used should be extensible enough to

support capturing new attacks’ and metrics’ signatures for

different domains and requirements.

We use OCL as a well-known, extensible, and formal

language to specify semantic signatures of security weaknesses

and metrics. To support specifying and validating OCL-based

signatures, we have developed a system-description meta-

model, described in detail in [15], which captures system and

security details from the high level objectives down to the

source code entities and realization security controls. This

model captures the main entities in an object-oriented system

including components, deployment package, hosting services

(web server), storage, communication channels, classes,

instances, inputs, input sources, output, output targets,

methods, new objects, objects interactions, etc. Moreover, it

captures security concepts such as security objectives,

requirements, architecture, zones, mechanisms, authentication,

authorization, audit controls, etc. Each entity has a set of

attributes, such as component name, provider, platform used,

class name, accessibility, method name, accessibility, variable

name, variable type, method call name, etc. This enables

specifying of OCL-based scenarios’ and metrics’ signatures on

different system entities with different abstraction levels.

Table I shows some attack scenarios’ and simplified

metrics’ signatures specified in OCL using our system

description model. These signatures can be further improved to

incorporate system design details and even source code details,

if available. These signatures should initially be developed by

security experts and captured in a knowledge base, while

software developers can further extend such signatures using

customized and user-defined scenario and metric signatures.

B. OCL-based System Architecture Analyzer

After formalizing security scenarios and metrics’

signatures in OCL an OCL-based analyzer component

conducts static analysis of the system and security description

details. This includes system source code represented in

abstract syntax tee (optional); system design; architecture; and

security models to locate and evaluate the specified security

scenarios and metrics. Fig. 2. shows the architecture of our

analysis component. To simplify the discussion of the analysis

component architecture, we use example models from our test-

bed Galactic ERP multi-tenant cloud application, a web-based

ERP system [16]. Below we discuss the main inputs/outputs

and components of our architecture security analysis tool.

System Description Model: Instead of using only the

system architecture model to capture and apply security

metrics, we use a detailed system description model – SDM.

Fig. 3 shows the system description model of our exemplar

Galactic ERP system [16]. The SDM is developed by system

engineers using UML to describe details of the software. It

describes system features, architecture, classes, behaviour, and

deployment. These models cover most of the perspectives that

may be required in analysing system architecture security

soundness. Not all of these models are needed - it depends on

system engineers and attack scenarios and metrics that they

need to evaluate. Some system description details, such as

class diagrams, can be reverse-engineered from source code.

TABLE I. EXAMPLES OF ARCHITECTURAL SECURITY SCENARIOS AND

METRICS SIGNATURES IN OCL
ID Metric Signature

1 context System inv Man-in-the-Middle Attack:

self.components->select(C1|

 C1.DeploymentZoneType = 'Untrusted'

 and self.components.exists(C2 |

 C2.Channels->exists(Ch |

 Ch.TargetComponent = C1

 and Ch.EncryptionControlDeployed = false)

 and C1.EncryptionControlDeployed = false

 and C2.EncryptionControlDeployed = false))

Any two components that communicate through an unencrypted channel

and one or both of them operate in an untrusted zone or do not apply
cryptography controls on their communicated messages.
2 context System inv Denial-of-Service Attack:

self.components->select(C1|

 C1.DeploymentZoneType = 'Untrusted'

 and C1.AuthenticationControlDeployed = false

 and (C1.InputSanitizationControlDeployed = false

 or C1.Host.Network.FirewallControlDeployed= false))

Any publicly accessible component that does not operate input sanitization
control (or application firewall), and does not have authentication control.
3 context System inv DataTampering:

self.components->select(C1|

 C1.DeploymentZoneType = 'Untrusted'

 and self.components.exists(C2 |

 C2.Channels->exists(Ch |

 Ch.TargetComponent = C1

 and Ch.EncryptionControlDeployed = false)

 and C1.EncryptionControlDeployed = false

 and C2.EncryptionControlDeployed = false))

Any component that is deployed on an untrusted host (malicious insider) or

zone, sends data in plain text, or does not operate authorization control.
4 context System inv AttackSurface:

 self.components->select(C1| C1. DeploymentZoneType

= 'Untrusted')->collect(C2 | C2.Functions)->size()

Number of functions defined in the provided interfaces of the public system

components and number of functions defined in the required interfaces of
the system public components that are used by other components.
5 context System inv Compartmentalization:

self.components->select(C |

 C.AuthenticationControlDeployed = true

 and C.AuthorizationControlDeployed = true)->size()

Number of architecture components that apply Authn. and Authz. controls
on incoming calls (work independent and do not trust other components).
6 context System inv FailSecurely:

self.components->collect(C | C.Functions->select(F |

 F.IsCritical = true)->size())->sum()/

 self.components->collect(C |C.Functions->select(F |

 F.IsCritical = true)->size())->siz()

The average of critical methods and attributes in each system component.

7 context System inv Defense-in-depth:

self.select(C | C.IsCritical= true

 and C.AuthenticationControlDeployed = true

 and C.AuthorizationControlDeployed = true

 and C.CryptographyControlDeployed = true

 and C.Host.AuthenticationControlDeployed = true

 and C. Host.AuthorizationControlDeployed = true

 and C. Host.CryptographyControl = true)->size() /

self.select(C | C.IsCritical = true)->size()

The ratio of critical components that have layered security compared to the

total number of critical components in the system.

System
Description Model

Source Code

Security
Specification

Model
…

Flaws/Bugs/
Measures

Attack Scenarios
Metrics

Trade-off
Analyzer

Decision
Rationale

Signature Evaluator

OCL User-defined
Functions

Fig. 2. OCL-based static security scenarios and metrics analysis tool

665

B

C

…

<<MetaClass>>

Operation

<<MetaClass>>

Class

<<MetaClass>>

Connection

<<MetaClass>>

Component

<<MetaClass>>

UseCase

<<StereoType>>

SecurityConcept

SecurityObjectives: string

SecurityRequirements: string

SecurityControls: string

<<MetaClass>>

Node

<<MetaClass>>

Channel
D

E

A

Fig. 3. Example of Galactic system description model

Fig. 4. Example of Galactic security specification model

666

To support mapping security specifications to system

entities, we developed a new UML profile, shown in Fig. 3-A.

This extends UML models with attributes that help in: (i)

capturing relationships between different system entities in

different models – e.g. a feature entity in a feature model with

its related components in the component model and a

component entity with its related classes in the class diagram;

and (ii) capturing security entities (objectives, requirements,

controls) mapped onto a system entity. It captures system

features (Fig. 3-B) including customer, employee and order

management features; system architecture including

presentation, business and data access layers (Fig.3-C), system

classes including CustomerBLL, OrderBLL, EmployeeBLL

(Fig.3-D), and system deployment including web server,

application server, and database server (Fig.3-E).

Security Specification Model: security engineers capture

security details in a separate security specification model

(SSM). This enables evaluating both system architecture

details and security architecture details both separately and

combined. We have developed a new, comprehensive security

domain-specific visual language (SecDSVL). SecDSVL

covers most of the details required during the security

engineering process including: security goals and objectives,

security risks and threats, security requirements, security

architecture for the operational environment and security

controls/patterns to be enforced. Here we just focus on

objectives, requirements, architecture and controls. Not all

these models are mandatory. Engineers decide which models

they need to check or incorporate in their security analysis.

Fig.4 shows an example of the security specification model

for the Galactic ERP system. This captures security objectives

that should be satisfied (Fig.4-A), part of the security

requirements (Fig.4-B), high level security architecture with

security services and security mechanisms to be used in

securing Galactic (Fig.4-C), and security controls and real

implementations (Fig.4-D). The solid black lines between

security entities reflect relationships between security entities

– e.g. objectives and requirements, and requirements and

realization controls/patterns.

System-Security Mappings: Engineers map security

entities (objectives, requirements, controls) on system entities

(features, components, classes). We support many-to-many

mappings between security and system entities – i.e. many

security entities could be mapped on many system entities.

Mapping of security entities onto high-level system entities,

e.g. a system feature, means that the same security entities are

mapped to low-level system entities, e.g. components and

classes. Moreover, mapping security objective (O) to a system

entity (E) implies that all security requirements and controls

that are linked to (O) are also mapped on (E). The dashed red

lines between Figures 3 and 4 show security to system

mappings, such as placement of deployment nodes within

security zones; security objectives that should be met on

different components; and security solutions mapped to

deployment node or system entities, etc.

Source Code Abstract Program Representation: to

avoid being specific to programs written in a specific

programming language or with a specific coding style, we

transform the given system code into an abstract syntax tree

(AST) representation. The program AST abstracts most of the

source code details away from specific language constructs.

We perform further abstraction of this AST using our system

description model. This enables evaluating the conformance of

source code with system and security models.

Signature Evaluator: This is the main component in our

analysis tool. It receives the system and security details and

security scenarios, vulnerabilities, and metrics to be evaluated,

and generates a list of potential flaws, vulnerabilities, security

holes, and security measures. During analysis, the signature

evaluator loads the defined weaknesses and metrics in the

signatures database (specified in OCL) and compiles these

signatures into small analysis programs (using OCL_2_C#

transformation that generates C# code from these signatures).

These generated analysis programs analyze the fed in models

to locate entities that match the specified signatures and

calculate measurements specified. The user-defined OCL

functions represent a repository of user-defined functions that

can be used in developing complex scenarios and metrics

signatures. This includes control flow analysis, data flow

analysis, string analysis, taint-analysis, etc.

Trade-Off Analysis: The previous step produces a security

analysis report with a list of security flaws and measurements.

This report can be used to conduct trade-off analysis between

different potential software architectures. The trade-off

analysis component compares different architectures’ metrics

taking into account metrics weights. The output of is a

recommendation on selected software architecture with

rationale presented as a radar chart summarizing number of

flaws and measurements between different systems or

different system architectures, as shown in Fig. 5.

IV. IMPLEMENTATION

We briefly describe key implementation details of our

formalized attack scenarios and metrics specification approach

and supporting architectural risk analysis tool. We used

Microsoft Visual Studio2010 UML modeler to capture system

description models (as an SDM). We used Microsoft Visual

Studio Modeling SDK to develop our SecDSVL, used in

capturing security details, and our UML profile, used in

mapping security details onto the target system SDM.

We developed a UI component using Visual Studio to assist

system and security engineers in capturing security scenarios

and metrics signatures’ specified in OCL. This UI is based on

our system description meta-model discussed in Section III.

This checks the validity of OCL statements and tests

specifications on simple target application models and source

code. We use an existing OCL parser to parse and validate

signatures against our system description model. Once

validated, the signature is compiled into C# code that traverses

system and security models to find matched flaws or to

calculate security metrics’ values. To parse the given program

source code and generate a system abstract model, we use an

existing .NET parser NReFactory, which supports VB.NET

and C#. Moreover we have used a C parser written in python

667

called pycparser. We currently support locating attack patterns

in C#, VB.NET, C/C++. We are working on parsers for PhP

and Java. For a system without source code - i.e. only binaries

are available - we use an existing de-compilation tool ILSPY to

generate source code from binaries using .NET Languages.

V. EVALUATION

We performed a detailed evaluation to assess the

capabilities of our approach in capturing signatures of

software systems’ architecture security evaluation criteria

either as security scenarios or security metrics. Then we

assessed its capabilities in identifying architecture flaws that

match weakness scenarios and measure security metrics.

TABLE II. BENCHMARK APPLICATIONS SUMMARY

Benchmark Downloads KLOC Files Comps Classes Method

BlogEngine >46,000 25.7 151 2 258 616

BugTracer >500 10 19 2 298 223

Galactic - 16.2 99 6 101 473

KOOBOO >2,000 112 1178 13 7851 5083

NopCommerce >10 Rel. 442 3781 8 5127 9110

SplendidCRM >400 245 816 7 6177 6107

A. Benchmark Applications

We could not find a repository or benchmark set of

software architectures to evaluate our approach and so we

decided to use existing open source applications on which to

conduct our experiments. We used reverse engineering to

retrieve systems’ architecture and performed manual analysis

to identify security details from applications’ source code. We

have selected a set of six open source applications developed

in .NET as our benchmark to evaluate our approach. Table II

summarizes these applications including known number of

downloads, size in lines-of-code, number of files, number of

components, number of classes, number of methods. These

cover a wide spectrum including: Galactic (ERP system

developed for internal testing purposes); SplendidCRM (open

source CRM); KOOBOO (open source Enterprise CMS for

websites); BlogEngine (open source ASP.NET 4.0 blogging

engine); BugTracer (open-source, web-based bug tracking);

and NopCommerce (open-source eCommerce solution).

B. Evaluation Experiments Setup

 To evaluate our benchmark applications’ architecture

security, we selected a set of four security attack scenarios

(Man-in-The-Middle, Denial of Service, Data Tampering, and

Injection attacks), and four security metrics (Attack Surface,

Compartmentalization, Fail Securely, and Defense-in-Depth),

some exemplar signatures and metrics are presented earlier.
We used a set of evaluation metrics to measure the soundness

and completeness of our analysis technique. These metrics are

precision rate, recall rate, and F-measure. The precision metric

is used to assess the soundness of the approach. A high

precision means that the approach returns more valid results

(true positive - TP) than invalid results (false positive - FP).

Thus the maximum precision is achieved when no false

positives (Equation 1 below). The recall metric is used to

assess the completeness. A high recall means the approach

returns more valid results (true positive - TP) than misses valid

results (false negative - FN), see Equation 2. The F-measure

metric combines both precision and recall. We use it to

measure the overall effectiveness (weighted harmonic mean).

This metric depends on the importance of the recall rate and

the precision rate e.g. if we are interested in high precision

(more valid results) then we will give precision factor high

weight, and vice-versa. In our evaluation, we assume that the

importance of precision and recall is equal, see Equation 3.

 Equation 1

 Equation 2

 Equation 3

These evaluation metrics can be applied directly on attack-

scenario based approaches where we can count how many

missed or invalid scenarios retrieved by our approach.

However, most security metrics return values like average,

min, max, etc. This means that we cannot apply our evaluation

metrics directly on these security values – i.e. we cannot count

how many system/security instances were missed or

incorrectly selected. To overcome this, we have rewritten the

metrics expressions (expand metrics’ expression) into separate

factors that we can examine (in terms of FPs, FNs).

C. Experimental Results

Except for Galactic, we did not have experience with these

benchmark applications and their architecture, design, and

security details. We used reverse engineering to retrieve parts

of the system description models (mainly class diagram,

sequence diagram and component diagram) from their source

code repositories using Altova UModel. These benchmark

applications were already developed with built in security

functions. We performed manual analysis to identify security

controls used in such systems (we use these details to develop

systems’ security specification models) and where they are

currently applied (these details represent mappings between

the security entities and system entities).

Table III summarizes the results of our experiments from

our security scenarios and metrics analysis evaluation. Table

III is divided into two parts: security scenarios, and security

metrics. Columns represent IDs of the benchmark

applications: (1) BlogEngine, (2) BugTracer, (3) Galactic, (4)

KOOBOO, (5) NopeCommerce, (6) SplendidCRM. Rows

represent flaws and metrics. We summarize for each

application and each attack scenario or security metric

analyzed the number of discovered flaws or the metric

measured value; number of false positives (reported as flaw

but the manual analysis showed it is not a flaw); and number

of false negatives (a flaw, but missed by our tool).

From our experiments we found that our approach

achieves on average (90%) precision over both security

scenarios and security metrics, and on average (89%) recall

rate on both. This means that in every reported (100) scenario

instances our tool reports (90) valid scenarios and around (10)

scenarios are missed. These values depend on the soundness

of the scenarios and metrics’ signatures.

668

TABLE III. EXPERIMENTAL RESULTS OF APPLYING OUR OCL-BASED

ARCHITECTURAL SECURITY RISK ANALYSIS TOOL ON BENCHMARK

APPLICATIONS. D: DISCOVERED FLAWS, M: METRIC MEASURED VALUE,

FP: FALSE POSITIVES; AND FN: FALSE NEGATIVES

Scenario / Metric [1] [2] [3] [4] [5] [6] Total

Security Scenarios

Man-in-The-

Middle (↓)

D 1 1 4 8 3 5 22

FP 0 0 0 1 0 0 1

FN 0 0 0 1 0 1 2

Denial of Service

(↓)

D 1 1 3 2 1 2 10

FP 0 0 0 0 0 1 1

FN 0 0 0 1 1 0 2

Data Tampering

(↓)

D 1 1 3 5 3 3 16

FP 0 0 0 2 0 0 2

FN 0 0 1 0 1 0 2

Injection Attack

(↓)

D 2 1 3 5 4 3 18

FP 0 0 1 1 0 1 3

FN 0 1 1 1 0 0 3

Total

D 5 4 13 20 11 13 66

FP 0 0 1 4 0 2 7

FN 0 1 2 3 2 1 9

Average Precision = 90%, Recall = 87%, and F-Measure = 88%

Security Metrics

Attack Surface

(↓)

M 8 11 17 23 18 24 101

FP 1 2 2 1 2 4 12

FN 0 0 1 3 2 1 7

Compartmental-

ization (↑)

M 1 1 3 3 4 3 14

FP 0 0 0 0 1 0 1

FN 0 0 1 1 0 0 2

Fail Securely (↓)

M 0.3 0.2 0.5 0.5 0.4 0.6 -

FP 2 1 0 0 0 1 4

FN 1 0 0 0 1 1 3

Defence-in-

Depth (↑)

M 0.5 0.5 0.8 0.4 0.3 0.5 -

FP 0 1 0 0 1 0 2

FN 0 2 0 1 0 1 4

Average Precision = 91% , Recall = 89%, and F-Measure = 90%

-5

3

11

19

Man-in-The-Middle

Denial of Service

Data Tampering

Injection Attack

Attack Surface

Compartmentalization

Fail Securely

Defence-in-Depth

[1]

[3]

[4]

Fig 5. Example of the radar chart for applications 1,3, and 4

0

50

100

150

200

250

1 2 3 4 5 6

Defense-in-depth

Isolation

Least privilege

Compartmental-ization

Attack Surface Metric

System criticality

Fig 6. Performance of the analysis component

Table III also shows indicators associated with security

metrics. If the indicator is (↑), it means that the higher the

metric value, the more secure the architecture. The (↓)

indicator means that the lower the metric value, the more

secure the architecture. Totaling the security metrics has no

sensible meaning as many have different units (some count,

others use average or ratio). Table III shows that the man-in-

the-middle attack is the most frequent vulnerability. We also

have injection attack vulnerabilities including SQL Injection,

OS Command Injection, XPath Injection. Denial-of-service

was the least frequent injection attack vulnberability. When

we compare these results with OWSAP TOP10 vulnerabilities,

we found that they reflect relatively the same ranking where

injection attacks are ranked number 1.

Although security metrics are helpful in comparing two

different architectures for the same system (trade-off analysis),

they are misleading as they depend on the application scale.

Furthermore, in the security domain having just one flaw may

result in breach of the whole system. Fig. 5 shows a radar

chart of the attack scenarios and metrics reported for the

applications in our benchmark. This chart assists in conducting

trade-off analysis between different applications or different

system architectures because it visualizes the different

metrics’ values for different application. Thus users can easily

compare and select the best architecture from the security

perspective. From this figure, one may decide to use

application 1 instead of 4 (assuming both are in the same

business domain) as it is more secure.

D. Performance Evaluation

Fig. 6 shows the time (in sec) required to analyze the

benchmark applications’ architectures to assessing specified

security attack scenarios and metrics using the given set of

scenarios and signatures shown in Table I. It is clear that the

defense-in-depth metric takes much more time to identify than

other metrics. The system criticality takes the lowest time. The

time required to estimate a given security metric expression

depends on the complexity of the specified OCL signature

(transformed into C# code) and system size.

VI. DISCUSSION

To the best of our knowledge our approach is the first

extensible architecture security risk analysis approach that

supports both metric-based and scenario-based architecture

security analysis. Using OCL provides a flexible, formal,

familiar and extensible specification approach that can capture

both metrics and scenarios signatures. These can be generic

(applied on different systems and provide a knowledgebase),

or application-specific (apply only to a specific application). A

static scenario and metric analyser was developed based on

our vulnerability signatures specification approach to perform

analysis on system models at architecture, design and code

levels. The scenarios and metrics database can be the

responsibility of system engineers or even a community of

security organizations to build up this repository. We have

developed an architecture security analysis tool that can be

extended without a need for new algorithms, modules, or

669

patches. Our current static analyzer achieves a precision rate

of (90%) and recall rate (89%). These can be further improved

using additional and more detailed signatures and more

accurate description of a target system and its security details.

From our experiments we conclude that, in assessing

application security, we cannot use measurements in

percentages or ratios as they give misleading indicators as raw

values. This is because results depend on system size.

Moreover, we cannot use percentage metrics to assess

different systems for the same reason. Although the number of

found flaws is an important indicator, having one weak point

as an attack surface means that the system can be attacked

from this point. Some attack points are also much more

vulnerable and likely to be exploited than others. These points

can be measured using specialized metrics. We might then use

an overall security metric for a target system [8] using

weighted sum of the used measurements.

A key problem with our approach is that the results

returned by the analysis tool depend on the soundness of the

scenario and metric specifications (i.e. the OCL expressions).

This can be mitigated by: (i) supporting a knowledge base with

a set of covering metrics, allowing engineers to select metrics

of interest; and (ii) developing a model-based security scenario

and metrics-builder tool where engineers can build complex

scenarios and metrics from existing small constructs – e.g.

predefined scenarios and base measures.

Our security analysis tool works on XML representation of

the software description model. This XML representation may

be extracted from system architecture developed using UML,

sysML, or user-defined domain-specific language. Moreover,

we plan to try and automate the security attacks’ scenarios and

metrics’ signatures from the existing attack’ repository –e.g.

CAPEC that violate customer security objectives.

VII. RELATED WORK

Existing efforts in architecture analysis can be categorized

into two main groups: scenario-based approaches and metrics-

based approaches. Both have limitations related to approach

formality in describing metrics or scenarios, extensibility to

capture new metrics or scenarios to be assessed, and in

automation of the architecture analysis process. A key notice

from the existing efforts is that they focus mostly on scenario-

based analysis. A possible justification of this tendency is that

developing security metrics is a hard problem. Moreover, it

limits capabilities of the approach compared to user-defined or

tool-supported scenarios.

Scenario-based Analysis: Kazman et al. [17], Dobrica et

al. [18], and Babar et al [19] introduce comprehensive

software architecture analysis methods for different

milestones. Kazman et al. introduce a set of criteria that can be

used in developing or evaluating an architecture analysis

method including identification of the goals, properties under

examination, analysis support, and analysis outcomes. Babar

et al. compare and contrast eight different existing architecture

analysis approaches. A key weakness of all these approaches

is a lack of tool support. Kazman et al. [20] introduce ATAM

to identify trade-offs between quality attributes of a given

system and report sensitivity points in its architecture. The

approach is based on collaboration of stakeholders to define

scenarios to evaluate architecture against. The analysis is

expected to be manually. Faniyi et al. [21] extend the ATAM

approach to support architecture analysis in unpredictable

environments such as cloud computing platforms. They

improve the scenario elicitation process using security testing

with implied scenarios (unanticipated scenarios of components

interactions). This generates potential scenarios that may lead

to security attacks. Although this improved the scenario

elicitation process, it still requires manual analysis. A further

extension to our approach could be to integrate this approach

as the source of our attack and metrics signatures. Halkidis et

al. [11] introduce an architectural risk analysis approach based

on locating the existing security patterns in the given system

architecture using architecture annotation. Then, they use the

STRIDE model to generate the set of possible attacks along

with their likelihood. These security attacks can be mitigated

using security patterns. Thus the lack of specific security

patterns will cause violation of certain security objectives in

the underlying system architecture. However, their approach

does not support developing custom security scenarios to be

analyzed in the target system. Admodisastro et al. [3]

introduce a scenario-driven architectural analysis approach for

black-box component based systems. Their analysis

framework is extensible to support different pluggable

analyzers that perform structure checking, quality checking,

and conformance checking. However their proposed

framework is high-level and lacks details of its components.

Alkussayer et al. [2, 10] introduce a scenario-based security

evaluation framework of software architecture. They use

mapping of security goals/requirements, security patterns, and

security threats to identify security scenarios used in

evaluating (and improving) the given system architecture.

Metrics-based Analysis: Antonino et al. [4] introduce an

indicator-based approach to evaluate architecture-level

security in SOA. They use reverse engineering to extract

security-relevant facts. They then use system-independent

indicators and a knowledge base which maintains list of

security goals and indicators relevant for every goal. Although

the approach is extensible, it does not support automated

analysis. Sant’anna et al. [9] describe a concern-driven

quantitative framework for assessing architecture modularity.

They introduce a set of modularity metrics that are used to

assess a given system architecture. Alshammari et al. [8, 22]

introduce a hierarchical security assessment model for object-

oriented programs. They define a set of dependent metrics that

capture security attributes of the given system. The proposed

metrics are well organized. However, they are not extensible

(i.e. are predefined metrics). Moreover, they do not consider

security architecture details analysis. Heyman et al. [23]

introduce an approach to identify security metrics to

measure/assess based on mapping user security requirements

on security objectives. For each security objective, they define

security patterns that are expected to satisfy such objectives.

Each security pattern has a set of security metrics that are

satisfied by the pattern. The metrics specification approach is

670

informal so it does not enable automating the analysis phase.

Sohr et al. [24] describe an architecture-centric security

analysis approach. They reverse engineer system architecture

from source code using the Bauhaus tool. They conduct

manual analysis to identify security flaws existing in the given

system architecture. Liu [25] introduce a service-oriented

framework to analyze attack-ability of given software. They

develop a new language to capture system architecture and

security details. Using this model, they defined a set of built-in

security metrics to be assesses in a given system architecture.

VIII. SUMMARY

We introduced a new architecture security analysis approach

based on formalizing system architectural security attack

scenarios and security metrics using OCL. Target system

architecture and security details are captured using UML and

our SecDSVL respectively. We have developed a prototype

architecture security analysis tool that succeeds in analyzing

different systems against different sets of security scenarios

and metrics. We are able to apply these at source code, design

and architecture levels. Our experiments show that security

metrics should not be specified as ratio or percentage metrics

as this gives misleading figures of a system’s actual security.

REFERENCES
[1] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H.

Lipson, and J. Carriere, "The architecture tradeoff analysis

method," In Proc. 1998 IEEE Int. Conf. on Engineering of

Complex Computer Systems, pp. 68-78.

[2] A. Alkussayer and W. H. Allen, "Security risk analysis of

software architecture based on AHP," In Proc. 7th Int.

Conf. on Networked Computing, 2011, pp. 60-67.

[3] N. Admodisastro and G. Kotonya, "An architecture

analysis approach for supporting black-box software

development," In Proc. 5th European conference on

Software architecture, Essen, Germany, 2011.

[4] P. Antonino, S. Duszynski, C. Jung, and M. Rudolph,

"Indicator-based architecture-level security evaluation in a

service-oriented environment," In Proc. 4th European

Conference on Software Architecture, Copenhagen,

Denmark, 2010.

[5] B. Tekinerdogan, "ASAAM: aspectual software

architecture analysis method," In Proc. 4th Working

IEEE/IFIP Conf. Software Architecture, 2004, pp.5-14.

[6] G. McGraw, Software Security: Building Security In:

Addison-Wesley, 2006.

[7] W. D. Yu and K. Le, "Towards a Secure Software

Development Lifecycle with SQUARE+R," In Proc.

IEEE 36th Annual Computer Software and Applications

Conf. Workshops, 2012, pp.565-570.

[8] B. Alshammari, C. Fidge, and D. Corney, "A Hierarchical

Security Assessment Model for Object-Oriented

Programs," In Proc. 11th International Conference on

Quality Software, 2011, pp. 218-227.

[9] C. Sant’Anna, E. Figueiredo, A. Garcia, and C. J. P.

Lucena, "On the Modularity Assessment of Software

Architectures: Do my architectural concerns count?," In

Proc. 6th Int. Workshop on Aspect-Oriented Software

Development, Vancouver, Canada, 2007, pp. 183-192.

[10] A. Alkussayer and W. H. Allen, "A scenario-based

framework for the security evaluation of software

architecture," In Proc. 3rd IEEE Int. Conf. Computer

Science and Information Technology, 2010, pp. 687-695.

[11] S. T. Halkidis, N. Tsantalis, A. Chatzigeorgiou, and G.

Stephanides, "Architectural Risk Analysis of Software

Systems Based on Security Patterns," In Proc. IEEE

Transactions on Dependable and Secure Computing, vol.

5, pp. 129-142, 2008.

[12] M. V. Cengarle and A. Knapp, "OCL 1.4/5 vs. 2.0

Expressions Formal semantics and expressiveness,"

Software and Systems Modeling, vol. 3, pp. 9-30, 2004.

[13] T. Denning, T. Kohno, and A. Shostack, "Control-Alt-

HackTM: A Card Game for Computer Security Outreach,

Education, and Fun," 2012.

[14] P. K. Manadhata and J. M. Wing, "An Attack Surface

Metric," IEEE Transactions on Software Engineering, vol.

37, pp. 371-386, 2011.

[15] G. Stoneburner, C. Hayden, and A. Feringa, "Engineering

Principles for Information Technology Security (Baseline

for Achieving Security), Revision A," NIST, 2004.

[16] M. Almorsy, J. Grundy, and A. S. Ibrahim, "Supporting

Automated Vulnerability Analysis using Formalized

Vulnerability Signatures," In Proc. 27th IEEE/ACM

Conf. on Automated Software Engineering, Essen,

Germany, 2012, pp. 100-109.

[17] R. Kazman, L. Bass, M. Klein, T. Lattanze, and L.

Northrop, "A Basis for Analyzing Software Architecture

Analysis Methods," Software Quality Journal, vol. 13, pp.

329-355, 2005.

[18] L. Dobrica and E. Niemela, "A survey on software

architecture analysis methods," IEEE Transactions on

Software Engineering, vol. 28, pp. 638-653, 2002.

[19] M. A. Babar, L. Zhu, and R. Jeffery, "A framework for

classifying and comparing software architecture

evaluation methods," In Proc. 2004 Australian Software

Engineering Conference, 2004, pp. 309-318.

[20] P. Clements, R. Kazman, and M. Klein, Evaluating

software architectures: methods and case studies:

Addison-Wesley Reading, 2002.

[21] F. Faniyi, R. Bahsoon, A. Evans, and R. Kazman,

"Evaluating Security Properties of Architectures in

Unpredictable Environments: A Case for Cloud," In Proc.

of 9th Working IEEE/IFIP Conference on Software

Architecture, 2011, pp. 127-136.

[22] B. Alshammari, C. Fidge, and D. Corney, "Security

Metrics for Object-Oriented Class Designs," In Proc. 9th

Int. Conf. on Quality Software, 2009, pp. 11-20.

[23] T. Heyman, R. Scandariato, C. Huygens, and W. Joosen,

"Using Security Patterns to Combine Security Metrics," In

Proc. 3rd Int. Conf. on Availability, Reliability and

Security, 2008, pp. 1156-1163.

[24] K. Sohr and B. Berger, "Idea: towards architecture-centric

security analysis of software," In Proc. 2nd Int. Conf.

Engineering Secure Software and Systems, Italy, 2010.

[25] Y. Liu, I. Traore, and A. M. Hoole, "A Service-Oriented

Framework for Quantitative Security Analysis of Software

Architectures," In Proc. IEEE Asia-Pacific Services

Computing Conference, 2008, pp. 1231-1238.

671

