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ABSTRACT 
Tracking a variety of traceability links between artifacts assists 
software developers in comprehension, efficient development, and 
effective management of a system. Traceability systems to date 
based on various Information Retrieval (IR) techniques have been 
faced with a major open research challenge: how to extract these 
links with both high precision and high recall. In this paper we 
describe an experimental approach that combines Regular 
Expression, Key Phrases, and Clustering with IR techniques to 
enhance the performance of IR for traceability link recovery 
between documents and source code. Our preliminary 
experimental results show that our combination technique 
improves the performance of IR, increases the precision of 
retrieved links, and recovers more true links than IR alone.   

Categories and Subject Descriptors 
D.2.7 [Software Engineering]: Distribution, Maintenance, and 
Enhancement.  
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1. INTRODUCTION 
In practice, artifacts produced during the software development 
life cycle (SDLC), such as source code, designs, requirements and 
documentation, end up being disconnected from each other. They 
are often separated into different documents, file formats and 
repositories, created and maintained by different individuals, and 
evolve at different rates [1, 2, 10]. These disconnected artifacts 
hinder engineers from undertaking comprehension, effective 
development, efficient management, and improved maintenance 
of a sytem. Implementing effective traceability during the SDLC 
can ameliorate this issue by allowing maintainers to navigate 
between and browse more effectively related artifacts [2, 4, 5, 7]. 

However, it is very challenging to extract high accuracy 
relationships between the wide variety of artifacts created during 
the SDLC [2, 5, 8, 11]. 

Many traceability recovery techniques [1, 2, 4, 6, 7, 9-11], based 
on Information Retrieval (IR) techniques, have been invented to 
retrieve traceability links between artifacts. Unfortunately, no IR 
approaches to date have the capability of recovering links between 
artifacts with high precision and recall. IR techniques generate 
traceability links by computing a similarity score based upon the 
frequency and distribution of terms in textual format documents. 
The accuracy rate of link recovery heavily relies on a cut point; 
only links that have a similarity value greater than or equal to the 
cut point are shown to users [4, 7]. This means that some 
potentially useful and important links are missed. Similarly, some 
incorrect or unuseful links are extracted and may confuse 
developers. To enhance the performance of traceability link 
retrieval, we have developed an approach that combines IR with 
three other techniques, Regular Expression (RE), Key Phrases 
(KP), and Clustering, to improve recovery of traceability links. 
These different techniques have their own strengths and 
weaknesses and recover different relationships due to their 
differing approaches. Our approach attempts to take advantage of 
strengths of the three techniques to enhance the performance of IR. 

Our particular focus is on retrieving links between class entities 
and sections in documents written in natural language. This paper 
aims to demonstrate whether and how our traceability link 
recovery approach can improve the automatic recovery of 
traceability links with high precision and recall. We have 
conducted an experiment to evaluate the strengths and weaknesses 
of our recovery approach. Analysis of the experimental results 
illustrates that our recovery approach both increases the precision 
of retrieved links and recovers more true links than IR alone. 

2. RELATED WORK 
Many of traceability recovery techniques to date make use of 
Information Retrieval (IR) approaches [1, 2, 4, 6, 7, 9-11] to 
automatically recover traceability links. Antoniol et al. [2] apply 
two different IR models, Probabilistic Model (PM) and Vector 
Space Model (VSM), to extract links between code and 
documentation. The results show that IR provides a practical 
solution for automated traceability recovery, and the two IR 
models have similar performances when terms in artifacts perform 
a preliminary morphological stemming. A traceability recovery 
tool based on PM was developed to explore how the retrieval 
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performance can be improved by learning from user feedback [1]. 
The results show that significant improvements are achieved both 
with and without preliminary stemming [1, 7]. Cleland-Huang et 
al. [4] propose an approach to improve the performance of 
dynamic requirements traceability by incorporating three different 
strategies into PM, namely hierarchical modeling, logical 
clustering of artifacts, and semi-automated pruning of the 
probabilistic network. The results indicate that the three strategies 
effectively improve trace retrieval performance. 

Settimi et al. [10] investigated the effectiveness of VSM and VSM 
with a general thesaurus for generating links between 
requirements, code, and UML models. The comparison results 
show that precision and recall are not improved by the use of the 
general thesaurus. Hayes et al. [6] use VSM but with a context-
specific thesaurus that is established based on technical terms in 
requirement documents to recover links between requirements. 
The results show that improvements in recall and sometimes in 
precision are achieved. 

Marcus and Maletic [9] introduce Latent Semantic Indexing (LSI), 
an extension of the VSM, to recover links between documentation 
and source code. The results show that LSI achieves very good 
performance without the need for stemming as required for PM 
and VSM. Wang et al. [11] present four enhanced strategies to 
improve LSI, namely, source code clustering, identifier 
classifying, similarity thesaurus, and hierarchical structure 
enhancement. The comparison results indicate that this approach 
has higher precision than LSI and PM, but has lower recall. 

Although various strategies have been applied to enhance the 
performance of IR techniques, no approaches can largely decrease 
incorrect (fault) links at low cut points and significantly increase 
correct (true) links at high cut points [2, 4, 9-11]. 

3. OUR PROPOSED APPROACH 
We have been exploring a new approach combining Regular 
Expression (RE), Key Phrases (KP), and Clustering techniques 
with Vector Space Model (VSM) IR to recover links between 
sections in documents and class entities. Our approach is intended 
to overcome the limitations of IR by taking advantage of strengths 
of RE, KP, and clustering. Adding KP enables IR to generate all 
potential links. RE increases the number of true links at high cut 
points. The majority of fault links at low cut points are discarded 
by adopting Clustering. The four techniques are described in the 
following sections. 

3.1 Information Retrieval 
Our basic retrieval technique uses VSM to recover links between 
class entities and sections in documents. VSM queries include 
class names and their constituent words if a class name is formed 
by compound words. VSM extracts from a collection a subset of 
sections that is deemed relevant to a given query and assigns a 
similarity score (0 ≤ similarity score ≤ 1) to each retrieved section 
based on frequency and distribution of key words in the query. 
This can result in some accurate relationships having a very low 
similarity score [1, 2, 4, 6, 7, 9-11]. The lower the cut point that is 
used, the more possible relationships are retrieved but the more 
fault relationships are captured as well. In other words, at a high 
cut point, IR captures few links with few positive links. Another 
limitation is that we have found that IR can miss links in the 
following two situations: class names that do not follow a 

common naming convention strategy; and documents that use 
different words to describe related classes.  

3.2 Regular Expression 
In order for us to augment the number of retrieved links at high 
cut points, the RE technique is used to find all of the occurrences 
of class names in documents. This technique is case sensitive.  

Class names can be placed into two groups. One group is class 
names containing only one word, such as Control, Main, Graphics 
etc. Another is class names formed by compound words, such as 
NamingExceptionEvent,  DragSource etc. For the second group, 
the class names are most likely not part of common words that can 
be found in a dictionary. Therefore, once they appear in 
documents, most likely they represent class names. For the first 
group, class names probably belong to common words. Then we 
have to make sure the same words found in documents indicate 
class names and not other names. 

For the second group, simply matching class names against their 
occurrence in documents suffices. From inspection of typical 
documents, we observe that class names can be surrounded by a 
wide variety of non-word characters but must exclude the hyphen 
“-”. A hyphen attached before or after a class name can be part of 
another class name. For example, the string “DragSource” 
matches a class named “DragSource”, but also a class name is 
written as “DragSource-Listener” in documents when a class 
name is separated over two lines and is connected by a hyphen: 
“DragSource-“ is at the end of a line, “Listener” is at the 
beginning of the following line. It raises another issue that 
hyphens may exist inside class names, e.g. “DragSource-
Listener”. Therefore, we extend the regular expressions developed 
by Bacchelli et al [4, 5] to the following regular expression code 
(take the class named “Control” for the example): 

(.*)(^a-zA-Z0-9\-)<C-?o-?n-?t-?r-?o-?l>(^a-zA-Z0-9\-)(.*) 

In order to identify class names in the first group, we can 
additionally match different parts of the package name of the class 
in documents. For example, a package named javax.naming.event 
has three parts: javax, naming, event. It is not feasible to require 
the last part of the package name to be presented before the class 
name, because it is very rare that a package name is cited before 
the class name in documents. If the class name, the last part of the 
package name, and at least one of other parts of the package name 
are found, then the same words in documents denote the class 
name. This method can also be used to identify classes sharing the 
same name but belonging to two different packages. The regular 
expression code for matching each part of package names is: 

(.*)(^a-zA-Z0-9\-)<each part of package name>(^a-zA-Z0-9\-)(.*) 

These two regular expressions capture documents directly 
containing class names. As links recovered by RE are considered 
to be true links, they are assigned with the highest similarity value. 
This largely expands the retrieved link sets at high cut points but 
does not change the fault links recovered by VSM. This approach 
still fails to retrieve links that are missed by VSM. 

3.3 Key Phrases 
Key Phrases provide a brief summary of a document’s content 
[12]. We have used the KP technique to extract key words (or key 
phrases) from comments of code to provide a brief summary of 



each class’s description comment and use these to augment our 
VSM technique’s link recovery. 

There are two situations where VSM is unable to retrieve correct 
links. Firstly, when class names do not follow a naming 
convention strategy, VSM struggles to retrieve documents that do 
not explicitly mention the class name. For example, a class named 
“RefAddr”, its query is “RefAddr OR ref addr OR ref OR addr”, 
VSM is unable to retrieve documents not containing “RefAddr” as 
“ref” and “addr” are not common words. Secondly, documents 
implicitly mentioning a class but not explicitly using the same 
word as the class name or separated words of the compounded 
class name are also problematic. For example, a class named 
“Media”, but where documents may use “medium” to indicate this 
class. We found these two issues can be addressed by taking 
comments of code into consideration. Generally, software 
developers provide comments to describe what the purpose of the 
class is or what tasks the class fulfills. Extracting key phrases 
from comments can help us to find alternative words to the class 
name or words indicating what tasks the class fulfills. For 
example, “medium” indicates the class “Media”, “reference 
address” refers to the purpose of the class “RefAddr”. We found 
that adding these extracted key phrases to the VSM queries 
enables our approach to work in the above two contexts. However, 
many fault links at low cut points are also recovered. 

3.4 Clustering 
In general, every document has an inherent hierarchical structure. 
Documents are usually divided into sections with headings. Each 
section has a direct parent or some direct children or some 
siblings. There exist tangled relationships between these sections. 
For example, in this paper, “Section 3.1” has a direct parent, 
“Section 3”, and three siblings, “Section 3.2, 3.3, and 3.4”. It has 
no children. Section 3.1, 3.2, 3.3, and 3.4 cross-reference each 
other to some extent. We utilize these tangled relationships to 
reduce fault links by using the Clustering technique. 

Clustering is a division of a set of objects into groups of similar 
objects: clusters [8]. We modify the K-mean clustering algorithm 
[8] to meet our needs. There are three main steps in this: 
initialization, assignment, and removal. Before starting the 
initialization step, all retrieved links are grouped based on classes; 
namely, links related to the same class are grouped together. 
Clustering is performed on each group that represents sections 
related to the same class. Then the algorithm selects k clusters 
according to the number of links with similarity values ≥ s. Each 
cluster contains one of these related sections. When the group 
contains links with a similarity value that is equal to 1, then the 
algorithm uses s = 1. Otherwise, the algorithm uses s = 0.3 to 
create clusters. From empirical observation we found four reasons 
to use this latter value when none of the links’ similarity value in 
the group is equal to 1. Firstly, a majority of fault links have a 
similarity score ≤ 0.3. Secondly, links with similarity ≥ 0.3 are 
more likely to be true. Thirdly, if we use s ≤ 0.3, our approach 
retrieves many fault links and only slightly more true links. 
Fourthly, if s ≥ 0.3, our approach slightly decreases the number of 
fault links but does not obtain more true links. Empirically, 
therefore, we found the 0.3 threshold to be the best choice for the 
target system used in our experiment. We need to conduct more 
experiments, however, to validate its suitability for other systems.  

Next, the algorithm assigns the direct parent, all direct children 
and all siblings of the initial section to the cluster, but only new 

sections aren’t in other clusters but are in the retrieved link set. 
Finally, links not in clusters are discarded. We have found that our 
clustering approach eliminates many fault links at low cut points. 

4. IMPLEMENTATION 
Figure 1 illustrates the traceability recovery process of our 
approach. First, documents are partitioned into small sub-
documents according to sections or headings (1). Next, source 
code is analyzed by the code dependency analysis system to 
extract source code identifiers (every class, method, package 
name) and comments inside code (2). These extracted class names 
are passed to the Regular Expression processor to find sections 
that directly mention the class name (3). Links retrieved by the RE 
processor are assigned the highest similarity score (= 1), and form 
the RE link set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Traceability recovery process of our approach 
At the same time, extracted comments inside code are passed to 
the Key phrases extraction system (4). This extracts key phrases 
from comments. These extracted key phrases are combined with 
extracted class names to form VSM queries (5). After the sub-
documents are preprocessed (6), the IR engine retrieves 
traceability links according to queries, and computes similarity 
scores based on the frequency and distribution of the key words or 
phrases (7). Recovered links forms the IR link set.  The RE link 
set and the IR link set are then merged together (8). If a link can 
be found in both sets, then the one in the IR set is removed and we 
leave the link in the RE set (i.e. with higher rank). Finally, the 
merged link set passes through the Clustering system to refine the 
link set to produce the final candidate traceability links (9). 

5. EXPERIMENTAL RESULTS 
We have set up a case study, the Java SE Development Kit 
Version 5 (JDK 1.5) and a set of related documents, to evaluate 
whether our approach improves the precision and recall of 
retrieved links. We compared our approach with VSM. In Figure 
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2, we summarize the precision and recall results of the two 
approaches. Precisions at all cut points are significantly improved 
by our approach; especially at low cut points from 0 to 0.1. Our 
approach is able to obtain good Precision at all cut points. We 
observe that Recall for our approach is much higher than for VSM 
at high cut points from 0.3 to 0.9, but slightly lower at low cut 
points from 0 to 0.1. Nevertheless, our approach achieves 
reasonably high Recall values, above 82% at all cut points. The F-
measure results of all approaches in Figure 3 show that our 
approach is more effective than VSM if Precision and Recall are 
considered equally important. 

 
Figure 2. Precision/Recall of VSM and our approach  

 
Figure 3. F-measure of VSM and our approach 

Our preliminary experimental results demonstrate that our 
approach improves precision at all cut points and recall at high cut 
points. In other words, our approach largely increases true links at 
high cut points from 0.3 to 0.9, and significantly decreases fault 
links at all cut points.  The main limitation of our approach is that 
some true links are discarded after adding Clustering. This is 
because the group containing links related to the same class is 
totally removed when no links in the group have a similarity value 
larger than the threshold s value, this leads to no clusters for this 
group being created. Therefore, true links in such groups are cut. 

6. IMPACT AND FUTURE DIRECTIONS 
It is a major challenge for traceability recovery techniques to 
extract relationships between artifacts of a system at high-levels 
of both precision and recall. Many recovery techniques based on 
IR exist but none so far produces sufficiently consistent and high 
enough quality of results that developers require. Our approach 
combines RE, KP, and Clustering techniques with VSM to extract 
links between sections in documents and class entities. Our 
approach enhances VSM's performance by taking advantage of 
strengths of RE, KP, and Clustering to overcome VSM's shortages. 

The experimental results provide a preliminary demonstration that 
our approach eliminates VSM's some limitations, improves 
precision at all cut points, recovers links missed by VSM, and 
increases recall at high cut points.  

In addition to trialling our system on other corpuses, we will 
experiment with allowing users to configure thresholds, select 
some or all techniques to apply to the extracted link set. We will 
also experiment with automated tuning of thresholds from user 
ranking of extracted relationships. Furthermore, we will explore 
using other techniques to refine the extracted relationships such as 
user creation or editing of links and ranking of relationship 
quality. In addition, we will carry out a usability evaluation of our 
approach and associated visualization tool to determine how 
effective they are in assisting users navigate between source code 
elements and associated documentation elements. 
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