
New Ideas and Emerging Results Track: a Combination
Approach for Enhancing Automated Traceability
Xiaofan Chen

Department of Computer Science
University of Auckland

Auckland, New Zealand
(0064 9) 373-7599 88260

xche044@aucklanduni.ac.nz

John Hosking
Department of Computer Science

University of Auckland
Auckland, New Zealand

(0064 9) 373-7599 88297

john@cs.auckland.ac.nz

John Grundy
Centre for Complex Software Systems

& Services
Swinburne University of Technology

Melbourne, Australia
(0061 3) 9214-8731

jgrundy@swin.edu.au

ABSTRACT
Tracking a variety of traceability links between artifacts assists
software developers in comprehension, efficient development, and
effective management of a system. Traceability systems to date
based on various Information Retrieval (IR) techniques have been
faced with a major open research challenge: how to extract these
links with both high precision and high recall. In this paper we
describe an experimental approach that combines Regular
Expression, Key Phrases, and Clustering with IR techniques to
enhance the performance of IR for traceability link recovery
between documents and source code. Our preliminary
experimental results show that our combination technique
improves the performance of IR, increases the precision of
retrieved links, and recovers more true links than IR alone.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement.

Keywords
Traceability; Regular Expression; Key Phrases; Clustering.

1. INTRODUCTION
In practice, artifacts produced during the software development
life cycle (SDLC), such as source code, designs, requirements and
documentation, end up being disconnected from each other. They
are often separated into different documents, file formats and
repositories, created and maintained by different individuals, and
evolve at different rates [1, 2, 10]. These disconnected artifacts
hinder engineers from undertaking comprehension, effective
development, efficient management, and improved maintenance
of a sytem. Implementing effective traceability during the SDLC
can ameliorate this issue by allowing maintainers to navigate
between and browse more effectively related artifacts [2, 4, 5, 7].

However, it is very challenging to extract high accuracy
relationships between the wide variety of artifacts created during
the SDLC [2, 5, 8, 11].

Many traceability recovery techniques [1, 2, 4, 6, 7, 9-11], based
on Information Retrieval (IR) techniques, have been invented to
retrieve traceability links between artifacts. Unfortunately, no IR
approaches to date have the capability of recovering links between
artifacts with high precision and recall. IR techniques generate
traceability links by computing a similarity score based upon the
frequency and distribution of terms in textual format documents.
The accuracy rate of link recovery heavily relies on a cut point;
only links that have a similarity value greater than or equal to the
cut point are shown to users [4, 7]. This means that some
potentially useful and important links are missed. Similarly, some
incorrect or unuseful links are extracted and may confuse
developers. To enhance the performance of traceability link
retrieval, we have developed an approach that combines IR with
three other techniques, Regular Expression (RE), Key Phrases
(KP), and Clustering, to improve recovery of traceability links.
These different techniques have their own strengths and
weaknesses and recover different relationships due to their
differing approaches. Our approach attempts to take advantage of
strengths of the three techniques to enhance the performance of IR.

Our particular focus is on retrieving links between class entities
and sections in documents written in natural language. This paper
aims to demonstrate whether and how our traceability link
recovery approach can improve the automatic recovery of
traceability links with high precision and recall. We have
conducted an experiment to evaluate the strengths and weaknesses
of our recovery approach. Analysis of the experimental results
illustrates that our recovery approach both increases the precision
of retrieved links and recovers more true links than IR alone.

2. RELATED WORK
Many of traceability recovery techniques to date make use of
Information Retrieval (IR) approaches [1, 2, 4, 6, 7, 9-11] to
automatically recover traceability links. Antoniol et al. [2] apply
two different IR models, Probabilistic Model (PM) and Vector
Space Model (VSM), to extract links between code and
documentation. The results show that IR provides a practical
solution for automated traceability recovery, and the two IR
models have similar performances when terms in artifacts perform
a preliminary morphological stemming. A traceability recovery
tool based on PM was developed to explore how the retrieval

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE 2011 New Ideas Track, May 21-28 2011, Honolulu, Hawaii, USA.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

performance can be improved by learning from user feedback [1].
The results show that significant improvements are achieved both
with and without preliminary stemming [1, 7]. Cleland-Huang et
al. [4] propose an approach to improve the performance of
dynamic requirements traceability by incorporating three different
strategies into PM, namely hierarchical modeling, logical
clustering of artifacts, and semi-automated pruning of the
probabilistic network. The results indicate that the three strategies
effectively improve trace retrieval performance.

Settimi et al. [10] investigated the effectiveness of VSM and VSM
with a general thesaurus for generating links between
requirements, code, and UML models. The comparison results
show that precision and recall are not improved by the use of the
general thesaurus. Hayes et al. [6] use VSM but with a context-
specific thesaurus that is established based on technical terms in
requirement documents to recover links between requirements.
The results show that improvements in recall and sometimes in
precision are achieved.

Marcus and Maletic [9] introduce Latent Semantic Indexing (LSI),
an extension of the VSM, to recover links between documentation
and source code. The results show that LSI achieves very good
performance without the need for stemming as required for PM
and VSM. Wang et al. [11] present four enhanced strategies to
improve LSI, namely, source code clustering, identifier
classifying, similarity thesaurus, and hierarchical structure
enhancement. The comparison results indicate that this approach
has higher precision than LSI and PM, but has lower recall.

Although various strategies have been applied to enhance the
performance of IR techniques, no approaches can largely decrease
incorrect (fault) links at low cut points and significantly increase
correct (true) links at high cut points [2, 4, 9-11].

3. OUR PROPOSED APPROACH
We have been exploring a new approach combining Regular
Expression (RE), Key Phrases (KP), and Clustering techniques
with Vector Space Model (VSM) IR to recover links between
sections in documents and class entities. Our approach is intended
to overcome the limitations of IR by taking advantage of strengths
of RE, KP, and clustering. Adding KP enables IR to generate all
potential links. RE increases the number of true links at high cut
points. The majority of fault links at low cut points are discarded
by adopting Clustering. The four techniques are described in the
following sections.

3.1 Information Retrieval
Our basic retrieval technique uses VSM to recover links between
class entities and sections in documents. VSM queries include
class names and their constituent words if a class name is formed
by compound words. VSM extracts from a collection a subset of
sections that is deemed relevant to a given query and assigns a
similarity score (0 ≤ similarity score ≤ 1) to each retrieved section
based on frequency and distribution of key words in the query.
This can result in some accurate relationships having a very low
similarity score [1, 2, 4, 6, 7, 9-11]. The lower the cut point that is
used, the more possible relationships are retrieved but the more
fault relationships are captured as well. In other words, at a high
cut point, IR captures few links with few positive links. Another
limitation is that we have found that IR can miss links in the
following two situations: class names that do not follow a

common naming convention strategy; and documents that use
different words to describe related classes.

3.2 Regular Expression
In order for us to augment the number of retrieved links at high
cut points, the RE technique is used to find all of the occurrences
of class names in documents. This technique is case sensitive.

Class names can be placed into two groups. One group is class
names containing only one word, such as Control, Main, Graphics
etc. Another is class names formed by compound words, such as
NamingExceptionEvent, DragSource etc. For the second group,
the class names are most likely not part of common words that can
be found in a dictionary. Therefore, once they appear in
documents, most likely they represent class names. For the first
group, class names probably belong to common words. Then we
have to make sure the same words found in documents indicate
class names and not other names.

For the second group, simply matching class names against their
occurrence in documents suffices. From inspection of typical
documents, we observe that class names can be surrounded by a
wide variety of non-word characters but must exclude the hyphen
“-”. A hyphen attached before or after a class name can be part of
another class name. For example, the string “DragSource”
matches a class named “DragSource”, but also a class name is
written as “DragSource-Listener” in documents when a class
name is separated over two lines and is connected by a hyphen:
“DragSource-“ is at the end of a line, “Listener” is at the
beginning of the following line. It raises another issue that
hyphens may exist inside class names, e.g. “DragSource-
Listener”. Therefore, we extend the regular expressions developed
by Bacchelli et al [4, 5] to the following regular expression code
(take the class named “Control” for the example):

(.*)(^a-zA-Z0-9\-)<C-?o-?n-?t-?r-?o-?l>(^a-zA-Z0-9\-)(.*)

In order to identify class names in the first group, we can
additionally match different parts of the package name of the class
in documents. For example, a package named javax.naming.event
has three parts: javax, naming, event. It is not feasible to require
the last part of the package name to be presented before the class
name, because it is very rare that a package name is cited before
the class name in documents. If the class name, the last part of the
package name, and at least one of other parts of the package name
are found, then the same words in documents denote the class
name. This method can also be used to identify classes sharing the
same name but belonging to two different packages. The regular
expression code for matching each part of package names is:

(.*)(^a-zA-Z0-9\-)<each part of package name>(^a-zA-Z0-9\-)(.*)

These two regular expressions capture documents directly
containing class names. As links recovered by RE are considered
to be true links, they are assigned with the highest similarity value.
This largely expands the retrieved link sets at high cut points but
does not change the fault links recovered by VSM. This approach
still fails to retrieve links that are missed by VSM.

3.3 Key Phrases
Key Phrases provide a brief summary of a document’s content
[12]. We have used the KP technique to extract key words (or key
phrases) from comments of code to provide a brief summary of

each class’s description comment and use these to augment our
VSM technique’s link recovery.

There are two situations where VSM is unable to retrieve correct
links. Firstly, when class names do not follow a naming
convention strategy, VSM struggles to retrieve documents that do
not explicitly mention the class name. For example, a class named
“RefAddr”, its query is “RefAddr OR ref addr OR ref OR addr”,
VSM is unable to retrieve documents not containing “RefAddr” as
“ref” and “addr” are not common words. Secondly, documents
implicitly mentioning a class but not explicitly using the same
word as the class name or separated words of the compounded
class name are also problematic. For example, a class named
“Media”, but where documents may use “medium” to indicate this
class. We found these two issues can be addressed by taking
comments of code into consideration. Generally, software
developers provide comments to describe what the purpose of the
class is or what tasks the class fulfills. Extracting key phrases
from comments can help us to find alternative words to the class
name or words indicating what tasks the class fulfills. For
example, “medium” indicates the class “Media”, “reference
address” refers to the purpose of the class “RefAddr”. We found
that adding these extracted key phrases to the VSM queries
enables our approach to work in the above two contexts. However,
many fault links at low cut points are also recovered.

3.4 Clustering
In general, every document has an inherent hierarchical structure.
Documents are usually divided into sections with headings. Each
section has a direct parent or some direct children or some
siblings. There exist tangled relationships between these sections.
For example, in this paper, “Section 3.1” has a direct parent,
“Section 3”, and three siblings, “Section 3.2, 3.3, and 3.4”. It has
no children. Section 3.1, 3.2, 3.3, and 3.4 cross-reference each
other to some extent. We utilize these tangled relationships to
reduce fault links by using the Clustering technique.

Clustering is a division of a set of objects into groups of similar
objects: clusters [8]. We modify the K-mean clustering algorithm
[8] to meet our needs. There are three main steps in this:
initialization, assignment, and removal. Before starting the
initialization step, all retrieved links are grouped based on classes;
namely, links related to the same class are grouped together.
Clustering is performed on each group that represents sections
related to the same class. Then the algorithm selects k clusters
according to the number of links with similarity values ≥ s. Each
cluster contains one of these related sections. When the group
contains links with a similarity value that is equal to 1, then the
algorithm uses s = 1. Otherwise, the algorithm uses s = 0.3 to
create clusters. From empirical observation we found four reasons
to use this latter value when none of the links’ similarity value in
the group is equal to 1. Firstly, a majority of fault links have a
similarity score ≤ 0.3. Secondly, links with similarity ≥ 0.3 are
more likely to be true. Thirdly, if we use s ≤ 0.3, our approach
retrieves many fault links and only slightly more true links.
Fourthly, if s ≥ 0.3, our approach slightly decreases the number of
fault links but does not obtain more true links. Empirically,
therefore, we found the 0.3 threshold to be the best choice for the
target system used in our experiment. We need to conduct more
experiments, however, to validate its suitability for other systems.

Next, the algorithm assigns the direct parent, all direct children
and all siblings of the initial section to the cluster, but only new

sections aren’t in other clusters but are in the retrieved link set.
Finally, links not in clusters are discarded. We have found that our
clustering approach eliminates many fault links at low cut points.

4. IMPLEMENTATION
Figure 1 illustrates the traceability recovery process of our
approach. First, documents are partitioned into small sub-
documents according to sections or headings (1). Next, source
code is analyzed by the code dependency analysis system to
extract source code identifiers (every class, method, package
name) and comments inside code (2). These extracted class names
are passed to the Regular Expression processor to find sections
that directly mention the class name (3). Links retrieved by the RE
processor are assigned the highest similarity score (= 1), and form
the RE link set.

Figure 1. Traceability recovery process of our approach
At the same time, extracted comments inside code are passed to
the Key phrases extraction system (4). This extracts key phrases
from comments. These extracted key phrases are combined with
extracted class names to form VSM queries (5). After the sub-
documents are preprocessed (6), the IR engine retrieves
traceability links according to queries, and computes similarity
scores based on the frequency and distribution of the key words or
phrases (7). Recovered links forms the IR link set. The RE link
set and the IR link set are then merged together (8). If a link can
be found in both sets, then the one in the IR set is removed and we
leave the link in the RE set (i.e. with higher rank). Finally, the
merged link set passes through the Clustering system to refine the
link set to produce the final candidate traceability links (9).

5. EXPERIMENTAL RESULTS
We have set up a case study, the Java SE Development Kit
Version 5 (JDK 1.5) and a set of related documents, to evaluate
whether our approach improves the precision and recall of
retrieved links. We compared our approach with VSM. In Figure

Sourc
e code

C
ode dependency analysis

Comments

Class names

Key phrases extraction

Key
phrases

Queries
builder

IR
 engine

Regular
Expression

Document
s

Preprocessing Corpus

Links
integrator Clustering

Traceability
links

1

2

3

4

5

6

7
8 9

2, we summarize the precision and recall results of the two
approaches. Precisions at all cut points are significantly improved
by our approach; especially at low cut points from 0 to 0.1. Our
approach is able to obtain good Precision at all cut points. We
observe that Recall for our approach is much higher than for VSM
at high cut points from 0.3 to 0.9, but slightly lower at low cut
points from 0 to 0.1. Nevertheless, our approach achieves
reasonably high Recall values, above 82% at all cut points. The F-
measure results of all approaches in Figure 3 show that our
approach is more effective than VSM if Precision and Recall are
considered equally important.

Figure 2. Precision/Recall of VSM and our approach

Figure 3. F-measure of VSM and our approach

Our preliminary experimental results demonstrate that our
approach improves precision at all cut points and recall at high cut
points. In other words, our approach largely increases true links at
high cut points from 0.3 to 0.9, and significantly decreases fault
links at all cut points. The main limitation of our approach is that
some true links are discarded after adding Clustering. This is
because the group containing links related to the same class is
totally removed when no links in the group have a similarity value
larger than the threshold s value, this leads to no clusters for this
group being created. Therefore, true links in such groups are cut.

6. IMPACT AND FUTURE DIRECTIONS
It is a major challenge for traceability recovery techniques to
extract relationships between artifacts of a system at high-levels
of both precision and recall. Many recovery techniques based on
IR exist but none so far produces sufficiently consistent and high
enough quality of results that developers require. Our approach
combines RE, KP, and Clustering techniques with VSM to extract
links between sections in documents and class entities. Our
approach enhances VSM's performance by taking advantage of
strengths of RE, KP, and Clustering to overcome VSM's shortages.

The experimental results provide a preliminary demonstration that
our approach eliminates VSM's some limitations, improves
precision at all cut points, recovers links missed by VSM, and
increases recall at high cut points.

In addition to trialling our system on other corpuses, we will
experiment with allowing users to configure thresholds, select
some or all techniques to apply to the extracted link set. We will
also experiment with automated tuning of thresholds from user
ranking of extracted relationships. Furthermore, we will explore
using other techniques to refine the extracted relationships such as
user creation or editing of links and ranking of relationship
quality. In addition, we will carry out a usability evaluation of our
approach and associated visualization tool to determine how
effective they are in assisting users navigate between source code
elements and associated documentation elements.

7. REFERENCES
[1] Antoniol, G., Casazza, G., and Cimitile, A. 2000.

Traceability recovery by modelling programmer behavior. 7th
WCRE, Queensland, Australia, Nov., pp. 240-247

[2] Antoniol, G., Canfora, G., Casazza, G., Lucia, A. D., and
Merlo, E. 2002. Recovering traceability links between code
and documentations. TSE, Vol. 28, No. 10, Oct., pp. 970-983

[3] Bacchelli, A., Lanza, M., and Robbes, R. 2010. Linking E-
mails and source code artifacts. ICSE’10, May, pp.375-384

[4] Cleland-Huang, J., Settimi, R., Duan, C., and Zou, X. 2005.
Utilizing supporting evidence to improve dynamic
requirements traceability. RE'05, Paris, Aug., pp.135-144

[5] Gotel, O.C. and Finkelstein, A. C. W. 1994. An analysis of
the requirements traceability problem. 1st RE, pp. 94-101

[6] Hayes, J. H., Dekhtyar, A., and Osborne, J. 2003. Improving
requirements tracing via information retrieval. Proc. Int’l
Conf. Requirements Eng. (RE), pp. 151-161, Sept. 2003

[7] Lucia, A. D., Fasano, F., Oliveto, R., and Tortora, G. 2007.
Recovering traceability links in software artifact
management systems using information retrieval methods.
TOSEM, Vol. 16, No. 4, Article 13

[8] MacQueen, J. B. 1967. Some methods for classification and
analysis of multivariate oberservations. 5th Berkeley Symp.
On Math. Stat. and Prob. pp. 281-297

[9] Marcus, A. and Maletic, J. I. 2003. Recovering
documentation-to-source-code traceability links using latent
semantic indexing. 25th ICSE’03, pp. 125-135

[10] Settimi, R., Cleland-Huang, J., Ben Khadra, O., Mody, J.,
Lukasik, W., and DePalma, C. 2004. Supporting software
evolution through dynamically retrieving traces to UML
artifacts. 7th IWPSE, Kyoto, Japan, pp. 49-54

[11] Wang, X., Lai, G., and Liu, C. 2009. Recovering
relationships between documentation and source code based
on the characteristics of software engineering. Electronic
Notes in Theoretical Computer Science 243 (2009), Elsevier
B. V., pp. 121-137

[12] Witten, I. H., Paynter, G. W., Frank, E., Gutwin, C., and
Nevill-Manning, C. G. 1999. Kea: practical automatic
keyphrase extraction. 4th ACM DL, Berkeley, pp. 254-255

