
In Proceedings of the 2007 International Conference on Software Engineering, Minneapolis, USA, 21-26 May 2007, IEEE.

Supporting generic sketching-based input of diagrams in a domain-specific
visual language meta-tool

John Grundy1, 2 and John Hosking2
1Department of Electrical and Computer Engineering and 2Department of Computer Science

University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
{john-g, john}@cs.auckland.ac.nz

Abstract

Software engineers often use hand-drawn diagrams as
preliminary design artefacts and as annotations during
reviews. We describe the addition of sketching support to a
domain-specific visual language meta-tool enabling a wide
range of diagram-based design tools to leverage this
human-centric interaction support. Our approach allows
visual design tools generated from high-level
specifications to incorporate a range of sketching-based
functionality including both eager and lazy recognition,
moving from sketch to formalized content and back, and
using sketches for secondary annotation and collaborative
design review. We illustrate the use of our sketching
extension for an example domain-specific visual design
tool and describe the architecture and implementation of
the extension as a plug-in for our Eclipse-based meta-tool.

1. Introduction

Hand-drawn sketches are often used in software
engineering across many phases in the software
development process. These include high-level
requirements capture, system design, user interface design
and code review [2,26,29]. A variety of increasingly
popular hardware devices support sketch-based input to
computer applications, including the Tablet PC, mobile
PDAs, large-screen E-whiteboards, and plug-in tablets for
conventional PCs and laptops. Much recent research in
HCI and user interfaces has demonstrated the potential of
such sketching-based user interfaces to enable more
human-centric interaction with computers and to enhance
the efficiency and effectiveness of user interfaces,
particularly for early-phase design and during collaborative
work [5,8,11,15,16,29].

However, most existing software engineering tools lack
support for sketching-based input, with the exception of
informal annotation in a few tools, e.g. [7]. A small
number of design-oriented applications have attempted to
provide sketching-based UML and user interface design
support [5,8,9,20,28], and a few applications have
leveraged sketching-based input for code review and to
facilitate communication for collaborative work support

[8,16,30]. However all of these systems use either special-
purpose tool implementations with limited functionality
and integration support or ad-hoc techniques to add
sketching-support into existing tools and provide very
limited user control over the recognition and formalization
of sketched content.

We have developed a meta-tool for building a wide
range of domain-specific visual language tools for
software engineering design tool development and other
diagrammatic modelling applications [14,33]. We have
also developed stand-alone, ad-hoc sketching support for
early-phase UML design [5]. The success of the latter
suggested the usefulness of adding sketching features into
our design tool meta-toolset. This would allow any
diagram-centric design tool generated by the meta-tool to
provide flexible sketching-based input. Given the
generality of the meta-toolset, we wanted to provide users
with flexible control over the approaches used for sketched
content input and processing. To achieve this, we have
enhanced our meta-tool, which is realised as a set of
Eclipse plug-ins, with an extra plug-in to support flexible
sketch-based input in any generated tool implementation.
The support provided includes both eager and lazy shape
recognition; progressive formalization of sketches into
computer-drawn content; preservation of sketched content;
and the ability for users to easily move between sketched
diagrams and formalized diagram content, or even to mix
the two. Our generated design tools with sketch-based
input run as Eclipse plug-ins. While our sketching support
currently only works for our Marama-implemented tools
the use of Eclipse does allow close integration with other
Eclipse-based software engineering tools.

We first introduce a motivation for this research and
identify a set of key requirements for generic software tool
sketch-based input support. We survey related research in
this area and outline the main features of our approach,
providing an example illustrating the use of our sketching-
based design tools. The architecture and implementation of
our meta-tool and the additional sketching plug-ins are
described. We finish with discussion of our experiences
with these tools and their strengths and weaknesses and
key areas for future research.

jgru001
(c) IEEE 2007. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE.

 b

a

c

d

Figure 1. Examples of software design with MaramaMTE.

2. Motivation

Consider the design of a complex software architecture.
Engineers often use multiple views to capture key
architectural requirements, key architectural abstractions,
and structural vs. behavioural aspects of architectural
components [18]. In doing so, they often sketch out
preliminary designs for the system architecture, refining
the views as design progresses. They may review their
designs collaboratively with other engineers and
developers before moving into detailed design and
implementation of the architecture using a variety of
design and coding tools.

We have developed several tools to support such
architectural capture. One of them, MaramaMTE [10,13],
is shown during use in Figure 1. Figure 1 (a) is a structural
diagram showing client, server, database and other key
structural abstractions. Figure 1 (b) shows a model of
client behaviour as pages, actions and inter-relationships.
Such an architecture may be refined to or reverse
engineered from a set of more detailed UML design
diagrams, e.g. Figure 1 (c), and user interface designs, e.g.
Figure 1 (d).

During development of MaramaMTE-like design
diagrams, and related UML and user interface designs,
software engineers may want to use sketches to assist their
design conceptualisation. Using hand-drawn designs in this
way has the demonstrated advantages over conventional
software diagramming tools of flexibility, encouragement
of exploratory design, and support for collaborative
annotation and design review [2,26,29]. Conventional

diagramming tools have been shown by many studies to
suffer from premature commitment to particular design
artefacts and choices; over-constraint of user actions; high
viscosity (making designs hard to change); stifling of
creativity; and limited collaborative design and review
support [29]. As many studies have shown, sketching-
based design tools for a wide range of diagram-centric
tasks offer ways of combining the advantages of paper-
based and whiteboard-based design with those of
computer-based diagramming tools [2,5,7,11,15,20,29]. To
date, though, most such research has focused on supporting
sketching-based input in a narrow range of design tasks i.e.
only providing for very limited diagram types, and in ad-
hoc ways i.e. strongly tied to one tool with very limited
reusability of sketching and recognition support.

To more widely realise the advantages of sketch input
we were motivated to add effective sketching support to all
diagram-based design tools realised using our Marama
meta-toolset. Marama supports the specification and
generation of Eclipse-based design tools, including the
MaramaMTE, UML and XForm design tools in Figure 1.
Marama tool specifications, designed using a set of
primarily visual meta-tools, are loaded by a set of Eclipse
plug-ins which generate each diagramming tool. In order
to add sketch-based design support for Marama tools we
identified the following key requirements:
x Sketching for any Marama tool. Sketch-based input,

recognition and annotation for any Marama-generated
diagramming tool must be supported. Users should be
able to “draw”, using a mouse, tablet PC stylus,
external tablet or Mimio-style E-whiteboard pen,

content that is captured by the Marama design tool.
The sketched diagram elements should then be
recognised and converted into Marama diagram
elements. There should be minimal (or ideally no)
modification or extension of the Marama diagramming
tool specifications to support sketching-based input.

x Flexible recognition and conversion. Diagramming
tool users need flexible control over when content is
recognised and converted i.e. eager vs lazy sketched
shape recognition. Some diagramming tasks (and user
preferences) suit conversion of a sketched shape into a
computer-drawn Marama shape immediately it is
drawn. Many others better-suit sketching a whole
diagram and recognising and converting it as a whole.
Still others suit a mixture of approaches, particularly
annotation of a conventionally-edited diagram for
design review tasks.

x Recognition accuracy. Accurate shape and text
recognition has been shown to be essential for sketch
interfaces [22]. However, users should be provided
with the ability to very easily over-ride the recogniser
when it makes an error. The recogniser may need to
support training to individual user sketching styles
[17, 27, 31].

x Seamless movement. Users need to be able to move
easily between sketching-based diagram input and
annotation and conventional mouse-driven editing of
diagram content within the IDE.

x Collaboration support. Collaborative design and
review support should include distributed, multi-user
sketch-based diagram input and annotation.

3. Related Work

Many CASE tools support UML modelling, almost all
using conventional mouse/keyboard input and formalised
icons [32]. Industry adoption of these tools has been mixed
[2,19] with empirical studies showing designers find them
to be overly restrictive during early design with developers
preferring to sketch early designs by hand [2,8,11,19,27].
Diagram editing constraints can also be very distracting to
users, especially during creative design work [3,19].

There has been considerable work in the area of pen
based sketch input of software designs, with support for
formalization of sketches into design artifacts. One of the
earliest, SILK [20], allows software designers to sketch an
interface using an electronic pad and stylus. SILK
recognizes widgets and other interface elements as soon as
they are drawn and can transform sketches into standard
Motif widgets. Denim [21] is a similar approach to SILK
but for web interface design.

Freeform [28] provides sketch definition and testing of
Visual Basic forms. Freeform user studies shows that
providing interaction capability with retained sketches
encourages more complete exploration of design

alternatives. Forms3, a spreadsheet style end user
programming environment, has been extended with
gestural input [4]. Amulet supports gesture-based
document manipulation [25] while Knight [8], SUMLOW
[5], and Donaldson et al [9] support UML diagram
sketching. Most immediately convert sketched input into
computer-drawn formalized content. However, user
evaluations for SUMLOW showed that keeping sketched
designs is very effective during early phase UML
diagramming and when collaboratively reviewing and
revising designs with an E-whiteboard. PenMarked
provides pen-based code annotation support [30]. Its user
studies showed good efficacy of retained pen annotations
for code review. These various systems and user studies
have affirmed to us that preserving sketch content and
having it formalized in flexible ways is both appropriate
and useful to support effective software design and review.

Each of these systems is, however, closely tied to the
underlying tool it is providing sketch recognition for with
little attention to reuse for other sketch-based applications.
A variety of low level sketch support tools have been
designed with reuse in mind. These include Rubine’s [31]
single stroke gesture recognition algorithm (used by SILK
and Freeform) and Apte’s [1] multi-stroke algorithms. Hse
has developed the multi-stroke recognition approach into
HHReco, a reusable Java toolkit supporting sketching
which incorporates a range of trainable and customizable
recognisers [17]. While these toolkits are all immensely
useful, they still require significant programming to
incorporate into other applications. Our interest in this
work was in making such generic sketch support available
to a wide range of design tools without modification or
additional programming on a tool-by-tool basis.

4. Our Approach: MaramaSketch

In order to develop a sketching-based extension for
Marama diagramming tools we developed a new plug-in,
MaramaSketch. This provides an overlay for Marama
diagrams allowing sketching-based input and manipulation
of diagram content along with associated shape and text
recognition support. Figure 2 illustrates the process of
using MaramaSketch.

A tool developer uses the Marama meta-tools to
specify a design tool (1). A set of core Eclipse plug-ins
provides diagram and model management support for
Marama modelling tools. A tool user opens or creates a
new modelling project and diagrams using these plug-ins.
If installed, an additional MaramaSketch plug-in augments
Marama diagramming editing with sketch-based input and
recognition (2). When a diagram is created or opened in
Marama, a sketching “layer” is created and managed by
the MaramaSketch plug-in (3). This intercepts mouse/pen
input on the diagram canvas when the MaramaSketch input
tool is selected by the user. Drawing with the sketch input

tool creates sketch layer elements (single-stroke and multi-
stroke shapes) (4). Depending on user preferences,
sketched input may be: immediately recognised and
converted to Marama diagram content; recognised but not
immediately converted; or converted on-demand by the
user e.g. after a whole design has been sketched (5). The
user may select conventional Marama diagram edit tools
and modify the Marama diagram content e.g. move, resize
or delete Marama diagram elements. Such edits are
propagated back to the sketch elements associated with the
Marama diagram elements (6). Collaborative editing and
review are supported using a further plug-in component.

 Marama
meta-tools

Design tool
specification

Eclipse IDE

Core
Marama
plug-ins 1. Specify tool(s)

2. Load tool
specifications

Marama plug-ins

Marama Model

Marama
Diagram

Editor

MaramaSketch
“layer”

Marama
Diagram

MaramaSketch Layer

Marama (1) Marama (2)
Collaborative

editing and
MaramaDiffer

Plug-ins

Marama
Sketch
plug-in

3. Instantiate Marama
diagramming tool;

MaramaSketch layer

4. Sketch input via
mouse, Tablet PC

stylus etc

5. Lazy vs eager
recognition;

creation/update of
Marama diagram

content

7. Collaborative
editing/review via

Marama collaborative
work plug-in

6. Updates to
conventional elements
reflected in sketches

Figure 2. Using MaramaSketch.

5. Example Usage

We illustrate MaramaSketch’s capabilities via its use
with the MaramaMTE architecture design tool shown in
Figure 1. Initially a tool developer specifies a diagram-
based design tool using a set of visual meta-tools [14].
Figure 3 shows part of the meta-tool definition for the
MaramaMTE architecture design tool. Shown is a shape
specification (a) - this one is for an ApplicationServer, and
(b) part of the view type specification (set of shapes and
connectors and their relationship to an underlying model)
for the ArchitectureView diagrams. This Pounamu tool
specification is loaded by Marama when requested by the
Marama tool user. It provides the available diagram
elements that can be input by a tool user and thus that may
need recognition from sketched input.

A crucial aspect of the success of sketching-based
design tools is accuracy of the shape and text recogniser(s)
employed [22]. We chose to use a multi-stroke, training-
based shape and text recognition algorithm [17] for
MaramaSketch. This was primarily to allow individual
users to describe their own examples of each available
shape type for MaramaSketch to increase the accuracy of
its recognition. Earlier work that we did with a non-

trainable recogniser for UML diagramming had
insufficient accuracy which became frustrating to users [5].
In addition, as MaramaSketch is intended to support any
kind of Marama diagramming tool the available shape
types are virtually infinite, leading to eventual difficulty
distinguishing between both simple and complex shapes if
a non-tool-specific approach is taken. We decided to
provide users with the ability to incrementally re-train their
MaramaSketch shape and text recognisers while the tool is
in use. When a sketched item is incorrectly recognised the
user can over-ride the MaramaSketch-recognised shape
and ask for the new shape to be added to the recogniser
training set. Users can share their training sets so one user
might initially specify available shape examples and other
may use these, re-training the recogniser over time.

Figure 3. Pounamu tool definition examples.

Figure 4. Shape recogniser training example.

Figure 4 shows a user training the MaramaSketch
shape recogniser by specifying multiple, multi-stroke
examples of a shape. We use various heuristics to identify
mouse or stylus strokes as belonging to the same shape,
including proximity, time between stroke end/start, and
information returned by the recogniser. We use the same

algorithm but different training set and stroke grouping
heuristics for text recognition.

Figure 5. Drawing an architecture design with MaramSketch.

Figure 5 shows an example of a user drawing content
(in this example with a Tablet PC stylus) onto a
MaramaMTE ArchitectureView diagram. The user simply
selects the sketching tool (highlighted in the left hand side
editing palette) and draws with the mouse/stylus on the
diagram canvas. In this example the user has drawn a
ClientShape (rectangle, “Web UI”), an ApplicationServer
Shape (oval, “Server”), a DatabaseShape (cylinder, “DB”)
and two connections between shapes. As each set of
strokes is completed MaramaSketch recognises the shape
type and remembers this.

The Recogniser view on the right is normally hidden
but as illustrated in this example it shows the
MaramaSketch shape recogniser probabilities for the most
recently drawn or selected and grouped strokes (in this
example a new ClientShape sketch). The user may over-
ride the recognition and learn the new sketched shape as an
example of specified shape type via either a pop-up menu
or this Recogniser view. Depending on user preferences
the drawn strokes can be (1) left unrecognised; (2)
recognised as a Marama shape type or text string; (3)
recognised and a Marama diagram shape, connector or text
property value created; or (4) recognised and immediately
replaced by a computer-rendered Marama diagram shape,
connector or text property value. Figure 6 shows examples
of each of these approaches.

In (1), the user simply draws multi-stroke shapes and
Marama doesn’t attempt any recognition or grouping. In
(2), the user has asked Marama to recognise and if
necessary group strokes. Here, the sketched shape (made
up of 4 lines) has been recognised as a ClientShape type
and the 4 lines grouped into one composite sketched shape.
In (3), the sketched shape has been recognised and a

Marama ClientShape created and its size and location
inferred from the sketched stokes. The user has asked that
the sketched strokes and new Marama shapes be shown
together (one can be switched off by user preference). In
(4), a set of strokes making up a ClientShape and the client
name property have been drawn, recognised by
MaramaSketch, and converted into a ClientShape with
name set to “Client1”. The user has asked for the sketched
strokes to be hidden immediately after recognition.

2. Sketch &
recognize/group

3. Sketch &
create Marama

4. Sketch &
show Marama

shape

1. Sketch

Figure 6. Recognition approaches in MaramaSketch.

A key problem in many sketching-based tools is
distinguishing between shapes and text (characters and
words). These suit different recognition algorithms and
multi-stroke grouping heuristics. We chose to delineate
between the two in MaramaSketch by use of a technique
we developed for our previous ad-hoc UML sketching
tool, SUMLOW [5] and is illustrated in Figure 7. As soon
as a sketched shape is recognised as a Marama shape or
connector one or more explicit “text area” annotations are
automatically added to the sketched shape or connector.
These “text areas” (rendered as light pink rectangles) have
mouse-over tool-tips indicating the shape or connector
property to which the text area corresponds. Any sketched
content predominantly inside a text area annotation is
assumed to be text and is processed using a different
recognition algorithm and stroke grouping heuristics.
Again the user can override the recognised text using the
Recogniser view or by editing the generated Marama shape
property value in the Eclipse Properties view. Text areas
can be set to auto-hide after text is recognised, reducing
diagram clutter. They can be re-shown for a shape by
right-click menu option e.g. to allow over-write
modification and then re-recognition of the text.

1. Sketch shape

2. Recognise
shape type

3. Add text area
annotation(s)

4. User sketches
text overlapping

text area

5. Text recognized
and Marama

shape/connector
property updated;

text areas optionally
hidden

name property

Figure 7. Text recognition in MaramaSketch.

This approach does introduce some premature
commitment [12] as shapes must be drawn and recognised
before the text annotations can be added otherwise the text

won’t be recognised as being associated with shape. In
practice, using the approach (2) of Figure 6, this does not
prove intrusive to the sketching process as shapes are
recognised quickly enough for the annotation areas to be
added immediately the shapes are sketched. This still
means that shapes must be drawn before text, but this is a
fairly natural ordering when sketching iconic shapes so we
deemed this limited premature commitment to be
appropriate. The user can however force a set of strokes to
be recognised as text rather than as a shape or connector by
using a right-click menu option.

A similar ordering constraint is currently used when
recognising connectors i.e. lines (possibly with arrows
and/or other annotations) between shapes. MaramaSketch
firstly recognises the source and target shape types and
uses these to inform the recogniser of likely connector type
from the Marama meta-model for a diagram. This often
greatly reduces the possible connector types possible. For
example, MaramaMTE client and server shapes can only
be linked by a “ClientServerConn” connector type, hence
any connector drawn between them must be of this type.

Users can switch between the different recogniser
approaches as sketches are drawn allowing a mixture of
sketch and formalised diagram elements to appear in the
one diagram. Figure 8 (left) shows an example of this. The
initial diagram drawn in Figure 5 has been recognised
using Approach (3) with formalized Marama shapes and
connectors overlaid by the original sketched shapes. An
additional ServiceShape (rounded rectangle, “Customer
Service”) with an embedded ObjectShape (rectangle,
“Cust”) and two connectors have been added using
Approach (2) which leaves the new shapes and connectors
in sketched form only. The diagram may be fully
formalized at any time. The user may also add a formalised
shape directly via the tool palette and one of the shape
training examples is added to the sketch layer to represent
this (currently just the first training example).

Figure 8. Mixing sketches and Marama diagram elements.

The Cust sketch is recognised as an ObjectShape due to
its placement inside the ServiceShape; only remote objects
in MaramaMTE can be placed here. MaramaSketch uses
this syntactic information from the Marama diagram meta-
model to reduce the possible match options for the shape
recogniser and hence improve recognition rates. The fully
recognised architecture diagram is shown to the right. The
user may freely alternate between the formalised and
sketched representations.

Diagrams can have secondary notation added, as is
shown in Figure 9. Here a preliminary design is being
critiqued with sketched annotations added to capture
elements of the design review. These are not recognisable
as Architecture Diagram shape types so are ignored by the
Recogniser but retained as secondary notation. The user
can explicitly stop recognition if desired when doing such
“informal annotation” of a diagram.

These annotations also provide an effective
collaborative review mechanism where users share these
via synchronous or asynchronous editing support.
MaramaSketch supports sharing of sketched content via a
set of synchronous editing plug-ins we developed for
standard Marama diagram synchronous editing [23].
Asynchronous sharing is supported by a shared CVS
repository and diagram diffing and merging support, also
from Marama plug-ins [24].

Figure 9. Annotating and reviewing designs.

Figure 10 shows another sketched diagram for a
different view type, this time a page flow view.
MaramaSketch uses different training sets for each
shape/connector type. When a view type is defined as
being composed of a particular set of shape and connector
types, the matching set of training sets is used by
MaramaSketch to recognise shapes in that view type. Thus,
although some of the shapes in Figure 10 are similar to
those in Figure 9, they are appropriately recognised as
page flow elements.

6. Design and Implementation

We developed MaramaSketch on top of our Marama
Eclipse-based diagramming toolset [14]. Marama
leverages Eclipse’s EMF and GEF frameworks to provide
a wide range of diagram editing tools. MaramaSketch
extends Marama to provide a sketching layer on top of
conventional Marama diagramming tools. The high-level
design of MaramaSketch is shown in Figure 11.

Figure 10. Using MaramaSketch with other view types.

MaramaSketch adds a set of extra view-level

components to a Marama diagram: TimedPoints;
SketchedShape; and GroupedSketch. TimedPoints capture
X,Y co-ordinate and millisecond timing as the user draws
on the Marama diagram canvas. The recorded timing
information is used by the shape recogniser. TimedPoints
are aggregated into a SketchedShape which represents a
single stroke shape. Each of these “strokes” may be further
aggregated into a GroupSketch, a set of SketchedShapes. A
SketchedShape or GroupedSketch may be recognised as
and related to a Marama editor shape, connector (line
between shapes) or property value (if the GroupedSketch
has been recognised as text). The MaramaSketch
components form a “layer” above the conventional
Marama diagram editor shapes and may be shown or
hidden as illustrated previously. They are saved and loaded
to the same XMI-format file as the Marama Shape,
Connector and Property components for the diagram they
have been added to.

Detailed information about Sketched shapes can be
viewed and modified via the MaramaSketch Recogniser
view, as illustrated previously. This view allows users to
explicitly group, ungroup, over-ride the recogniser add
new examples to the recogniser and recognise text or
graphical shape content. In addition, this augments the
Marama editor that has the sketch layer with a set of pop-
up menus allowing the user to non-modally over-ride the
recogniser, learn new examples, ungroup recogniser-
grouped sketched shapes etc.

Marama project model

Marama
Editor
components

Entities
Associations

MaramaSketch Editor components

TimedPoints

SketchedShape

GroupedSketch

Connectors

Shapes

Properties

MaramaSketch
Recogniser
View

Eclipse
Properties
View

MaramaSketch
Event handlers:
-create points/shapes
-group shapes
-recognisers
-create Marama
 editor shapes
-consistency – sketches
 and Marama shapes

MaramaEditor
Event handlers
e.g. editing
constraints

HHReco
multi-stroke
recogniser

Eclipse EMF XMI Serialiser
(save/load)

MaramaCommands MaramaEvents

Figure 11. Key architectural abstractions of

MaramaSketch.
In Marama, diagram editing constraints and controls

are supported via a set of “event handlers” that subscribe to
MaramaEvents and describe changes to Marama diagram
shapes and connectors. We implemented a set of event
handlers for MaramaSketch that listen to changes made to
both MaramaSketch layer components and Marama editor
components e.g. move mouse, which create TimedPoints,
add SketchedShape, resize SketchedShape, move
MaramaShape, delete MaramaConnector etc. These event
handlers provide the essential MaramaSketch functionality
of creating sketched content; grouping sketched shapes;
recognising sketched shapes; creating Marama shapes and
connectors and relating them to sketched shapes and
groups; and modifying sketched shapes when Marama
shapes/connectors have been edited and vice-versa. The
event handlers make changes to MaramaSketch
components and Marama diagram components by creating
and running MaramaCommands on them that effect
required state changes.

MaramaSketch uses the open source HHReco toolkit to
support multi-stroke text and graphical shape recognition
[17]. HHReco provides an incrementally re-trainable set of
positive and negative examples that can be augmented
incrementally during MaramaSketch usage or via custom
training sets developed before use. We use two differently
configured HHReco recognisers, one for graphical shape
recognition and one for textual character recognition. The
graphical shape recogniser uses a set of heuristics to group
multiple drawing strokes into shapes for recognition. These
include time between strokes, stroke overlap, and
recogniser probabilities returned when trying different
groupings of multiple shapes in sequence.

The HHReco-based text recogniser supports multi-
stroke character recognition, in contrast to the common
single-stroke approaches such as Rubine’s algorithm [31]
and the original Graffiti [22]. Disambiguation as to
whether Strokes belong to text vs graphical shapes is
currently managed using “text area” annotations, greatly
improving recognition rates. Our text recogniser for
MaramaSketch could be replaced with e.g. the native text
recogniser in the Tablet PC operating system. However
this would require running MaramaSketch only on a Tablet
PC and would require detailed data structure and API call
changes. HHReco allows MaramaSketch to be used on any
computing platform with mouse-based input, making the
implementation much more portable.

7. Discussion

We have so far used the MaramaSketch plug-in to
augment a software architecture design environment
(MaramaMTE), a web service composition tool
(ViTABaL-WS), a simple UML class diagramming tool,
and a music composition tool. No code changes were
required for MaramaSketch to work for any of these tools
–a single extra event handler is added to the tools’ meta-
tool specification to initialise the MaramaSketch
capabilities when a diagram is opened. The plug-in has
been used on a conventional desktop PC and on a tablet PC
and works on either without modification. Due to the
prototypical nature of MaramaSketch, in particular the
unintuitive user interface provided by the recogniser view,
we have not yet conducted an empirical usability study of
the plug-in. Instead we have demonstrated the augmented
software architecture and web service composition tool to
several experienced users and developers of Marama tools
and to two novice users of the music composition tool. We
obtained preliminary feedback on its potential usefulness
in these domains.

Key strengths of the approach we have taken in
MaramaSketch include:
x It is generic, working for any Marama tool – even for

the design of Marama tools (as our meta-tools are
themselves Marama tools). This is in comparison to
approaches such as SUMLOW [5] and Knight [8]
which are limited to one toolset only.

x It is highly flexible, in that it can be tailored to suit
both the tool and end user preferences in terms of its
recognition strategy and also in the sketched symbols
it will recognise (as embodied in its training sets).
Again, this compares favourably to other sketch tools
which limit end user choice [5, 8].

x It provides seamless movement both ways between
sketching and formalised diagram manipulation.

x It is highly platform portable, limited only by the
portability of the underlying Eclipse toolset that it is
based on.

Current weaknesses of our approach include:

x The need for training sets. Although they are a key to
the tool’s flexibility, they take time to set up when
defining a tool. However, this time is amortised over
(typically) many applications of that tool definition.

x The user interface is somewhat clumsy when over-
riding mis-recognised shapes and the prototype
recogniser viewer is unintuitive for most users

x The selection of recognition modes e.g. recognise &
automatically create shape by users is unintuitive

x The automatic “divider” that determines when to
recognise a set of strokes as shape or text is very
rudimentary and prone to error

x There is some premature commitment in the
approaches taken for text annotation and for connector
differentiation, as discussed in the previous section.

x The Marama meta-tool specifications currently have
limited information about complex shape relationships
e.g. containment and alignment, which if improved
would assist shape recognition by reducing options

x It only works for diagramming tools developed using
our Marama meta-toolset

The key requirements expressed in Section 2 have all

been met. Genericity, flexibility, and seamless movement
are described above as key advantages. Recognition
accuracy is high and the incremental nature of the training
sets means that accuracy can be improved for individual
users over time to suit end-user symbol specification
preferences.

Premature commitment, which we have discussed in
some detail, is one of many dimensions in the Cognitive
Dimensions of Notations Framework (CD) [12]. We have
used CD to assist us in the design of MaramaSketch.
Dimensions we have emphasised, in addition to premature
commitment include:
x Viscosity: pen and paper/whiteboard sketching has

high viscosity; i.e. it takes considerable effort to
change a diagram element. In MaramaSketch we have
attained much lower viscosity by permitting sketched
elements to be resized/moved using the mouse or pen.

x Progressive evaluation: we have aimed for high
progressive evaluation. End users can have their
sketches recognized at any time allowing them to
obtain feedback as and when they desire on whether
their sketches have been recognised correctly (and can
override that recognition if they haven’t)

x Secondary notation: again, we have aimed at high
secondary notation support. End users can selectively
turn off recognition to add any desired form of
secondary annotation (or may simply annotate using
symbols that are not recognised). This allows arbitrary
secondary annotation to be added to any diagram.

x Closeness of mapping: this dimension was central to
our motivation i.e. that sketching is a more natural
mechanism for expressing initial designs than standard
computer diagramming approaches.

x Error-proneness: The tool currently delineates shapes
from text with user assistance (dynamic text areas on
shapes) and simple heuristics. While this works if used
the way we intended, this approach introduces
premature commitment and fails if text and shapes are
attempted to be recognised in one batch operation.

Other dimensions were less relevant to

MaramaSketch’s design, as they are more specific to a
particular notation/tool implemented by Marama rather
than the generic support of MaramaSketch.

There are several areas of improvement that could be
made to MaramaSketch. The current implementation uses
the HHReco toolkit for text recognition for reasons of
portability. Supplementing this with platform specific
recognition capability where this is available, such as the
Tablet PC text recogniser, would greatly improve
recognition performance – particularly for text – at the
expense of having to maintain multiple architectures.

An alternative approach to using the text area method
for text annotation delineation would be to use a “divider”
algorithm, such as is used in the Tablet PC, to
automatically infer the distinction between text and
graphical objects prior to detailed recognition. This would
eliminate the premature commitment issues discussed
earlier. The Inkkit toolkit [6] could be used for this
purpose. Its divider performance is significantly better than
that of the Tablet PC, however it is still platform specific
and hence would limit portability.

The current system provides a limited form of
“deformalisation” of a standard Marama diagram element
i.e. “re-engineering” a sketch from the standard Marama
shapes and connectors into realistic-looking sketch
elements. As discussed earlier, there is ample evidence to
suggest that sketched diagrams encourage designers to
explore and critique designs more thoroughly so
conversion of formal diagrams into sketches could be
useful to encourage that process. MaramaSketch currently
provides a limited form of this by selecting the first
sketched shape from its training sets to replace formal
shape and connector elements in a diagram. These are
crudely resized and then combined with similarly
generated text annotations. Understanding whether the
sketches were then sufficiently realistic to encourage the
desired behaviour would then need to evaluated
empirically.

An additional application that MaramaSketch could be
extended to is annotation of Eclipse code views. This
would use the same sketch overlay mechanism, but to
support code annotation and review rather than diagram
construction. This would provide a similar mechanism for

Eclipse as Plimmer and Mason [30] have provided for
Visual Studio. It may be possible to seamlessly augment
any Eclipse GEF (Graphical Editing Framework)-based
diagramming tool with a MaramaSketch overlay.

8. Summary

We have described MaramaSketch which generically
extends tools generated by our Eclipse-based Marama
meta-toolset with sketch input capabilities. The sketching
extension is tailorable in its recognition approach,
spanning the spectrum from lazy through eager recognition
and is incrementally trainable to cope with idiosyncrasies
of individual users. Experience with this approach has
been promising for providing truly generic sketch input
support for software engineering diagramming tools.

References

1. Apte, A. Vo, V. Kimura T. D. Recognizing Multistroke
Geometric Shapes: An Experimental Evaluation. In Proc
UIST 1993, ACM Press, pp. 121-128.

2. Black, A., Visible planning on paper and on screen: The
impact of working medium on decision-making by novice
graphic designers. Behaviour and information technology,
1990. 9(4): p. 283-296.

3. Brooks, A. and Scott, L. Constraints in CASE Tools: Results
from Curiosity Driven Research, In Proc ASWEC 2001, ,
26-28 August 2001, IEEE CS Press, pp. 285-296.

4. Burnett, M. and Gottfried, H Graphical Definitions:
Expanding Spreadsheet Languages through Direct
Manipulation and Gestures, ACM TOCHI 5(1), 1-33, 1998.

5. Chen, Q., Grundy, J.C. and Hosking, J.G. An E-whiteboard
Application to Support Early Design-Stage Sketching of
UML Diagrams, Proc HCC’03, Auckland, October 2003,
219-226.

6. Chung, R., P. Mirica, and B. Plimmer. InkKit: A Generic
Design Tool for the Tablet PC. Proc CHINZ 05. 2005.
Auckland: ACM: p. 29-30.

7. Churcher N, Cerecke, C, groupCRC: Exploring CSCW
Support for Software Engineering, Proc OZCHI’96, 62-68

8. Damm, C.H., K.M. Hansen, and M. Thomsen. Tool support
for cooperative object-oriented design: Gesture based
modelling on and electronic whiteboard. Proc Chi 2000.
2000: ACM: p. 518-525.

9. Donaldson, A. and Williamson, A. Pen-based Input of UML
Activity Diagrams for Business Process Modelling, Proc
HCI 2005 Workshop on Improving and Assessing Pen-based
Input Techniques, Edinburgh, September 2005.

10. Draheim, D., Grundy, J., Hosking, J., Lutteroth, C., Weber,
G., Realistic Load Testing of Web Applications. Proc
CSMR 2006, IEEE CS Press, 57-70, 2006

11. Goel, V., Sketches of thought. 1995, Cambridge,
Massachusetts: The MIT Press.

12. Green, T.R.G. & Petre, M. Usability analysis of visual
programming environments: a ‘cognitive dimensions’
framework. Journal of Visual Languages and Computing
1996 (7), pp. 131-174.

13. Grundy, J., Hosking, J, Li, L., Liu, N., Performance
Engineering of Service Compositions, Proc IW-SOSE 2006,
26-32, May 2006.

14. Grundy J., Hosking, J, Zhu, N., Liu, N., Generating domain-
specific visual language editors from high-level tool
specifications, accepted for Proc ASE 2006, to be held in
Tokyo, Sept 2006.

15. Hearst, M.A. Sketching intelligent systems, IEEE Intelligent
Systems and Their Applications, 13(3), 10-19, 1998

16. A. Huang, T. W. Doeppner, U. C. Readers, “Ad-hoc
Collaborative Document Annotation on a Tablet PC”, 2003

17. Hse, H. and Newton, A.R. Robust Sketched Symbol
Recognition using Zernike Moments, In Proc. ICPR, Aug.
2004, Cambridge, UK.

18. IEEE Recommended practice for architectural description of
software-intensive systems, IEEE Std 1471-2000, 2000

19. Iivari, J. Why are CASE tools not used? Communications of
the ACM, vol. 39, no. 10, October 1996, 94-103.

20. Landay, J. and B. Myers. Interactive sketching for the early
stages of user interface design. Proc Chi '95 Mosaic of
Creativity. 1995. ACM: p. 43-50.

21. Lin, J., Newman, M.W., Hong, J.I. and Landay, J. A.
Denim: Finding a tighter fit between tools and practice for
web design, Proc CHI’2000, ACM Press, pp. 510-517

22. MacKenzie, I. S., & Zhang, S. The immediate usability of
Graffiti. Proceedings of Graphics Interface '97, pp. 129-137.

23. Mehra, A., Grundy, J.C. and Hosking, J.G. Adding group
awareness to design tools using a plug-in, web service-based
approach, Proc 6th Int Workshop on Collaborative Editing
Systems, 2004, http://cocasoft.csdl.tamu.edu/~lidu/iwces6/

24. Mehra, A., Grundy, J.C., Hosking J.G., A generic approach
to supporting diagram differencing and merging for
collaborative design, 2005 IEEE/ACM ASE, 204-213

25. Myers, B.A. The Amulet Environment: New Models for
Effective User Interface Software Development, IEEE Trans
SE, vol. 23, no. 6, 347-365, June 1997

26. C. C. Marshall, Annotation: from paper books to the digital
library, 1997

27. Plimmer, B. Apperley, M. Computer-aided sketching to
capture preliminary design. Proc AUIC 2002, Australian
Computer Society, Inc, pp. 9-12.

28. Plimmer, B.E. and M. Apperley. Software for Students to
Sketch Interface Designs. Proc Interact. 2003. p. 73-80.

29. Plimmer, B.E. and M. Apperley. INTERACTING with
sketched interface designs: an evaluation study. Proc SigChi
2004. 2004. Vienna: ACM: p. 1337-1340.

30. Plimmer, B. and Mason, R. A Pen-based Paperless
Environment for Annotating and Marking Student
Assignments, Proc AUIC 2006, CRPIT press.

31. Rubine, D. Combining gestures and direct manipulation.
proc CHI '92. 1992: p. 659-660.

32. UML™ Home Page, OMG (Object Management Group),
available from http://www.uml.org/

33. Zhu, N., Grundy, J.C., Hosking, J.G, Constructing domain-
specific design tools with a visual language meta-tool', Proc
CAiSE 2005 Forum, Portugul, 13-17 June, 2005, p.139-144.

