
Formulating Interference-aware Data Delivery Strategies in Edge
Storage Systems

Xiaoyu Xia

The University of Adelaide

Australia

xiaoyu.xia@adelaide.edu.au

Feifei Chen

Deakin University

Australia

feifei.chen@deakin.edu.au

Qiang He

Swinburne University of Technology

Australia

qhe@swin.edu.au

Guangming Cui

Swinburne University of Technology

Australia

gcui@swin.edu.au

John Grundy

Monash University

Australia

john.grundy@monash.edu

Mohamed Abdelrazek

Deakin University

Australia

mohamed.abdelrazek@deakin.edu.au

Fang Dong

Southeast University

China

fdong@seu.edu.cn

ABSTRACT
Networked edge servers constitute an edge storage system in edge

computing (EC). Upon users’ requests, data must be delivered from

edge servers in the system or from the cloud to users. Existing stud-

ies of edge storage systems have unfortunately neglected the fact

that an excessive number of users accessing the same edge server

for data may impact users’ data rates seriously due to the wireless

interference. Thus, users must first be allocated to edge servers

properly for ensuring their data rates. After that, requested data

can be delivered to users to minimize their average data delivery

latency. In this paper, we formulate this Interference-aware Data
Delivery at the network Edge (IDDE) problem, and demonstrate

its NP-hardness. To tackle it effectively and efficiently, we propose

IDDE-G, a novel approach that first finds a Nash equilibrium as the

strategy for allocating users. Then, it finds an approximate strategy

for delivering requested data to allocated users. We analyze the

performance of IDDE-G theoretically and evaluate its performance

experimentally to demonstrate the effectiveness and efficiency of

IDDE-G on solving the IDDE problem.

KEYWORDS
edge computing, edge storage system, data delivery, interference-

aware, user allocation

ACM Reference Format:
Xiaoyu Xia, Feifei Chen, Qiang He, Guangming Cui, John Grundy, Mohamed

Abdelrazek, and Fang Dong. 2022. Formulating Interference-aware Data

Delivery Strategies in Edge Storage Systems. In Proceedings of ICPP’51.ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The rapid growth of internet-of-things (IoT) and mobile devices

has fueled the emergence of various online applications that re-

quire real-time responsiveness [11, 37], e.g., autonomous driving

[2], video streaming [27], etc. The long latency in communicating

with the remote cloud servers is hindering further advances in

these applications [7]. To tackle this challenge, edge computing

Edge
Sing

apor
e

Lond
on

Fran
kfurt

Latency test settings

0

50

100

150

200

250

300

Ti
m
e
(m

s)

Edge-to-Edge
Edge-to-Cloud

Figure 1: End-to-end network latency test. The results are
collected hourly and averaged over a week in March 2022.

(EC) pushes computing and storage capacities to edge servers near

users at the network edge [18]. The resources on edge servers can

be hired by app vendors like Facebook and Nintendo for storing

popular data to serve nearby users [4, 34]. This minimizes data

retrieval latency and reduces the traffic pressure on the back-haul

network significantly [35]. Fig. 1 compares the end-to-end network

latency when a mobile device accesses data from an edge server and

remote cloud servers deployed in Amazon’s Singapore, London and

Frankfurt data centers. It shows the remarkable advantage offered

by edge computing for latency-sensitive applications. For example,

high-quality VR can be facilitated by edge computing as it requires

a 20ms end-to-end latency or lower to prevent motion sickness

[10].

Networked edge servers constitute a novel storage system at

the edge of network. Such edge storage systems are fundamentally

different from conventional cloud-based storage systems [31]. Ad-

jacent edge servers in an edge storage system can communicate via

high-speed links [23]. It overcomes the single-point failures and

performance bottlenecks encountered by the edge-cloud architec-

ture, where edge servers communicate via a macro base station or

the back-haul network [28].

Unlike in cloud-based storage systems, app vendors pursue to

deliver data to users from within the edge storage system to mini-

mize their data delivery latency. Fig. 2 illustrates an exemplar edge

storage system involving 4 edge servers {𝑣1, ..., 𝑣4} and 9 users

{𝑢1, ..., 𝑢9} in a specific area. Users 𝑢1, 𝑢6 and 𝑢8 request data 𝑑1;

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ICPP’51, Sept, 2022, Bordeaux, France Xiaoyu Xia, Feifei Chen, Qiang He, Guangming Cui, John Grundy, Mohamed Abdelrazek, and Fang Dong

v2

v3

v4

22

v1

d1 d2

u1

u2

u3

u6

u4

u5

u7
u8

u9

d3 d4

Edge server

User with data request

Figure 2: Example edge storage system

users 𝑢3, 𝑢5 and 𝑢9 request data 𝑑2; users 𝑢2 and 𝑢6 request data 𝑑3;

and users 𝑢4 requests data 𝑑4. Once the requested data has been

stored in this system, it can be delivered to the user from within

the system. Otherwise, it will be delivered from the remote cloud.

The new challenges raised by edge storage systems start to at-

tract researchers’ attentions recently, aiming to minimize storage

cost and/or maximize system performance [21, 35]. However, exist-

ing studies have unfortunately neglected three major and unique

issues in real-world edge storage systems.

Resource constraint. App vendors must reserve storage spaces on

edge servers in advance. Existing studies assume that app vendors

can hire storage resources on any edge server on demand at any

time, similar to resource hiring in cloud-based storage systems.

However, an edge server usually has limited storage capacities due

to its physical size limit [26, 38]. App vendors must not assume that

there will always be adequate storage resources on edge servers for

hire . In fact, app vendors have to compete for storage resources

for storing their own data [32]. A practical strategy is to reserve

storage resources in the edge storage system in advance based on

their budget [31]. An app vendor, e.g., Facebook, needs to reserve

storage spaces on these edge servers in advance for storing popular

data that may be requested in the area.

Edge server collaboration. The collaboration among edge servers

is unfortunately ignored in many existing studies, such as [17, 33].

Via high-speed links, adjacent edge servers can share resources and

transmit data to each other [23]. Assuming that data 𝑑1 is stored

on edge server 𝑣3 but not on 𝑣1 and 𝑣4 in the edge storage system

presented in Fig. 2. User𝑢6 can access𝑑1 directly, while users𝑢1 and

𝑢8 can access𝑑1 via the link between 𝑣1 and 𝑣3, and the link between

𝑣3 and 𝑣4, respectively. In this way, 𝑑1 does not need to be delivered

to 𝑢1 and 𝑢8 from the remote cloud server. Edge servers’ ability

to collaborate can reduce data delivery latency without incurring

excessive storage overheads.

Communication interference. Existing studies have focused on

the computing or storage aspects, and neglected or oversimplified

the communication aspect in the "last mile" during data delivery in

the EC environment, i.e., the communication between user devices

and edge servers. Multiple users can access edge servers for data via

wireless communication concurrently. The wireless interference

incurred may significantly impact their achievable data rates and

lower their quality of experience [5]. Thus, interference must be

considered during data delivery in edge storage systems. Assuming

that there are two channels on each edge server in Fig. 2. Allocating

too many users to the same channel on an edge server tends to

incur severe interference and lowers users’ average data rates. For

example, user 𝑢7 can access to either edge server 𝑣3 or 𝑣4. In the

case that 𝑢7 is allocated to 𝑣4, {𝑢7, 𝑢8, 𝑢9} will have to share the two
channels on 𝑣4. At least 2 users will be allocated to a same chan-

nel on 𝑣4 and interference incurs. Please note this is an simplified

example. In the real-world, the number of users involved is much

larger, which incurs much greater interference and significantly

complicates the problem. Fortunately, in the EC environment, app

vendors have access to various communication information at the

edge, such as received power and signals, neighbor cells, through-

put and QoS [25]. This allows them to make informed decisions,

considering not only the computation and storage aspects, but also

the communication aspect.

Given limited reserved storage spaces in an edge storage sys-

tem, upon a set of user requests, it is critical for an app vendor

to formulate an edge data delivery strategy with consideration of

wireless interference to 1) maximize users’ average data rate and

2) minimize their average data delivery latency. In this study, we

investigate this Interference-aware Data Delivery at the network

Edge (IDDE) problem. The key contributions are:

• We model the IDDE problem and prove that it is NP-complete.

• We propose IDDE-G, a game-based approach, for formulating

IDDE strategies. First, it formulates the IDDE problem as a game

and finds a Nash equilibrium as the strategy for user allocation.

Then, it employs an approximate algorithm to determine how

the requested data will be delivered to corresponding users.

• We theoretically and experimentally evaluate IDDE-G’s perfor-

mance to demonstrate its effectiveness and efficiency.

The organization of the paper is as follows. Section 2 first in-

troduces the system model and then models the IDDE problem.

Section 3 presents IDDE-G and analyzes its performance theoreti-

cally. Section 4 evaluates IDDE-G experimentally. Section 5 reviews

the related work. Section 6 concludes this study and points out the

future work.

2 PROBLEM STATEMENT
2.1 System Models
Given the remote cloud server 𝑐𝑙𝑜𝑢𝑑 , edge servers𝑉 = {𝑣1, · · · , 𝑣𝑁 },
users 𝑈 = {𝑢1, · · · , 𝑢𝑀 } and requested data 𝐷 = {𝑑1, · · · , 𝑑𝐾 } in
an area, we need to formulate an IDDE strategy including: 1) a

user allocation profile for allocating𝑈 to the proper channels on 𝑉

so that𝑈 ’s average data rate is maximized; and 2) a data delivery

profile for delivering 𝐷 to a subset of 𝑉 that cover 𝑈 to serve 𝑈 .

Take Fig. 2 for example. A user allocation profile is formulated first

to allocate 𝑈 = {𝑢1, ..., 𝑢9} to 𝑉 = {𝑣1, ..., 𝑣4} (or a subset of 𝑉) on
appropriate channels. Then, a data delivery profile is formulated to

determine how 𝐷 = {𝑑1, ..., 𝑑4} are delivered to 𝑉 (or the subset of

𝑉) to serve 𝑉 , from other edge servers in 𝑉 or from 𝑐𝑙𝑜𝑢𝑑 .

Definition 1 (User Allocation Profile). Denote 𝛼 𝑗 = (𝑖, 𝑥)
as the user allocation decision, indicating whether user 𝑢 𝑗 is allocated
to edge server 𝑣𝑖 ’s 𝑥th channel, denoted as 𝑐𝑖,𝑥 . If 𝑢 𝑗 is not allocated,
there is 𝛼 𝑗 = (0, 0). The user allocation profile, denoted by 𝛼 =

{𝛼1, · · · , 𝛼𝑀 }, consists of all users’ allocation decisions.

Let𝑈𝑖,𝑥 (𝛼) denote the users allocated to 𝑐𝑖,𝑥 by 𝛼 , and𝑈𝑖 (𝛼) =
{𝑈𝑖,𝑥 (𝛼),∀𝑐𝑖,𝑥 ∈ 𝐶𝑖 } denote the users allocated to 𝑣𝑖 by 𝛼 , where𝐶𝑖

Formulating Interference-aware Data Delivery Strategies in Edge Storage Systems ICPP’51, Sept, 2022, Bordeaux, France

is the set of channels on 𝑣𝑖 . Let 𝑉𝑗 represent the set of edge servers

covering 𝑢 𝑗 , 𝑢 𝑗 can only be allocated to an edge server in 𝑉𝑗 :

𝛼 𝑗 = (𝑖, 𝑥) ≠ (0, 0), iff 𝑣𝑖 ∈ 𝑉𝑗 (1)

Definition 2 (Data Delivery Profile). A data delivery profile
is represented by 𝜎 = {𝜎1,1, · · ·𝜎1,𝐾 , · · · , 𝜎𝑁,𝐾 }, where 𝜎𝑖,𝑘 ∈ {0, 1}
is the data delivery decision indicating whether data 𝑑𝑘 (1 ≤ 𝑘 ≤ 𝐾)
is delivered to edge server 𝑣𝑖 (1 ≤ 𝑖 ≤ 𝑁).

Unlike cloud-based storage systems with virtually unlimited stor-

age capacities, storage capacities are constrained on edge servers

[26, 38]. As mentioned in Section 1, many app vendors may need

to hire those resources in the same edge storage system for storing

their own data. Due to the competition among app vendors, it is

impractical to store plenty of data on every edge server for every

app vendor [31]. Reserving edge servers’ storage spaces in advance

is a standard way for app vendors. Thus, the storage resource cost

incurred for an app vendor to store data in an edge storage system

remains unchanged unless it changes its storage reservation, and it

is omitted in the models presented in this section.

2.2 User-Server Communication Model
In the EC environment, the signals received by users from edge

servers are subject to wireless communication interference [4]. The

channel gain between 𝑢 𝑗 and 𝑐𝑖,𝑥 , denoted by 𝑔𝑖,𝑥, 𝑗 = 𝜂 · 𝐻−𝑙𝑜𝑠𝑠
𝑖, 𝑗

[6], where 𝜂 is the frequency dependent factor, 𝐻𝑖, 𝑗 is the distance

between 𝑣𝑖 and 𝑢 𝑗 , and 𝑙𝑜𝑠𝑠 is the loss exponent. Allocating a set

of users to different channels on the same edge server can signifi-

cantly reduce the interference. According to [5, 36], the Signal-to-

Interference-plus-Noise Ratio (SINR) for user 𝑢 𝑗 ’s with edge server

𝑣𝑖 on 𝑐𝑖,𝑥 is:

𝑟𝑖,𝑥,𝑗 =
𝑔𝑖,𝑥, 𝑗 · 𝑝 𝑗

𝑔𝑖,𝑥, 𝑗
∑
𝑢𝑡 ∈𝑈𝑖,𝑥 (𝛼)\𝑢 𝑗

𝑝𝑡 + 𝐹𝑖,𝑥,𝑗 + 𝜔
(2)

where 𝑝 𝑗 is the signal transmission power required by 𝑢 𝑗 , 𝐼𝑖,𝑥,𝑗 is

the interference from other edge servers covering 𝑢 𝑗 , calculated by

𝐹𝑖,𝑥, 𝑗 =
∑
𝑣𝑜 ∈𝑉𝑗 \𝑣𝑖

∑
𝑢𝑡 ∈𝑈𝑜,𝑥 (𝛼) 𝑔𝑖,𝑥,𝑡 · 𝑝𝑡 and 𝜔 is the additive white

Gaussian noise [4]. Please note that the SINR can be calculated

based on other wireless communication models based on the actual

networking environment. It will not impact the IDDE problem or

the performance of the proposed approaches fundamentally.

According to [6, 13], 𝑢 𝑗 ’s actual data rate received from edge

server 𝑣𝑖 on 𝑐𝑖,𝑥 is:

𝑅𝑖,𝑥,𝑗 = 𝐵𝑖,𝑥 · 𝑙𝑜𝑔2 (1 + 𝑟𝑖,𝑥,𝑗) (3)

where 𝐵𝑖,𝑥 is the bandwidth of 𝑐𝑖,𝑥 .

Under the Shannon capacity constraint, a user’s data rate is

limited by a upper bound in any mobile network [14]. Let 𝑅 𝑗,𝑚𝑎𝑥
denote this maximum data rate of user𝑢 𝑗 . In this way, we can obtain

the actual data rate of 𝑢 𝑗 allocated to edge server 𝑣𝑖 on channel 𝑐𝑖,𝑥 ,

denoted by 𝑅 𝑗 :

𝑅 𝑗 = min{𝑅 𝑗,𝑚𝑎𝑥 , 𝐼 {𝛼 𝑗≠(0,0) }
∑︁
𝑣𝑖 ∈𝑉

∑︁
𝑐𝑖,𝑥 ∈𝐶𝑖

𝑅𝑖,𝑥,𝑗 } (4)

where 𝐼 {𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛} equals to 0 if 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is false, and 1 otherwise.

Given𝑀 users, their average data rate can be calculated:

𝑅𝑎𝑣𝑒 =

∑
𝑢 𝑗 ∈𝑈 𝑅 𝑗

𝑀
(5)

Table 1: Summary of Notations

Notation Description

𝐴𝑖 available storage spaces on 𝑣𝑖

𝐵𝑖,𝑥 bandwidth of 𝑐𝑖,𝑥

𝐶𝑖 set of channels on 𝑣𝑖

𝑐𝑖,𝑥 channel 𝑥 on 𝑣𝑖

𝑐𝑙𝑜𝑢𝑑 remote cloud

𝐷 set of data

𝑑𝑘 data 𝑘

𝑔𝑖,𝑥,𝑗 channel gain between 𝑢 𝑗 and 𝑐𝑖,𝑥

𝐾 number of data

𝐿𝑎𝑣𝑒 users’ average data delivery latency

𝐿𝑘,𝑜,𝑖 the latency from 𝑣𝑜 to 𝑣𝑖 for delivering 𝑑𝑘

𝑀 number of users

𝑁 number of edge servers

𝑝 𝑗 power required by 𝑢 𝑗

𝑅𝑎𝑣𝑒 users’ average data rate

𝑅 𝑗 𝑢 𝑗 ’s data rate

𝑟𝑖,𝑥,𝑗 𝑢 𝑗 ’s SINR on 𝑐𝑖,𝑥

𝑅𝑖,𝑥,𝑗 𝑢 𝑗 ’s data rate on 𝑐𝑖,𝑥

𝑠𝑘 data size of 𝑑𝑘

𝑈 set of users

𝑈𝑖 set of users covered by 𝑣𝑖

𝑈𝑖,𝑥 (𝛼) set of users allocated to 𝑐𝑖,𝑥 based on 𝛼

𝑢 𝑗 user 𝑗

𝑉 set of edge servers

𝑉𝑗 set of edge servers covering 𝑢 𝑗

𝑣𝑖 edge server 𝑖

𝛼 user allocation profile

𝛼 𝑗 = (𝑖, 𝑥) binary variable indicating whether 𝑢 𝑗 is allocated to 𝑐𝑖,𝑥

𝛼 𝑗 user allocation decision of 𝑢 𝑗

𝜎 data delivery profile

𝜎𝑖,𝑘 binary variable indicating whether 𝑑𝑘 is stored on 𝑣𝑖

𝜁 𝑗,𝑘 binary variable indicating whether 𝑢 𝑗 requests 𝑑𝑘

𝜔 additive white Gaussian noise

2.3 Problem Formulation and Hardness
As discussed in Section 2.2, an inappropriate allocation of users

can impact users’ data rates by severe interference. Thus, for app

vendors, the first optimization of the IDDE problem, i.e., IDDE

Objective #1, is to maximize users’ average data rate max𝑅𝑎𝑣𝑒 ,

calculated with Eq. (5).

On edge server 𝑣𝑖 , the volume of data saved must not exceed the

storage spaces reserved on 𝑣𝑖 , denoted as 𝐴𝑖 . This is referred as to

the storage constraint:∑︁
𝑑𝑘 ∈𝐷

𝜎𝑖,𝑘 · 𝑠𝑘 ≤ 𝐴𝑖 ,∀𝑣𝑖 ∈ 𝑉 (6)

where 𝑠𝑘 is the size of data 𝑑𝑘 .

Any data can be retrieved from the app vendor’s remote cloud

server, represented as:

𝜎𝑐𝑙𝑜𝑢𝑑,𝑘 = 1,∀𝑑𝑘 ∈ 𝐷 (7)

Let 𝐿𝑘,𝑜,𝑖 denote the lowest latency of delivering data 𝑑𝑘 from

edge server 𝑣𝑜 to edge server 𝑣𝑖 in the system. When user 𝑢 𝑗 re-

trieves 𝑑𝑘 , the corresponding latency is:

𝐿𝑗,𝑘 (𝛼 𝑗 , 𝜎) = min{𝐿𝑘,𝑜,𝑖 |𝜎𝑜,𝑘 = 1,∀𝑣𝑜 ∈ 𝑉
⋃

𝑐𝑙𝑜𝑢𝑑} (8)

Please note that (8) ensures that delivering the data from an edge

server in the system must not take longer than from the remote

cloud. This is referred to the latency constraint.

ICPP’51, Sept, 2022, Bordeaux, France Xiaoyu Xia, Feifei Chen, Qiang He, Guangming Cui, John Grundy, Mohamed Abdelrazek, and Fang Dong

All the𝑀 users’ average data delivery latency can be calculated

as follows:

𝐿𝑎𝑣𝑒 =

∑
𝑢 𝑗 ∈𝑈

∑
𝑑𝑘 ∈𝐷 𝜁 𝑗,𝑘 · 𝐿𝑗,𝑘 (𝛼 𝑗 , 𝜎)∑
𝑢 𝑗 ∈𝑈

∑
𝑑𝑘 ∈𝐷 𝜁 𝑗,𝑘

(9)

where 𝜁 𝑗,𝑘 ∈ {0, 1} indicates whether data 𝑑𝑘 is requested by user

𝑢 𝑗 .

Given the user allocation profile 𝛼 , the data delivery profile 𝜎

must minimize users’ average data delivery latency, i.e., IDDE objec-

tive #2: min𝐿𝑎𝑣𝑒 . In this way, the IDDE problem can be formulated

as follows:

Objective #1 max 𝑅𝑎𝑣𝑒 (10)

Objective #2 min 𝐿𝑎𝑣𝑒 (11)

𝑠 .𝑡 . : (1), (4), (6), (7), (8)

To ensure users’ quality of experience, app vendors need to maxi-

mize their users’ data rate (Objective #1) and minimize their users’

data delivery latency (Objective #2).

Next, we prove that the NP-hardness of this IDDE problem.

Theorem 1. The IDDE problem is NP-hard.

Proof. The IDDE problem is a multiple-objective optimization

problem. To prove its NP-hardness, we need to prove that it is

NP-hard to solve any one of its objectives [8].

Now, we first prove that the IDDE problem with Objective #1 is

NP-hard. Here, we introduce the NP-hard problem namedminimum

routing cost spanning tree (MRCS) [30]. The MRCS problem aims

to cover all vertices with minimum total distance via a spanning

tree in a weighted graph. Given an instance of the IDDE problem

and the number of users, Objective #1 becomes max

∑
𝑢 𝑗 ∈𝑈 𝑅 𝑗 ,

i.e., maximizing users’ overall data rate. Then, we convert this

objective equally to min

∑
𝑢 𝑗 ∈𝑈 (𝑅 𝑗,𝑚𝑎𝑥 − 𝑅 𝑗). Let us assume that

there is an edge between an edge server and each of the users

within its coverage area and the distance of this edge is calculated

by 𝑅 𝑗,𝑚𝑎𝑥 − 𝑅 𝑗 . In this way, the IDDE problem with Objective #1

is to cover all the users with the minimum total distance via a

spanning tree. Thus, the MRCS problem is reduced to an instance

of the IDDE problem with Objective #1, and the IDDE problem with

Objective #1 is thus NP-hard.

Without Objective #1, the IDDE problem with Objective #2 is to

store the required data in reserved storage spaces with the aim to

minimize users’ average data delivery latency. The NP-hardness of

this problem can be proved based on the weighted k-set packing

(WKSP) problem [1], similar to the proof presented in [31]. Thus,

the details are omitted here.

According to the above proofs, the multiple-objective optimiza-

tion problem, IDDE, is NP-hard. □

3 ALGORITHM DESIGN AND ANALYSIS
As the IDDE problem scales up, it is intractable to optimally solve

the IDDE problem due to its NP-hardness proved in Section 2.3.

Pursuing optimal IDDE strategies is particularly infeasible in the

EC environment where low latency is a fundamental requirement.

To solve this problem, we present a game-based algorithm named

IDDE-G to find sub-optimal IDDE strategies efficiently. After that,

the performance of IDDE-G is analyzed theoretically.

3.1 IDDE-G Design
As introduced in Section 2.3, the IDDE problem has two optimiza-

tion objectives: maximizing users’ average data rate (10) and min-

imizing their average data delivery latency (11). IDDE-G solves

the IDDE problem via two phases: Phase #1) constructing a game,

named IDDE-U, to find a Nash equilibrium as the user allocation

profile to maximize their average data rate (Objective #1); and Phase

#2) finding a data delivery profile to deliver data to edge servers with

reserved storage spaces with the minimum average data delivery

latency (Objective #2).

The IDDE-U game aims to maximize users’ average data rate.

Here, we define the benefit function for user 𝑢 𝑗 :

𝛽𝛼−𝑗 (𝛼 𝑗) =
𝑔𝑖,𝑥,𝑗 · 𝑝 𝑗

𝑔𝑖,𝑥, 𝑗
∑
𝑢𝑡 ∈𝑈𝑖,𝑥 (𝛼) 𝑝𝑡 + 𝐹𝑖,𝑥, 𝑗

(12)

According to (2) and (3), this benefit function will drive the alloca-

tion of 𝑢 𝑗 to the edge server that can offer the highest data rate.

In the IDDE-U game, there might be conflicts among users. Take

Fig. 2 as an example. For easy of exposition, let us assume that

there is only one channel available on each server. If 𝑢3 is allocated

to 𝑣1, it is subject to interference from 𝑢1 because 𝑢1 can only be

allocated to 𝑣1. This may lower 𝑢3 and 𝑢1’s benefits according to

(12). As discussed in Section 2.2, any users allocated to the same

channel are subject to the interference. The goal of the IDDE-U

game is to mitigate the conflicts among users and maximize the

average data rate. The key is whether IDDE-U admits to a Nash

equilibrium [22].

Definition 3 (Nash Eqilibrium). A user allocation profile 𝛼∗

is a Nash equilibrium if 𝛽𝛼∗−𝑗 (𝛼
∗
𝑗
) ≥ 𝛽𝛼∗−𝑗

(𝛼 𝑗),∀𝑢 𝑗 ∈ 𝑈 , 𝛼 𝑗 ∈ 𝛿 𝑗 ,
where 𝛿 𝑗 is the set of possible allocation decisions for 𝑢 𝑗 .

The Nash equilibrium found in the IDDE-U game can be enforced

by edge servers as the user allocation profile without a centralized

control [9]. To investigate its existence, a possible method is to

demonstrate that IDDE-U is a potential game [20].

Definition 4 (Potential Game). For a potential function 𝜋 (𝛼),
a potential game must satisfy 𝛽𝛼−𝑗 (𝛼 𝑗) < 𝛽𝛼−𝑗 (𝛼 ′𝑗) ⇒ 𝜋 (𝛼 𝑗 , 𝛼−𝑗) <
𝜋 (𝛼 ′

𝑗
, 𝛼−𝑗), for any 𝑢 𝑗 ∈ 𝑈 , 𝛼 𝑗 , 𝛼 ′𝑗 ∈ 𝛿 𝑗 and 𝛼−𝑗 ∈

∏
𝑙≠𝑗 𝛿𝑙 .

Here, we introduce Lemma 2 for proving that the IDDE-U game

is a potential game:

Lemma 2. Given a user allocation profile 𝛼 , the interference re-
ceived by a user 𝑢 𝑗 is not higher than 𝑇𝑗 , if this user can be allocated
to channel 𝑐𝑖,𝑥 . Let𝑈𝑖 denote the set of users covered by 𝑣𝑖 , the value of
𝑇𝑗 is

𝑔𝑖,𝑥,𝑗𝑝 𝑗

2

𝑅𝑗,𝑚𝑖𝑛
𝐵𝑖,𝑥 −1

− 𝜔 , where 𝑅 𝑗,𝑚𝑖𝑛 = min{𝑅𝑖,𝑥, 𝑗 ,∀𝑐𝑖,𝑥 ∈ 𝐶𝑖 , 𝑣𝑖 ∈ 𝑉𝑗 }.

According to (3), Lemma 2 can be easily proved, and we omit

the details here. Based on Lemma 2, the potential function of the

IDDE-U game is below:

𝜋 (𝛼 𝑗 , 𝛼−𝑗) =
1

2

∑︁
𝑢 𝑗 ∈𝑈

∑︁
𝑢𝑞∈𝑈 \𝑢 𝑗

𝐼{𝛼 𝑗≠(0,0) } · 𝐼{𝛼𝑞≠(0,0) } ·

𝑔𝑖,𝑥,𝑗𝑝 𝑗

𝑔𝑖,𝑥,𝑗
∑
𝑢𝑡 ∈𝑈𝑖,𝑥 (𝛼) ·𝑝𝑡 + 𝐹𝑖,𝑥,𝑡

·
𝑔𝑖𝑞 ,𝑥𝑞 ,𝑞𝑝𝑞

𝑔𝑖𝑞 ,𝑥𝑞 ,𝑡
∑
𝑢𝑡 ∈𝑈𝑖𝑞,𝑥𝑞 (𝛼) 𝑝𝑡 + 𝐹𝑖𝑞 ,𝑥𝑞 ,𝑡

−𝑇𝑗 · 𝐼{𝛼 𝑗=(0,0) } ·
𝑔𝑖𝑞 ,𝑥𝑞 ,𝑞𝑝𝑞

𝑔𝑖𝑞 ,𝑥𝑞 ,𝑡
∑
𝑢𝑡 ∈𝑈𝑖𝑞,𝑥𝑞 (𝛼) 𝑝𝑡 + 𝐹𝑖𝑞 ,𝑥𝑞 ,𝑡

(13)

Formulating Interference-aware Data Delivery Strategies in Edge Storage Systems ICPP’51, Sept, 2022, Bordeaux, France

where 𝛼𝑞 = (𝑖𝑞, 𝑥𝑞).

Theorem 3. With the potential function 𝜋 (𝛼) (13), the IDDE-U
game is a potential game.

Proof. Supposing two user allocation decisions 𝛼 𝑗 = (𝑖, 𝑥) and
𝛼 ′
𝑗
= (𝑖 ′, 𝑥 ′), fulfilling 𝛽𝛼−𝑗 (𝛼 𝑗) < 𝛽𝛼−𝑗 (𝛼 ′𝑗), for user 𝑢 𝑗 . As 𝑔𝑖,𝑥, 𝑗

is decided by edge server’s physical nature and does not impact

IDDE-U, we assume that 𝑔𝑖,𝑥,𝑗 is the same for different users in

the proof, i.e., 𝑔𝑖,𝑥, 𝑗 = 𝑔. We will evaluate the performance with

heterogeneous edge servers in Section 4. To prove this theorem,

there are two cases according to (12): 1) 𝛼 𝑗 ≠ (0, 0) and 𝛼 ′𝑗 ≠ (0, 0);
and 2) 𝛼 𝑗 = (0, 0) and 𝛼 ′𝑗 ≠ (0, 0).

Case 1: 𝛼 𝑗 ≠ (0, 0) and 𝛼 ′𝑗 ≠ (0, 0).
Given 𝛽𝛼−𝑗 (𝛼 𝑗) < 𝛽𝛼−𝑗 (𝛼 ′𝑗), we can obtain the following inequal-

ity based on (12):

𝑝 𝑗∑
𝑣𝑖 ∈𝑉𝑗

∑
𝑢𝑞 ∈𝑈𝑖,𝑥 (𝛼) 𝑝𝑞

<
𝑝 𝑗∑

𝑣′
𝑖
∈𝑉𝑗

∑
𝑢𝑞 ∈𝑈𝑖′,𝑥′ (𝛼) ·𝑝𝑞

(14)

Thus, the difference between the potentials produced by 𝛼 𝑗 and 𝛼
′
𝑗

calculated with Eq. (13) can be calculated with:

𝜋 (𝛼 𝑗 , 𝛼−𝑗) − 𝜋 (𝛼 ′𝑗 , 𝛼−𝑗) =
∑︁

𝑢𝑞 ∈𝑈 \𝑢 𝑗

𝑝𝑞 · 𝐼 {𝛼𝑞≠(0,0) } ·(𝑝 𝑗∑
𝑣𝑖 ∈𝑉𝑗

∑
𝑢𝑞 ∈𝑈𝑖,𝑥 (𝛼) 𝑝𝑞

−
𝑝 𝑗∑

𝑣′
𝑖
∈𝑉𝑗

∑
𝑢𝑞 ∈𝑈𝑖′,𝑥′ (𝛼) ·𝑝𝑞

)
< 0

(15)

Case 2: 𝛼 𝑗 = (0, 0) and 𝛼 ′𝑗 ≠ (0, 0).
Similar to Case 1, we can obtain:

𝜋 (𝛼 𝑗 , 𝛼−𝑗) − 𝜋 (𝛼 ′𝑗 , 𝛼−𝑗) = −
(𝑝 𝑗∑

𝑣𝑖 ∈𝑉𝑗

∑
𝑢𝑡 ∈𝑈𝑖′,𝑥′ (𝛼) ·𝑝𝑡

+𝑇𝑗
)
·
∑︁
𝑢𝑞 ∈𝑈

𝑝𝑞∑
𝑣𝑖 ∈𝑉𝑗

∑
𝑢𝑡 ∈𝑈𝑖𝑞,𝑥𝑞 (𝛼) 𝑝𝑡

< 0

(16)

Therefore, Theorem 3 holds. □

Now that the IDDE-U game is proved to a potential game, a Nash

equilibrium can be reached within finite iterations [20] as the user

allocation profile at Phase #1 of IDDE-G. After finding the user

allocation profile to maximize the average data rate at Phase #1,

IDDE-G applies heuristic process to store data in reserved spaces on

edge servers at Phase #2, aiming to minimize the average delivery

latency.

The IDDE-G algorithm starts with initializing the user allocation

profile 𝛼 and the data delivery profile 𝜎 (Lines 1-4). In the IDDE-U

game (Phase #1 of the IDDE-G algorithm), the algorithm creates

an empty set of allocation decisions 𝛿 𝑗 for each user 𝑢 𝑗 ∈ 𝑈 , then

includes all possible decisions into 𝛿 𝑗 (Lines 7-12). After that, it

attempts to find 𝑢 𝑗 ’s optimal decision 𝛼 ′
𝑗
∈ 𝛿 𝑗 that produces the

highest benefit calculated by (12) (Line 13). If 𝑢 𝑗 ’s benefit produced

by this decision is higher than that produced by the current one, it

is submitted as a update request (Lines 14-19). This iteration process

ends if no any decision needs to be updated (Line 21). When Phase

#1 ends, the IDDE-G algorithm starts to produce a data delivery

process (Phase #2 of the IDDE-G algorithm). In each iteration of

Phase #2, it always includes the data delivery decision 𝜎𝑖,𝑘 with the

highest ratio of latency reduction over used spaces for all users, i.e.,

𝐿 (𝜎)−𝐿 (𝜎⋃
𝜎𝑖,𝑘)

𝑠𝑘
, into 𝜎 . This process ends when the storage space

Algorithm 1 IDDE-G Algorithm

1: initialization

2: set the user allocation profile 𝛼 = {𝛼1, · · · , 𝛼𝑀 }, where the allocation decision

for each user 𝑢 𝑗 ∈ 𝑈 is 𝛼 𝑗 = (0, 0)
3: set an empty data delivery profile 𝜎 ← ∅
4: end of initialization

– Phase #1 IDDE-U Game for User Allocation Profile –

5: repeat
6: for all 𝑢 𝑗 ∈ 𝑈 do
7: create 𝛿 𝑗 ← ∅
8: for all 𝑣𝑖 ∈ 𝑉𝑗 do
9: for all 𝑐𝑖,𝑥 ∈ 𝐶𝑖 do
10: 𝛿 𝑗 ← 𝛿 𝑗

⋃(𝑖, 𝑥)
11: end for
12: end for
13: find 𝛼′𝑗 ∈ 𝛿 𝑗 producing the highest benefit for user 𝑢 𝑗 according to the

current 𝛼

14: if 𝐵𝛼−𝑗 (𝛼 𝑗) < 𝐵𝛼−𝑗 (𝛼
′
𝑗) then

15: submit 𝛼′𝑗 as a update decision candidate

16: if 𝑢 𝑗 is the winner then
17: 𝛼 𝑗 ← 𝛼′𝑗
18: end if
19: end if
20: end for
21: until no decision updates submitted

– Phase #2 Heuristic Process for Data Delivery Profile –

22: create 𝜎𝑖,𝑘 ← ∅
23: repeat
24: 𝜎 ← 𝜎

⋃
𝜎𝑖,𝑘

25: according to 𝛼 , obtain the data delivery decision 𝜎𝑖,𝑘 producing the highest

ratio of latency reduction over used storage spaces under the storage constraint

(6):

𝜎𝑖,𝑘 = argmax{
𝐿 (𝜎) − 𝐿 (𝜎⋃

𝜎𝑖,𝑘)
𝑠𝑘

, ∀𝑣𝑖 ∈ 𝑉 ,𝑑𝑘 ∈ 𝐷 } (17)

26: until no feasible delivery decision 𝜎𝑖,𝑘
27: return 𝛼 and 𝜎

constraint (6) is violated or there is no available decision 𝜎𝑖,𝑘 (Lines

23-26). At the end of Algorithm 1, 𝛼 and 𝜎 constitute the final IDDE

strategy as the user allocation profile and the data delivery profile,

respectively (Line 27).

3.2 Algorithm Complexity Analysis
As a potential game, an IDDE-U game will complete after finite it-

erations and achieve a Nash equilibrium [20]. Let𝑇𝑚𝑎𝑥 ≜ max (𝑇𝑗),
𝑇𝑚𝑖𝑛 ≜ min (𝑇𝑗),𝑄 𝑗 ≜ 𝑔𝑖,𝑥,𝑗𝑝 𝑗 ,𝑄𝑚𝑖𝑛 ≜ min (𝑄 𝑗),𝑄𝑚𝑎𝑥 ≜ max (𝑄 𝑗),
and 𝑌 be the total number of iterations, Theorem 4 quantifies the

upper bound of 𝑌 .

Theorem 4. For any 𝑢 𝑗 ∈ 𝑈 , the maximum number of iterations

𝑌 is no more than
𝑀 (𝑄2

𝑚𝑎𝑥−𝑄2

𝑚𝑖𝑛)
2𝑄𝑚𝑖𝑛

.

Proof. According to Eq. (13), we can obtain
1

2

∑
𝑢 𝑗 ∈𝑈 𝑄𝑚𝑖𝑛 ·𝑄𝑚𝑖𝑛−

𝑇𝑚𝑎𝑥
∑
𝑢 𝑗 ∈𝑈 𝑄𝑚𝑎𝑥 ≤ 𝜋 (𝛼 𝑗 , 𝛼−𝑗)

≤ 1

2

∑
𝑢 𝑗 ∈𝑈 𝑄𝑚𝑎𝑥 ·𝑄𝑚𝑎𝑥 −𝑇𝑚𝑖𝑛

∑
𝑢 𝑗 ∈𝑈 𝑄𝑚𝑖𝑛 . That is,

1

2

𝑀𝑄2

𝑚𝑖𝑛 −𝑀𝑇𝑚𝑎𝑥𝑄𝑚𝑎𝑥 ≤ 𝜋 (𝛼 𝑗 , 𝛼−𝑗) ≤
1

2

𝑀𝑄2

𝑚𝑎𝑥 −𝑀𝑇𝑚𝑖𝑛𝑄𝑚𝑖𝑛
(18)

If the allocation decision for user 𝑢 𝑗 is updated from 𝛼 𝑗 to 𝛼
′
𝑗
, 𝑢 𝑗 ’s

benefit should increase, i.e., 𝛽𝛼−𝑗 (𝛼 𝑗) < 𝛽𝛼−𝑗 (𝛼 ′𝑗). Based on Defi-

nition 4, there is also an increase in the potential with 𝜋 (𝛼 𝑗 , 𝛼−𝑗),
denoted by 𝜀𝑖 :

𝜋 (𝛼 𝑗 , 𝛼−𝑗) + 𝜀𝑖 ≤ 𝜋 (𝛼 ′𝑗 , 𝛼−𝑗) (19)

ICPP’51, Sept, 2022, Bordeaux, France Xiaoyu Xia, Feifei Chen, Qiang He, Guangming Cui, John Grundy, Mohamed Abdelrazek, and Fang Dong

Now we try to prove 𝜀𝑖 = 𝑄 𝑗 for obtaining min𝑢 𝑗 ∈𝑈 (𝜀𝑖) = 𝑄𝑚𝑖𝑛 ,
where min𝑢 𝑗 ∈𝑈 (𝜀𝑖) is the minimum potential increase by updating

an individual allocation decision. Based on the proof of Theorem 3,

two cases need to be discussed when a decision is updated for a user:

1) 𝛼 𝑗 ≠ (0, 0) and 𝛼 ′𝑗 ≠ (0, 0); and 2) 𝛼 𝑗 = (0, 0) and 𝛼 ′𝑗 ≠ (0, 0).
Case 1: 𝛼 𝑗 ≠ (0, 0) and 𝛼 ′𝑗 ≠ (0, 0). Based on (15), we can obtain:

𝜋 (𝛼 ′𝑗 , 𝛼−𝑗) − 𝜋 (𝛼 𝑗 , 𝛼−𝑗) = 𝑄 𝑗 · (
∑︁

𝑢𝑞 ∈𝑈𝑖,𝑥 (𝛼)\𝑢 𝑗

𝑄𝑞 ·

𝐼 {𝛼 𝑗≠(0,0) } −
∑︁

𝑢𝑞 ∈𝑈𝑖′,𝑥′ (𝛼)\𝑢 𝑗

𝑄 ′𝑞 · 𝐼 {𝛼′𝑗≠(0,0) }) > 0

(20)

Since 𝑄 𝑗 > 0 for 𝑢 𝑗 ∈ 𝑈 and 𝑄 𝑗 is an integer, we can obtain∑
𝑢𝑞 ∈𝑈𝑖,𝑥 (𝛼)\𝑢 𝑗

𝑄𝑞 ·𝐼 {𝛼 𝑗≠(0,0) }−
∑
𝑢𝑞 ∈𝑈𝑖′,𝑥′ (𝛼)\𝑢 𝑗

𝑄 ′𝑞 ·𝐼 {𝛼′𝑗≠(0,0) } ≥ 1.

Thus, according to Eq. (20), there is:

𝜋 (𝛼 ′𝑗 , 𝛼−𝑗) ≥ 𝜋 (𝛼 𝑗 , 𝛼−𝑗) +𝑄 𝑗 ≥ 𝜋 (𝛼 𝑗 , 𝛼−𝑗) +𝑄𝑚𝑖𝑛

Case 2: 𝛼 𝑗 = (0, 0) and 𝛼 ′𝑗 ≠ (0, 0). According to (16), we obtain:

𝜋 (𝛼 ′𝑗 , 𝛼−𝑗)−𝜋 (𝛼 𝑗 , 𝛼−𝑗) = 𝑄 𝑗 ·(𝑇𝑗−
∑︁

𝑢𝑞 ∈𝑈𝑖′,𝑥′ (𝛼)\𝑢 𝑗

𝑄𝑞 ·𝐼 {𝛼′
𝑗
≠(0,0) }) > 0

(21)

Similar to Case 1, there is:

𝜋 (𝛼 ′𝑗 , 𝛼−𝑗) ≥ 𝜋 (𝛼 𝑗 , 𝛼−𝑗) +𝑄 𝑗 ≥ 𝜋 (𝛼 𝑗 , 𝛼−𝑗) +𝑄𝑚𝑖𝑛 (22)

Therefore, according to (18) and (19), there is:

𝑌 ≤ ((1
2

𝑀𝑄2

𝑚𝑎𝑥 −𝑀𝑇𝑚𝑖𝑛𝑄𝑚𝑖𝑛) − (
1

2

𝑀𝑄2

𝑚𝑖𝑛 −𝑀𝑇𝑚𝑎𝑥
𝑄𝑚𝑎𝑥))/𝑄𝑚𝑖𝑛 = 𝑀 (𝑇𝑚𝑖𝑛𝑄𝑚𝑖𝑛 −𝑇𝑚𝑎𝑥𝑄𝑚𝑎𝑥))/𝑄𝑚𝑖𝑛+

1

2𝑄𝑚𝑖𝑛
𝑀 (𝑄2

𝑚𝑎𝑥 −𝑄2

𝑚𝑖𝑛) ≤
𝑀 (𝑄2

𝑚𝑎𝑥 −𝑄2

𝑚𝑖𝑛
)

2𝑄𝑚𝑖𝑛

(23)

That is, 𝑌 ≤ 𝑀 (𝑄2

𝑚𝑎𝑥−𝑄2

𝑚𝑖𝑛)
2𝑄𝑚𝑖𝑛

and Theorem 4 holds. □

Now, we analyze the computational complexity of IDDE-G. In

Phase #1, the computational complexity of the iteration process

in Lines 7-19 is 𝑂 (𝑁𝐾). Since the maximum number of iterations

is at most

𝑀 (𝑄2

𝑚𝑎𝑥−𝑄2

𝑚𝑖𝑛)
2𝑄𝑚𝑖𝑛

in Phase #1, where 𝑄𝑚𝑎𝑥 and 𝑄𝑚𝑖𝑛 are

constants, the computational complexity of Phase #1 is 𝑂 (𝑁𝑀𝐾).
In Phase #2, the computational complexity of finding delivery deci-

sions in Lines 25 is at most𝑂 (𝑁𝐾). Since there are at most

∑
𝑣𝑖 ∈𝑉 𝐴𝑖

iterations in Lines 23-26, the computational complexity of Phase #2

is 𝑂 (𝑁𝐾 ∑
𝑣𝑖 ∈𝑉 𝐴𝑖) = 𝑂 (𝑁

2𝐾). Thus, the computational complex-

ity of IDDE-G is 𝑂 (𝑁 2𝐾 + 𝑁𝑀𝐾) = 𝑂 (𝑁𝐾 max{𝑁,𝑀}).

3.3 Algorithm Performance Analysis
Here, we first evaluate the performance of IDDE-G in maximiz-

ing users’ average data rate in Phase #1 (IDDE Objective #1) by

analyzing its Price of Anarchy (POA), measured by the distance

between the global optimal user allocation profile and the worst

utility of any Nash equilibrium [24]. After that, we analyze the

approximation rate of IDDE-G in minimizing users’ average data

delivery latency in Phase #2 (IDDE Objective #2), measured by the

ratio of the average data delivery latency incurred by IDDE-G over

that achieved with the optimal data delivery profile.

Theorem 5 (POA in Average Data Rate). Given the global
optimal user allocation profile 𝛼∗ and the user allocation profile
𝛼 in the IDDE-U game, the POA of IDDE-U game in terms of the
average data rate, denoted by 𝜌 , fulfills 𝑅𝑚𝑖𝑛

𝑅𝑚𝑎𝑥
≤ 𝜌 ≤ 1, where

𝑅𝑚𝑖𝑛 = min{𝑅 𝑗,𝑚𝑖𝑛, 𝑢 𝑗 ∈ 𝑈 } and 𝑅𝑚𝑎𝑥 = min{𝑅 𝑗,𝑚𝑎𝑥 , 𝑢 𝑗 ∈ 𝑈 }.

Proof. Given𝑅𝑚𝑖𝑛 and𝑅𝑚𝑎𝑥 , the POA of IDDE-U game in terms

of the average data rate can be calculated by:

𝜌 =

∑
𝑢 𝑗 ∈U 𝛽𝛼−𝑗 (𝛼 𝑗)∑
𝑢 𝑗 ∈U 𝛽𝛼∗−𝑗

(𝛼 𝑗)∗
≥

𝑅𝑚𝑖𝑛
∑
𝑠𝑖 ∈𝑆 𝑛𝑢𝑚𝑠𝑖 (𝛼)

𝑅𝑚𝑎𝑥
∑
𝑠𝑖 ∈𝑆 𝑛𝑢𝑚𝑠𝑖 (𝛼∗)

(24)

where 𝑛𝑢𝑚𝑠𝑖 (𝛼) is the number of users allocated by 𝛼 .

Since all the users can be allocated in IDDE scenarios, we can

obtain 𝜌 ≥ 𝑅𝑚𝑖𝑛

𝑅𝑚𝑎𝑥
. Moreover, the average data rate achieved by

IDDE-U game cannot be higher than that achieved by the optimal

user allocation profile 𝛼∗. Thus, Theorem 5 holds. □

Now, we analyze the performance of IDDE-G on IDDE Objective

#2, i.e., minimizing users’ average data delivery latency. Let 𝜎∗

denote the optimal data delivery profile that incurs the lowest

average data delivery latency according to 𝛼 , and 𝜎 denote the data

delivery profile produced by IDDE-G. In this way, the total latency

reduction achieved by 𝜎 , denoted by Δ𝐿(𝜎), can be calculated with:

Δ𝐿(𝜎) = 𝜑 − 𝐿(𝜎) (25)

where 𝜑 is the total data delivery latency incurred by all users

retrieving data from the remote cloud.

Here, we divide each data delivery decision 𝜎𝑖,𝑘 from IDDE-G to

obtain a set of |𝑠𝑘 | sub-decisions. Let 𝜎 ′ and 𝜎 ′∗ denote the sets of
sub-decisions obtained from IDDE-G’s data delivery profile 𝜎 and

the optimal data delivery profile 𝜎∗, respectively. Let 𝜎 ′𝑧 denote the
set of sub-decisions with the 𝑧𝑡ℎ sub-decision included, and 𝐿(𝜎)
denote the total latency incurred by the data delivery profile 𝜎 . In

this way, we can obtain 𝐿(𝜎∗) = 𝐿(𝜎 ′∗).

Theorem 6. The latency reduced by 𝜎 ′𝑧 is at least
𝑒−1
2𝑒 times that

reduced by 𝜎 ′∗𝑧 if 𝑧 =
∑
𝑣𝑖 ∈𝑉 𝐴𝑖 .

Proof. Here Δ𝐿𝑧 denotes the latency reduced by including the

𝑧𝑡ℎ sub-decision into 𝜎𝑧 . The first sub-decision in 𝜎 ′∗𝑧
⋂¬𝜎 ′

𝑧−1 can
reduce at most Δ𝐿𝑧 from the total latency. This is because, with

the 𝑧𝑡ℎ sub-decision included into 𝜎 ′, the sub-decision reducing

the maximum latency is selected by 𝜎 ′𝑧 . Since the total reserved
storage spaces are

∑
𝑣𝑖 ∈𝑉 𝐴𝑖 in the edge storage system, the set of

decisions 𝜎 ′∗𝑧
⋂¬𝜎 ′

𝑧−1 can reduce at most

∑
𝑣𝑖 ∈𝑉 𝐴𝑖 · Δ𝐿𝑧 from the

total latency. Thus, we can obtain:∑︁
𝑣𝑖 ∈𝑉

𝐴𝑖 · Δ𝐿𝑧 ≥ Δ𝐿(𝜎 ′∗𝑧) − Δ𝐿(𝜎 ′𝑧−1) (26)

According to (26), the latency reduced by 𝜎 ′𝑧 can be calculated as

follows:

Δ𝐿(𝜎 ′𝑧) = Δ𝐿𝑧 + Δ𝐿(𝜎 ′𝑧−1) ≥
Δ𝐿(𝜎 ′∗𝑧) − Δ𝐿(𝜎 ′𝑧−1)∑

𝑣𝑖 ∈𝑉 𝐴𝑖

+ Δ𝐿(𝜎 ′𝑧−1) =
Δ𝐿(𝜎 ′∗𝑧)∑
𝑣𝑖 ∈𝑉 𝐴𝑖

+
(
1 − 1∑

𝑣𝑖 ∈𝑉 𝐴𝑖

)
Δ𝐿(𝜎 ′𝑧−1)

(27)

Formulating Interference-aware Data Delivery Strategies in Edge Storage Systems ICPP’51, Sept, 2022, Bordeaux, France

Based on mathematical induction, (28) can be easily proved, accord-

ing to (27). The details of the proof are omitted here.

Δ𝐿(𝜎 ′𝑧)
Δ𝐿(𝜎 ′∗𝑧)

=

(
1 −

(
1 − 1∑

𝑣𝑖 ∈𝑉 𝐴𝑖

)𝑧−1)
(28)

Let 𝑧 =
∑
𝑣𝑖 ∈𝑉 𝐴𝑖 . The latency reduced by 𝜎 ′

𝑧+1 can be calculated

by:

Δ𝐿(𝜎 ′
𝑧+1)

Δ𝐿(𝜎 ′∗𝑧)
≥

(
1 −

(
1 − 1∑

𝑣𝑖 ∈𝑉 𝐴𝑖

)𝑧)
=

(
1 −

(
1 − 1∑

𝑣𝑖 ∈𝑉 𝐴𝑖

)∑
𝑣𝑖 ∈𝑉 𝐴𝑖

)
≥ 1 − 1

𝑒

(29)

Since the latency reduced by𝜎 ′
𝑧+1 is not higher than the total latency

reduced by 𝜎 ′𝑧 , we can obtain:

Δ𝐿(𝜎 ′𝑧) ≥
1

2

Δ𝐿(𝜎 ′𝑧+1) ≥
(𝑒 − 1)Δ𝐿(𝜎 ′∗𝑧)

2𝑒
(30)

Therefore, the theorem is proved based on (30). □

Please note that the sub-decision number of 𝜎 ′ is not always as
many as

∑
𝑣𝑖 ∈𝑉 𝐴𝑖 . In the worst case, the largest data, i.e., the one

with 𝑠𝑚𝑎𝑥 , is to be delivered to every edge server while no edge

server has enough available storage spaces. In this case, a total of

𝑁 · 𝑠𝑚𝑎𝑥 sub-decisions cannot be included into 𝜎 .

Theorem 7. The actual average data delivery latency incurred by
data delivery profile 𝜎 fulfills:

𝐿(𝜎) ≤
(
𝑒 + 1
2𝑒
+ 𝑒 − 1

2𝑒
· 𝑁 · 𝑠𝑚𝑎𝑥∑

𝑣𝑖 ∈𝑉 𝐴𝑖

)
𝜑 +

(
1− 𝑁 · 𝑠𝑚𝑎𝑥∑

𝑣𝑖 ∈𝑉 𝐴𝑖

)
𝑒 − 1
2𝑒

𝐿(𝜎∗)

(31)

where 𝑠𝑚𝑎𝑥 = max{𝑠𝑘 |∀𝑑𝑘 ∈ 𝐷}.

Proof. As discussed above, a total of 𝑁 · 𝑠𝑚𝑎𝑥 sub-decisions

cannot be included into 𝜎 in the worst case. In this way, the total

data delivery latency reduced by 𝜎 in this case is:

Δ𝐿(𝜎) ≥ Δ𝐿(𝜎 ′∑
𝑣𝑖 ∈𝑉 𝐴𝑖

) − 𝑁 · 𝑠𝑚𝑎𝑥∑
𝑣𝑖 ∈𝑉 𝐴𝑖

Δ𝐿(𝜎 ′∑
𝑣𝑖 ∈𝑉 𝐴𝑖

)

(30)

≥
(
1 − 𝑁 · 𝑠𝑚𝑎𝑥∑

𝑣𝑖 ∈𝑉 𝐴𝑖

)
𝑒 − 1
2𝑒

Δ𝐿(𝜎∗)
(32)

Based on (25) and (32), we can obtain:

𝐿(𝜎) ≤ 𝜑 −
(
1 − 𝑁 · 𝑠𝑚𝑎𝑥∑

𝑣𝑖 ∈𝑉 𝐴𝑖

)
𝑒 − 1
2𝑒

Δ𝐿(𝜎∗) =
(
𝑒 + 1
2𝑒
+

𝑒 − 1
2𝑒
· 𝑁 · 𝑠𝑚𝑎𝑥∑

𝑣𝑖 ∈𝑉 𝐴𝑖

)
𝜑 +

(
1 − 𝑁 · 𝑠𝑚𝑎𝑥∑

𝑣𝑖 ∈𝑉 𝐴𝑖

)
𝑒 − 1
2𝑒

𝐿(𝜎∗)
(33)

Thus, (31) stands and Theorem 7 is proved. □

Let 𝐿𝑎𝑣𝑔 (𝜎) and 𝐿𝑎𝑣𝑔 (𝜎∗) denote the average data retrieval laten-
cies achieved by IDDE-G and the optimal strategy, respectively. The

total number of data requests is

∑
𝑢 𝑗 ∈𝑈

∑
𝑑𝑘 ∈𝐷 𝜁 𝑗,𝑘 and the average

data delivery latency (IDDE Objective #2) achieved by IDDE-G is

at most:

𝐿𝑎𝑣𝑔 (𝜎) ≤
(
𝑒 + 1
2𝑒
+ 𝑒 − 1

2𝑒
· 𝑁 · 𝑠𝑚𝑎𝑥∑

𝑣𝑖 ∈𝑉 𝐴𝑖

)
𝜑∑

𝑢 𝑗 ∈𝑈
∑
𝑑𝑘 ∈𝐷 𝜁 𝑗,𝑘

+
(
1 − 𝑁 · 𝑠𝑚𝑎𝑥∑

𝑣𝑖 ∈𝑉 𝐴𝑖

)
𝑒 − 1
2𝑒

𝐿𝑎𝑣𝑔 (𝜎∗)
(34)

Table 2: Parameter Settings
𝑁 𝑀 𝐾 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

Set #1 20, ..., 50 200 5 1.0

Set #2 30 50, ..., 300, 350 5 1.0

Set #3 30 200 2, ..., 8 1.0

Set #4 30 200 5 1.0, ..., 3.0

4 EXPERIMENTAL EVALUATION
All experiments are conducted on a machine equipped with an Intel

i7 processor (4 cores) and 8GB RAM.

4.1 Benchmark Approaches
The performance of IDDE-G is evaluated against four representative

approaches:

• IDDE-IP: This approach solves the IDDE model formulated in

Section 2.3 with IBM CPLEX
1
. However, due to the NP-hardness

of the IDDE problem, it is intractable to find the optimal IDDE

strategy within a reasonable time period. The execution time of

the CP Optimizer consists of searching time and tuning time. In

the experiments, its maximum searching time is limited by 100

seconds.

• SAA (Sample Average Approximation approach): This ap-
proach origins from [21]. Each edge server makes data delivery

decisions based on the data requests coming from its coverage,

aiming tomaximize storage utility including data delivery latency

and user coverage.

• CDP (CentralizedData Placement approach) [16]: This greedy
approach finds a near-optimal strategy to minimize the data deliv-

ery latency, based on the same communication model presented

in Section 2.2.

• DUP-G: This game-theoretical approach origins from [33]. It

aims to maximize users’ average data rate. It always finds a

Nash equilibrium as the near-optimal strategy by allocating each

user to the edge server directly covering the user, based on the

communication model presented in Section 2.2.

4.2 Dataset
The real-world EUA dataset

2
is used to conduct the experiments.

An EC environment is simulated with 125 edge servers and 816

users, extracted from the EUA dataset. In the experiments, each

requested data is randomly sized from {30, 60, 90}MB while the

reserved storage spaces on individual edge servers is randomly

sized from 30MB to 300MB. The transmission speed among edge

servers is selected randomly from [2, 000, 6, 000]MBps and that

between edge servers and cloud is 600MBps. Following similar

experiment settings as [5, 29], each edge server has 3 channels, each

with a bandwidth of 200MBps and background noise𝜔 = −174𝑑𝐵𝑚.

Each user device’s power is randomly selected from [1, 5] Watts. In

addition, the setting of 𝜂 = 1 and 𝑙𝑜𝑠𝑠 = 3 is employed for IDDE-G

to calculate the channel gain 𝑔𝑖,𝑥, 𝑗 with 𝑔𝑖,𝑥, 𝑗 = 𝜂 · 𝐻−𝑙𝑜𝑠𝑠𝑖, 𝑗
.

4.3 Parameter Settings
To evaluate the performance of IDDE-G in various IDDE scenarios,

we conduct four experiment sets. In each set, one setting parameter

1
https://www.ibm.com/au-en/analytics/cplex-cp-optimizer

2
https://github.com/swinedge/eua-dataset

ICPP’51, Sept, 2022, Bordeaux, France Xiaoyu Xia, Feifei Chen, Qiang He, Guangming Cui, John Grundy, Mohamed Abdelrazek, and Fang Dong

20 25 30 35 40 45 50
Number of Edge Servers N

60

80

100

120

140

160

R a
vg

 (M
Bp

s)

IDDE-IP
IDDE-G
SAA
CDP
DUPG

(a) Average Data Rate (𝑅𝑎𝑣𝑔) vs. 𝑁

20 25 30 35 40 45 50
Number of Edge Servers N

0

10

20

30

40

L a
vg
 (m

s)

(b) Average Data Delivery Latency

(𝐿𝑎𝑣𝑔) vs. 𝑁

Figure 3: Effectiveness in Set #1

50 100 150 200 250 300 350
Number of Users M

50

100

150

200

R a
vg
 (M

Bp
s)

IDDE-IP
IDDE-G
SAA
CDP
DUPG

(a) Average Data Rate (𝑅𝑎𝑣𝑔) vs.𝑀

50 100 150 200 250 300 350
Number of Users M

0

10

20

30

40

L a
vg
 (m

s)

(b) Average Data Delivery Latency

(𝐿𝑎𝑣𝑔) vs.𝑀

Figure 4: Effectiveness in Set #2

varies while the other three are fixed, to analyze the impacts of

these parameters on IDDE-G, which indicates its performance in

various environments. Table 2 summarizes the parameter settings.

• Number of edge servers (𝑁): from 20 to 50 in steps of 5.

• Number of users (𝑀): from 50 to 350 in steps of 50.

• Number of data (𝐾): from 2 to 8 in steps of 1.

• Network density (𝑑𝑒𝑛𝑠𝑖𝑡𝑦): from 1 to 3 in steps of 0.4.

Given 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 and 𝑁 in a simulated edge storage system, 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ·
𝑁 links are generated randomly to connect edge servers. Each

experiment is run 50 times each time a parameter changes and the

average results are reported.

4.4 Performance Metrics
Three performance metrics are employed in the experiment:

• Average data rate (𝑅𝑎𝑣𝑔). This metric is the mobile users’ average

data rate. It measures the ability of an approach to achieve IDDE

objective #1, the higher the better.

• Average data delivery latency (𝐿𝑎𝑣𝑔). This metric is the mobile

users’ average data delivery latency. It measures the ability of an

approach to achieve IDDE objective #2, the lower the better.

• Computation time (𝑡𝑖𝑚𝑒). This metric is the time taken by an

approach for formulate an IDDE strategy, the lower the better.

4.5 Experimental Results
4.5.1 Effectiveness. Figures 3 - 6 demonstrate the performance of

IDDE-G through comparison with IDDE-IP, SAA, CDP and DUP-G,

and the impacts of the four parameters. IDDE-G always achieves
the highest average data rate with the lowest average data
delivery latency. Across all the experiments, the average advan-

tage of IDDE-G in terms of data rate is 9.20% over IDDE-IP, 53.27%

over SAA, 29.40% over CDP and 41.56% over DUP-G. In terms of the

average data delivery latency, IDDE-G significantly outperforms

IDDE-IP, SAA, CDP and DUP-G by 82.61%, 71.60%, 84.60% and

85.04%, respectively.

2 3 4 5 6 7 8
Number of Data K

80

90

100

110

R a
vg
 (M

Bp
s) IDDE-IP

IDDE-G
SAA

CDP
DUPG

(a) Average Data Rate (𝑅𝑎𝑣𝑔) vs. 𝐾

2 3 4 5 6 7 8
Number of Data K

0

10

20

30

40

50

L a
vg
 (m

s)

(b) Average Data Delivery Latency

(𝐿𝑎𝑣𝑔) vs. 𝐾

Figure 5: Effectiveness in Set #3

1.0 1.4 1.8 2.2 2.6 3.0
density

80

90

100

110

R a
vg
 (M

Bp
s) IDDE-IP

IDDE-G
SAA

CDP
DUPG

(a) Average Data Rate (𝑅𝑎𝑣𝑔) vs.

𝑑𝑒𝑛𝑠𝑖𝑡𝑦

1.0 1.4 1.8 2.2 2.6 3.0
density

0

10

20

30

L a
vg
 (m

s)

(b) Average Data Delivery Latency

(𝐿𝑎𝑣𝑔) vs. 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

Figure 6: Effectiveness in Set #4

Fig. 3 depicts the experimental results of Set #1. In terms of

data rate and delivery latency, IDDE-G’s advantages are 10.36%

and 83.16% over IDDE-IP, 55.55% and 70.42% over SAA, 28.99%

and 84.05% over CDP, 41.51% and 82.76% over DUP-G on average.

When 𝑁 increases from 20 to 50, the average data rates achieved

by five approaches increase. Since 𝑀 here is fixed at 200, each

edge server serves fewer users on average when more edge servers

are available in the edge storage system. With a more dispersed

distribution, the interference among users is reduced and their data

rates is increased in Fig. 3(a). In Fig. 3(b), the average data retrieval
latencies incurred by IDDE-G, SAA, CDP andDUP-G decrease when

𝑁 increases. As 𝑁 increases, more storage spaces can be reserved

in the edge storage system to store more data, and more users can

access requested data from nearby edge servers with the lowest

data delivery latency.

The results obtained from Set #2 are shown in Fig. 4. In terms of

both average data rate and data delivery latency, IDDE-G outper-

forms others again with significant margins. In Fig. 4(a),IDDE-G’s
advantages on average data rate are 5.47% over IDDE-IP, 45.43%

over SAA, 26.32% over CDP and 29.15% over DUP-G. When 𝑀

increases from 50 to 350, the average data rates achieved by IDDE-

G, IDDE-IP, SAA, CDP and DUP-G decrease from 196.71MBps to

68.48MBps by 65.19%, from 196.06MBps to 62.01MBps by 68.37%,

from 143.75MBps to 49.60MBps by 65.50%, from 153.62MBps to

60.87MBps by 60.38% and 174.76MBps to 58.26MBps by 66.66%,

respectively. The reason is straightforward - more users result in

high interference among them, which reduces their average data

rate. When 𝑀 increases, more data need to be delivered to each

edge server to serve their nearby users. However, constrained by

the fixed number of storage spaces reserved on individual edge

servers, more data have to be delivered to users from edge servers

faraway in the system. This causes the increase in the data delivery

latencies incurred by all the approaches, as shown in Fig. 4(b).
Fig. 5 demonstrates the results in Set #3. In Fig. 5(a), IDDE-G

consistently achieves the highest average data, 7.25%, 50.03%, 25.69%

and 43.19% higher than IDDE-IP, SAA, CDP and DUP-G. In Fig. 5(a),

Formulating Interference-aware Data Delivery Strategies in Edge Storage Systems ICPP’51, Sept, 2022, Bordeaux, France

100

200

Set #1 Set #2 Set #3 Set #4

ID
DE

-IP
ID
DE

-G SA
A

CD
P

DU
PG

ID
DE

-IP
ID
DE

-G SA
A

CD
P

DU
PG

ID
DE

-IP
ID
DE

-G SA
A

CD
P

DU
PG

ID
DE

-IP
ID
DE

-G SA
A

CD
P

DU
PG

0.0

0.2

0.4

0.6

Co
m
pu

ta
tio

n
Ti
m
e
(s
)

Figure 7: Computation Time (s)

the number of data𝐾 makes insignificant impacts on users’ average

data in this set of experiments. This is because 𝐾 is not considered

in the user allocation profile. However, 𝐾 impacts users’ average

data delivery latency, as clearly illustrated in Fig. 5(b). With the

increase of𝐾 increases, the average data retrieval latencies incurred

by all five approaches increase, from 2.61ms to 7.52ms for IDDE-

G, from 18.58ms to 38.50ms for IDDE-IP, from 9.33ms to 22.12ms

for SAA, from 24.12ms to 36.80ms for CDP and from 32.16ms to

48.88ms for DUP-G. A large number of data requested by users

challenges the ability of the approaches to deliver data with low

latency, in particular when the average number of storage spaces

reserved on individual edge servers is fixed. Fig. 5(b) shows that

IDDE-G is the clear winner in ensuring low data delivery latency

for users. The average data delivery latency incurred by IDDE-G is

multiple times lower than those incurred by the other approaches,

i.e., 5.22ms (IDDE-G) versus 27.98ms (IDDE-IP), 16.88ms (SAA),

31.26ms (CDP) and 41.10ms (DUP-G).

Fig. 6 shows the results in Set #4. IDDE-G is the clear winner,

achieving the highest average data rate and the lowest average data

delivery latency. In Fig. 6(a), IDDE-G’s performance in maximizing

users’ average data rate outperforms IDDE-IP, SAA, CDP and DUP-

G significantly by 13.94%, 62.92%, 36.87% and 54.91% respectively.

As shown in Fig. 6(b), IDDE-G’s performance advantage in terms

of the average data delivery latency is immense in Set #4, similarly

to Sets #1 - #3. On average, it outperforms IDDE-IP, SAA, CDP

and DUP-G by 90.38%, 75.91%, 89.63% and 86.72%, respectively. The

increase in 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 impacts users’ average data delivery latency

slightly but not on their average data rate. The main difference

made by a larger 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 is a lower average latency between edge

servers. This allows IDDE-IP to deliver data with a lower average

latency. However, IDDE-G is capable of delivering data to most

users with minimum latency even with a network density as low

as 1.0. Thus, the increase in 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 decreases users’ average data

delivery latency only mildly when data are delivered by IDDE-G.

4.5.2 Efficiency. The computation time taken across all the four

experiment sets is shown in Fig. 7. Apparently and as expected,

IDDE-IP always takes themost time to solve the IDDE problem in all

the experiments, between 117.9126 seconds and 162.6129 seconds on

average. SAA takes the second most time, between 0.6056 seconds

and 0.7333 seconds on average. Across all the four experiment sets,

IDDE-G, CDP and DUP-G can find a solution rapidly, compared

with IDDE-IP and SAA, i.e. 0.3620 seconds (IDDE-G), 0.1691 seconds

(CDP) and 0.3716 seconds (DUP-G) vs. 0.6626 seconds (SAA) and

135.3881 seconds (IDDE-IP). CDP takes the least time to solve the

IDDE problem, followed by IDDE-G and DUP-G. However, such

slight differences are negligible, compared with IDDE-G’s profound

advantage over CDP in effectiveness demonstrated above in Fig. 3 -

Fig. 6.

4.5.3 Conclusion. As discussed in Section 1, the key objective of

edge computing is to pursue the low latency. IDDE strategies must

be formulated rapidly to ensure that users’ data demands are served

efficiently. Thus, among the five approaches, only IDDE-G can solve
the IDDE problem both efficiently and effectively.

5 RELATEDWORK
In edge computing (EC), edge servers enable access to resources

and services in the closest possible proximity to end-users [18]. As

the same time, EC poses many new challenges, including request

reliability [15], resource sharing [3].

In an edge storage system comprised of networked edge servers,

data can be stored to serve end-users with low latency. Many re-

searchers have investigated new ideas and techniques for this new

edge storage system. The authors of [19] aimed to minimize the

transmission delay and the data traffic to cloud in edge storage sys-

tems. They designed a two-phases approach with Gibbs sampling

for solving this problem within a reasonable time. In [12], Huang

et al. studied the fairness problem in edge storage systems. They

introduced a data trading protocol based on the smart-contract

and formulated a Stackelberg game-theoretical approach for en-

suring fairness between producer and consumer. Xia et al. [35]

introduced a Lyapunov-based approach named CDEC-O to solve

the data storage problem in edge storage systems. The proposed

CDEC-O approach minimized system cost while ensuring low data

delivery latency for end-users.

Considering the unique proximity constraint in EC, a user can

only retrieve data stored on its nearby edge servers covering this

user [35]. Thus, users must be properly allocated to edge servers

deployed in the same area to access data with low latency. Focused

on minimizing data delivery latency, existing studies have unfortu-

nately ignored or oversimplified the interference incurred by users

in the "last mile" during data delivery in edge storage systems. As a

result, users’ data rates cannot be ensured, which may significantly

impact their quality of experience. Data rate assurance for users in

the "last mile" is in fact a key difference between edge storage sys-

tems and conventional cloud storage systems. In very recent years,

researchers start to take into account the impact of interference

on users’ quality of experience in the EC environment. Specifically,

the authors of [33] consider the impact of wireless interference

on the data caching problem in the multi-access edge computing

environment. However, the problem studied in [33] ignores edge

servers’ ability to collaborate.

In edge storage systems, both users’ data rates and data delivery

latency must be optimized to ensure their quality of experience.

To the best of our knowledge, this paper is the first attempt at

leveraging edge servers’ ability to tackle the interference-aware

data delivery (IDDE) problem.

6 CONCLUSION
In this paper, we studied a unique and critical problem in edge

storage systems from the app vendor’s perspective, named the

ICPP’51, Sept, 2022, Bordeaux, France Xiaoyu Xia, Feifei Chen, Qiang He, Guangming Cui, John Grundy, Mohamed Abdelrazek, and Fang Dong

Interference-aware Data Delivery at the network Edge (IDDE) prob-

lem. Our aim was to find a cost-effective IDDE strategy that opti-

mizes users’ data rate and data delivery latency. We first identified

the major challenges, modeled the problem formally, and proved its

NP-hardness. Then, we proposed IDDE-G, an innovative hybrid ap-

proach that combines game theory and approximation algorithm to

solve this IDDE problem. According to theoretical and experimental

evaluations, IDDE-G is able to solve the IDDE problem efficiently

and effectively. In the future work, we will investigate the dynamics

of user movements and data migrations in IDDE scenarios.

7 ACKNOWLEDGMENT
This research is partially funded by Australian Research Coun-

cil Discovery Projects No. DP200102491 and Laureate Fellowship

FL190100035. Feifei Chen and Qiang He are the corresponding

authors of this paper.

REFERENCES
[1] Esther M Arkin and Refael Hassin. 1998. On local search for weighted k-set

packing. Mathematics of Operations Research 23, 3 (1998), 640–648.

[2] Yunhao Bai, Zejiang Wang, Xiaorui Wang, and Junmin Wang. 2020. AutoE2E:

End-to-End Real-time Middleware for Autonomous Driving Control. In 2020 IEEE
40th International Conference on Distributed Computing Systems (ICDCS). IEEE,
1101–1111.

[3] Xiaoqing Cai, Jiuchen Shi, Rui Yuan, Chang Liu, Wenli Zheng, Quan Chen, Chao

Li, Jingwen Leng, and Minyi Guo. 2020. OVERSEE: Outsourcing Verification to

Enable Resource Sharing in Edge Environment. In 49th International Conference
on Parallel Processing-ICPP. 1–11.

[4] Lixing Chen, Sheng Zhou, and Jie Xu. 2018. Computation peer offloading for

energy-constrained mobile edge computing in small-cell networks. IEEE/ACM
Transactions on Networking 26, 4 (2018), 1619–1632.

[5] Xu Chen, Lei Jiao, Wenzhong Li, and Xiaoming Fu. 2016. Efficient multi-user

computation offloading for mobile-edge cloud computing. IEEE/ACM Transactions
on Networking 24, 5 (2016), 2795–2808.

[6] Guangming Cui, Qiang He, Xiaoyu Xia, Phu Lai, Feifei Chen, Tao Gu, and Yun

Yang. 2020. Interference-aware SaaS user allocation game for edge computing.

IEEE Transactions on Cloud Computing (2020).

[7] Yongheng Deng, Feng Lyu, Ju Ren, Yongmin Zhang, Yuezhi Zhou, Yaoxue

Zhang, and Yuanyuan Yang. 2021. SHARE: Shaping data distribution at edge

for communication-efficient hierarchical federated learning. In 2021 IEEE 41st
International Conference on Distributed Computing Systems (ICDCS). IEEE, 24–34.

[8] Christian Glaßer, Christian Reitwießner, Heinz Schmitz, and Maximilian Witek.

2010. Approximability and hardness in multi-objective optimization. In Confer-
ence on Computability in Europe. Springer, 180–189.

[9] Charles A Holt and Alvin E Roth. 2004. The Nash equilibrium: A perspective.

Proceedings of the National Academy of Sciences 101, 12 (2004), 3999–4002.
[10] Xueshi Hou and Sujit Dey. 2020. Motion prediction and pre-rendering at the

edge to enable ultra-low latency mobile 6DoF experiences. IEEE Open Journal of
the Communications Society 1 (2020), 1674–1690.

[11] Yaodong Huang, Xintong Song, Fan Ye, Yuanyuan Yang, and Xiaoming Li. 2019.

Fair and efficient caching algorithms and strategies for peer data sharing in

pervasive edge computing environments. IEEE Transactions on Mobile Computing
19, 4 (2019), 852–864.

[12] Yaodong Huang, Yiming Zeng, Fan Ye, and Yuanyuan Yang. 2020. Fair and

Protected Profit Sharing for Data Trading in Pervasive Edge Computing Environ-

ments. In IEEE Conference on Computer Communications. IEEE, 1718–1727.
[13] Junghoon Kim, Taejoon Kim, Morteza Hashemi, Christopher G Brinton, and

David J Love. 2020. Joint optimization of signal design and resource allocation in

wireless D2D edge computing. In IEEE Conference on Computer Communications.
IEEE, 2086–2095.

[14] Tae-Suk Kim, Hyuk Lim, and Jennifer C Hou. 2006. Improving spatial reuse

through tuning transmit power, carrier sense threshold, and data rate in multihop

wireless networks. In Proceedings of the 12th annual international conference on
Mobile computing and networking. 366–377.

[15] Weifa Liang, Yu Ma, Wenzheng Xu, Xiaohua Jia, and Sid Chi-Kin Chau. 2020. Reli-

ability augmentation of requests with service function chain requirements in mo-

bile edge-cloud networks. In 49th International Conference on Parallel Processing-
ICPP. 1–11.

[16] Juan Liu, Bo Bai, Jun Zhang, and Khaled B Letaief. 2017. Cache placement in

Fog-RANs: From centralized to distributed algorithms. IEEE Transactions on
Wireless Communications 16, 11 (2017), 7039–7051.

[17] Ying Liu, Qiang He, Dequan Zheng, Xiaoyu Xia, Feifei Chen, and Bin Zhang.

2020. Data Caching Optimization in the Edge Computing Environment. IEEE
Transactions on Services Computing. https://doi.org/10.1109/TSC.2020.3032724

[18] Feng Lyu, Ju Ren, Nan Cheng, Peng Yang, Minglu Li, Yaoxue Zhang, and Xuemin

Shen. 2020. LEAD: Large-scale edge cache deployment based on spatio-temporal

WiFi traffic statistics. IEEE Transactions on Mobile Computing (2020).

[19] Xiao Ma, Ao Zhou, Shan Zhang, and Shangguang Wang. 2020. Cooperative

service caching and workload scheduling in mobile edge computing. In IEEE
Conference on Computer Communications. IEEE, 2076–2085.

[20] Dov Monderer and Lloyd S Shapley. 1996. Potential games. Games and economic
behavior 14, 1 (1996), 124–143.

[21] Zhaolong Ning, Peiran Dong, Xiaojie Wang, Shupeng Wang, Xiping Hu, Song

Guo, Tie Qiu, Bin Hu, and Ricky Kwok. 2020. Distributed and Dynamic Service

Placement in Pervasive Edge Computing Networks. IEEE Transactions on Parallel
and Distributed Systems (2020).

[22] Martin J Osborne and Ariel Rubinstein. 1994. A course in game theory. MIT press.

[23] Stephen Pasteris, Shiqiang Wang, Mark Herbster, and Ting He. 2019. Service

placement with provable guarantees in heterogeneous edge computing systems.

In IEEE Conference on Computer Communications. IEEE, 514–522.
[24] Tim Roughgarden. 2005. Selfish routing and the price of anarchy. Vol. 174. MIT

press Cambridge.

[25] Dario Sabella, Vadim Sukhomlinov, Linh Trang, Sami Kekki, Pietro Paglierani,

Ralf Rossbach, Xinhui Li, Yonggang Fang, Dan Druta, Fabio Giust, et al. 2019.

Developing software for multi-access edge computing. ETSI white paper 20 (2019),
1–38.

[26] Tanmoy Sen and Haiying Shen. 2021. Context-aware Data Operation Strategies in

Edge Systems for High Application Performance. In 50th International Conference
on Parallel Processing. 1–10.

[27] Jiacheng Shang and Jie Wu. 2020. Protecting Real-time Video Chat against Fake

Facial Videos Generated by Face Reenactment. In 2020 IEEE 40th International
Conference on Distributed Computing Systems (ICDCS). IEEE, 689–699.

[28] Liang Tong, Yong Li, and Wei Gao. 2016. A hierarchical edge cloud architecture

for mobile computing. In IEEE Conference on Computer Communications. IEEE,
1–9.

[29] Kaidi Wang, Yuanwei Liu, Zhiguo Ding, Arumugam Nallanathan, and Mugen

Peng. 2019. User association and power allocation for multi-cell non-orthogonal

multiple access networks. IEEE Transactions on Wireless Communications 18, 11
(2019), 5284–5298.

[30] Bang Ye Wu, Giuseppe Lancia, Vineet Bafna, Kun-Mao Chao, Ramamurthy Ravi,

and Chuan Yi Tang. 2000. A polynomial-time approximation scheme forminimum

routing cost spanning trees. SIAM J. Comput. 29, 3 (2000), 761–778.
[31] Xiaoyu Xia, Feifei Chen, John Grundy, Mohamed Abdelrazek, Hai Jin, and Qiang

He. 2021. Constrained App Data Caching over Edge Server Graphs in Edge

Computing Environment. IEEE Transactions on Services Computing (2021). https:

//doi.org/10.1109/TSC.2021.3062017

[32] Xiaoyu Xia, Feifei Chen, Qiang He, Guangming Cui, John Grundy, Mohamed

Abdelrazek, Athman Bouguettaya, and Hai Jin. 2021. OL-MEDC: An Online

Approach for Cost-effective Data Caching in Mobile Edge Computing Systems.

IEEE Transactions on Mobile Computing (2021). https://doi.org/10.1109/TMC.

2021.3107918

[33] Xiaoyu Xia, Feifei Chen, Qiang He, Guangming Cui, John C. Grundy, Mohamed

Abdelrazek, Xiaolong Xu, and Hai Jin. 2022. Data, User and Power Allocations

for Caching in Multi-Access Edge Computing. IEEE Transactions on Parallel and
Distributed Systems 33, 5 (2022), 1144–1155. https://doi.org/10.1109/TPDS.2021.

3104241

[34] Xiaoyu Xia, Feifei Chen, Qiang He, John Grundy, Mohamed Abdelrazek, and

Hai Jin. 2021. Cost-Effective App Data Distribution in Edge Computing. IEEE
Transactions on Parallel and Distributed Systems 32, 1 (2021), 31–44.

[35] Xiaoyu Xia, Feifei Chen, Qiang He, John Grundy, Mohamed Abdelrazek, and

Hai Jin. 2021. Online Collaborative Data Caching in Edge Computing. IEEE
Transactions on Parallel and Distributed Systems 32, 2 (2021), 281–294.

[36] Ji-Hoon Yun. 2015. Intra and inter-cell resource management in full-duplex

heterogeneous cellular networks. IEEE Transactions on Mobile Computing 15, 2

(2015), 392–405.

[37] Shan Zhang, Peter He, Katsuya Suto, Peng Yang, Lian Zhao, and Xuemin Shen.

2017. Cooperative edge caching in user-centric clustered mobile networks. IEEE
Transactions on Mobile Computing 17, 8 (2017), 1791–1805.

[38] Sai Qian Zhang, Jieyu Lin, and Qi Zhang. 2020. Adaptive distributed convolutional

neural network inference at the network edge with ADCNN. In 49th International
Conference on Parallel Processing-ICPP. 1–11.

https://doi.org/10.1109/TSC.2020.3032724
https://doi.org/10.1109/TSC.2021.3062017
https://doi.org/10.1109/TSC.2021.3062017
https://doi.org/10.1109/TMC.2021.3107918
https://doi.org/10.1109/TMC.2021.3107918
https://doi.org/10.1109/TPDS.2021.3104241
https://doi.org/10.1109/TPDS.2021.3104241

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 System Models
	2.2 User-Server Communication Model
	2.3 Problem Formulation and Hardness

	3 Algorithm Design and Analysis
	3.1 IDDE-G Design
	3.2 Algorithm Complexity Analysis
	3.3 Algorithm Performance Analysis

	4 Experimental Evaluation
	4.1 Benchmark Approaches
	4.2 Dataset
	4.3 Parameter Settings
	4.4 Performance Metrics
	4.5 Experimental Results

	5 Related Work
	6 Conclusion
	7 Acknowledgment
	References

