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Abstract — The Infrastructure-as-a-Service (IaaS) cloud
computing model has become a compelling computing solution
with a proven ability to reduce costs and improve resource
efficiency. Virtualization has a key role in supporting the IaaS
model. However, virtualization also makes it a target for potent
rootkits because of the loss of control problem over the hosted
Virtual Machines (VMs). This makes traditional in-guest security
solutions, relying on operating system kernel trustworthiness, no
longer an effective solution to secure the virtual infrastructure of
the IaaS model. In this paper, we explore briefly the security
problem of the IaaS cloud computing model, and present
CloudSec, a new virtualization-aware monitoring appliance that
provides active, transparent and real-time security monitoring
for hosted VMs in the IaaS model. CloudSec utilizes virtual
machine introspection techniques to provide fine-grained
inspection of VM’s physical memory without installing any
monitoring code inside the VM. It actively reconstructs and
monitors the dynamically changing kernel data structures
instances, as a prior step to enable providing protection for
kernel data structures. We have implemented a proof-of-concept
prototype using VMsafe libraries on a VMware ESX platform.
We have evaluated the system monitoring accuracy and the
performance overhead of CloudSec.

Cloud Computing; laaS Security; Semantic Gap; Virtual
Machine Introspection; VMware ESX; VMsafe APIs; Virtual
Appliance.

1. INTRODUCTION

Cloud computing is a new computing paradigm that
delivers reliable and scalable internet-based services.
Infrastructure-as-a-Service (IaaS) is one of the main service
models delivered by cloud computing. IaaS allows customers
to increase their computational and storage resources on the
fly without investing in new hardware. laaS is characterized
by the concept of resource virtualization. Virtualization
enables running multiple Operating System (OS) instances -
called virtual machines (VMs) - on the same physical server.
The Cloud Virtual Infrastructure (CVI) in the TaaS model is
composed of three main components [1]: a hypervisor, virtual
switch (vSwitch) and hosted VMs. The hosted VMs are
considered the main source of security threats on the IaaS
platform, where the cloud provider is hosting VMs without
being aware of their actual contents, and with no control over
these VMs. This makes it easy to seize the hosted VMs and
thus opens the possibility for a compromised VM to attack the

other hosted VMs or the hypervisor itself, as VMs share the
same hardware and hypervisor software. Such VMs cannot be
trusted from the cloud providers’ perspective to install their
supported security software inside these VMs. This is because
it becomes possible to tamper with the security software and
alter its behaviour, whether by the cloud consumer (the VM
owner) or by an external hacker. Hence, traditional in-guest
security solutions that rely on the Operating System (OS)
kernel trustworthiness do not map well to secure such
virtualized systems. Thus new Virtualization-Aware Security
Solutions (VASSs) need to be provided. Such VASSs must
have the ability to actively monitor and protect the hosted
VMs from outside the VM itself, without installing any
security code inside the VM. As virtualization has complicated
the security process for the laaS platform, it has also enhanced
the trustworthiness of the security process. This is by enabling
monitoring of VMs externally, at a hypervisor level, by
observing the hardware bytes e.g. memory pages and disk
blocks. But this still presents a key problem of how to map
these hardware-level bytes to useful OS abstractions to
maintain security.

In this paper, we present CloudSec - a monitoring
appliance that provides active, transparent, and real-time
security monitoring for the hosted VMs in the laaS cloud
platform. CloudSec utilizes Virtual Machine Introspection
(VMI) techniques to provide fine-grained inspection of the
VM’s physical memory, without installing any security code
inside VMs. Monitoring volatile memory enables effective
detection of user or kernel rootkits, as volatile memory must
have imprints for such malware, even self-hiding malware.
CloudSec actively reconstructs and monitors the dynamically
changing kernel Data Structures (DSs) instances to enable
effective detection and prevention for the kernel data rootkits
such as Dynamic Kernel Object Manipulation (DKOM) and
Kernel Object Hooking (KOH) rootkits. We explore the
challenges of implementing such security monitoring system,
and how we can map the introspected low-level raw bytes of
memory into high-level OS data structures instances. We have
implemented a proof-of-concept prototype using VMsafe
libraries on a VMware ESX cloud platform.

The rest of this paper is organized as follows: Section II
explores the VMI techniques, the semantic gap problem, and
the key requirements for implementing an effective external
VM monitoring system for memory protection purposes.
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Section III describes the CloudSec high-level system
architecture, and in section IV we explain in details the steps
of implementing and deploying CloudSec. Section V describes
an evaluation of our prototype, and section VI discusses the
performance overhead of CloudSec and key directions for
future research. Finally we outline our conclusions.

II.  MOTIVATION AND BACKGROUND

Virtual Machine Introspection (VMI) [2] enables
monitoring of VMs from the outside, at a hypervisor level, but
only hardware-level raw bytes can be observed. In contrast,
from inside the VM, we can view high-level entities such as
processes, /O requests, and system calls. The difference
between these outside and inside views is called the semantic
gap. In order to make external VM observations useful for
security monitoring, it is necessary to translate the hardware-
level bytes to actual running OS information.

VMI also enables isolating the security solution from the
other server workloads, by deploying the security solution in a
dedicated VM that has a privilege access to the hardware
through the hypervisor. This makes it much harder for hackers
to detect the installed security software. Recently, virtual
appliances [3] have been introduced as a new solution for
deploying security VMs. A virtual appliance, like a VM,
incorporates application, OS and virtual hardware. However,
virtual appliances differ from VMs in that they are delivered
as preconfigured solutions running a “Just enough Operating
System” (JeOS). JeOS is a purpose-built OS that supports only
the functions of the installed software [3]. JeOS occupies a
much smaller footprint than a general-purpose OS and thus a
JeOS is more stable and secure, reducing the number of
vulnerabilities and exploits that can occur. Additionally, for
VMs running on the same physical machine, significant
memory redundancy is likely to exist. Memory de-duplication
that is supported in most hypervisors e.g. Xen and VMware
ESX, aims to eliminate the memory resource waste. However,
because of mismatch in page alignment and use of physical
pointers, not all memory redundancy can be effectively
uncovered. Another way to eliminate this inter-VM
redundancy is through kernel component refactoring. This
takes out common kernel components shared by VMs running
on the same physical machine and runs them on a separate
virtual appliance [4].

A. Key Problems

Providing reliable monitoring using VMI techniques for
the hosted VMs’ volatile memory, in order to help detecting
security anomalies and memory-based rootkits, requires
solving two main problems:

1) Bridging the semantic gap by reconstructing the OS high-
level semantic view externally, without relying on the
running kernel memory or APIs. Such translation requires
accurate mapping between the OS kernel structure of the
VM, and the physical memory layout.

2) Providing real-time and active monitoring for multiple,
concurrent VMs hosted on a single physical server
without a noticeable VM performance overhead. Running
real-time monitoring software impacts performance,

because the security software typically needs to verify
system activities such as calls and memory accesses
before executing them. Active monitoring is also a
difficult problem in VASSs. Active monitoring requires
installing hooks inside the hosted VMs to suspend system
activities until they are analyzed, and a major reason for
moving to VASSs is to remove the security code from the
hosted VMs [5].

B. Related Work

VMs have become widely used for deploying security
software even before the cloud computing era, due to the
benefits gained from virtualization. After the wide-spread
adoption of the IaaS model, securing the VMs at a hypervisor
level has also become a new trend in security research. Most
VMI research to date has been done on the Xen hypervisor
platform as this is an open source hypervisor.

Livewire [2] is the first intrusion detection system that
applied VMI techniques. Livewire works offline and
passively. Most recent VMI research has depended on
installing code inside the hosted VMs whether to solve the
semantic gap or to enable real-time and active monitoring.
One of the most popular VMI research platforms for Xen
hypervisor is XenAccess [5, 6]. XenAccess installs write-
protected security hooks inside the guest VM to suspend VM
events while they are being analysed, to enable active
monitoring. PsycoTrace [7, 8] depends on installing hooks
inside the VM to solve the semantic gap problem. KvmSec [9]
also relies on installing security code inside the guest VMs to
obtain high-level OS abstractions from inside the guest to
solve the semantic gap problem. SIM [10] is an in-VM
monitoring system that places a protected security code inside
the VM. All of these approaches install security code in the
hosted VMs to solve the semantic gap or to enable active
monitoring. VIX Tools [11, 12] doesn’t install code to solve
the semantic gap, but it does not provide real-time monitoring,
where it requires pausing the VM until reconstructing
semantic gap. As discussed above, this violates our key
requirements and exposes the security code hosted in VMs to
detection. DKSM [13] has recently been introduced as an
attack prototype that can defeat such security solutions that are
OS-dependant in solving the semantic-gap. DKSM introduced
two attack models: one changes the syntax of the kernel
structure and the other changes the semantics. Such attacks
can be detected because OSs like Microsoft Windows and
Linux embody basic object-oriented design principles [14].
They structure their kernel data into set of predefined data
structures and objects, with a relative virtual address schema.
This structure of the kernel enables reconstructing kernel data
structures through recursive traversing of physical memory
using the OS global variables, without relying on the OS
kernel that could be exploited by one of those attacks.

Virtual Appliance technology for deploying security
software has had little attention to date in academic research
on deploying security solutions. However, virtual appliance
technology is used widely by security vendors such as McAfee
[15] to deploy security solutions especially for virtualized data
centres and cloud computing platforms. Security research



targeting cloud computing platforms (especially IaaS) is also
still relatively limited. Most current cloud security approaches
[16, 17] depend on deploying current security technologies,
such as intrusion detection and prevention systems, inside the
hosted VMs. However, some researchers have discussed the
complexities of the cloud platform and the challenges of
implementing security solutions for the cloud [1, 18, 19].

III.  SYSTEM ARCHITECTURE

CloudSec utilizes VMI techniques to monitor the physical
memory of hosted VMs at a hypervisor level. It then
reconstructs externally a high-level semantic view of the
running OS kernel data structures instances for the monitored
VMs’ OS. The key idea behind solving the semantic gap is
how to map accurately between the underlying hardware
memory layout and the OS kernel structure. As mentioned
before, OSs like Microsoft Windows and Linux embody basic
object-oriented design principles. They organise their kernel
data into a set of predefined data structures and objects. This
organisation of the kernel enables reconstructing kernel data
structures through recursive traversing for the physical
memory using the OS global variables, without relying on the
OS kernel. However, the problem is more difficult in
commodity OSs like Microsoft Windows, because Windows
OS is not open source like Linux OS. In addition Windows
kernel data structures are opaque - the addresses of OS global
variables change from one Windows build to another.
Fortunately Microsoft provides Microsoft Symbols [20] which
provides symbols for each Windows build. These symbols can
be used as a reference for reconstructing the kernel structures
from the memory bytes instead of relying on false view of a
compromised kernel.

A.  Threat Model

We assume a trustworthy hypervisor, based on the
assumption that the source code of the hypervisor is much
smaller and more reliable than the existing OS kernels.
Existing hardware-based protection technologies, including
Trusted Platform Module [21] and Intel trusted Execution
Technology [22], are also capable of effectively establishing a
root of trust. This is by guaranteeing the loading of a
hypervisor in a trustworthy manner. In other words, they can
guarantee the load-time integrity of the hypervisor. Thus, the
cloud platform (hypervisor including the vSwitch) is part of
the Trusted Computing Base (TCB). Also, CloudSec is part of
the TCB where it’s completely controlled by the cloud
provider and isolated from the other server workload. On the
other hand, the hosted VMs are not part of the TCB and
cannot be trusted to install any monitoring code. We assume a
hacker has root privilege access to a VM including OS and
applications, and they can modify any code or data in the OS
kernel of the target VM.

B.  CloudSec Architcture

Figure 1 shows the high-level architecture of CloudSec.
The VMI layer is the core of CloudSec architecture; VMI layer
is composed of two components:

1) The back-end component; enables the hypervisor to gain
control over the hosted VMs to suspend any access to the
physical memory and CPU (1) according to the access
triggers installed by CloudSec using the front-end. The
back-end extension notifies CloudSec (2) to perform the
necessary security checks (3), before control is given back
to the VM executed instructions (4). This enables
CloudSec to perform active monitoring, without installing
any hooks inside the VM to suspend instruction
execution.

2) The front-end component; is a set of APIs that enable
getting information about the monitored VM’s running
OS from the hypervisor and controlling accesses to
physical memory and CPU registers. The front-end APIs
enable CloudSec to install memory access triggers or
timer-based triggers on the physical memory pages that
need to be monitored. The front-end makes CloudSec an
external extension of the hypervisor which enables
transparent access to physical memory.

Communications between the front-end and back-end
components are controlled by a communication channel
conducted over a separate virtual network using a separate
vSwitch.

Hosted VMs

of

VMI

Defense
Modules

Back-end
VM-Thread Memory Access
Pool Manager Handler
Hypervisor
Kernel VMI APIs Front-end
Hypervisor CloudSec

Host Physical Memory

Figure 1. CloudSec high-level architecture

Whenever a hosted VM is powered on, the CloudSec VM
is notified by the back-end via the communication channel.
CloudSec then creates a separate thread for each newly
activated VM using the VM-Thread Pool Manager. CloudSec
first checks the control registers of the VM’s CPU to know the
memory layout of the VM’s hardware, and queries the kernel
version of the VM via the hypervisor to load the appropriate
Kernel Structures Definition (KSD). The KSD differs from
one OS to another. For Windows OS, we can get complete
KSDs from Microsoft Symbol packages. For Linux, KSDs can
be obtained from the kernel symbol table (e.g. System.map).
After loading the appropriate KSD, CloudSec starts solving
the semantic gap through our Semantic Gap Builder (SGB).
The SGB reads specific physical memory pages, according to
the corresponding OS global variables’ addresses from the
specified KSD. CloudSec does not have direct access to the
VM’s physical memory, which is controlled by the hypervisor.
It instead uses the back-end to read these physical memory
pages into the Memory Pages Buffer (MPB). Then, the SGB



starts mapping these physical memory bytes to the
corresponding KSD, to obtain an OS view of the running VMs
externally. This view includes reconstructing all kernel data
structures e.g. the running processes, loaded modules, system
table, and interrupt, local and general descriptor tables. After
constructing the kernel data structures view externally,
CloudSec creates a profile for each VM containing its
reconstructed high-level semantic view, to be used by the
Defence Modules. CloudSec then installs memory access
triggers or timer-based triggers on the page(s) that contain the
kernel data structures that needs to be monitored and protected
according to the applied defence mechanisms. Whenever a
memory access to such pages occurs, the back-end notifies the
Memory Access Handlers (MAHs), and the hypervisor
suspends execution. MAHs load the requested memory
page(s) to the Defence Module or the SGB to extract kernel
data structure updates (if required by the defence module).
Then the defence modules analyse the current running kernel
data structures for security threats, according to the applied
defence mechanisms.

Live migration of the protected VMs can be done, if
CloudSec is running on both source and target hosts, and they
are both listening to the same network address and port
number.

IV. IMPLEMENTATION

We have implemented CloudSec using the VMsafe APIs
on a VMware® ESX 4.1. VMware has introduced VMsafe
APIs to allow security experts to leverage VMI techniques for
hosted VMs in the ESX hypervisor. VMsafe offers transparent
access to the virtual hardware of hosted VMs. VMsafe is
composed of three main libraries: vCompute, vNetwork and
vStorage APIs'. CloudSec uses the vCompute APIs to access
the physical memory of hosted VMs. Our implementation is
based on the KSD of the Windows XP SP3, for other
Windows versions, we just need to load CloudSec with the
appropriate KSD from Microsoft Symbols.

A.  Memory Management

One of the key requirements needed to solve the semantic
gap is to understand the underlying memory layout that is used
by the OS to map between physical memory pages and the
OS’s KSD. There are four main paging modes supported by
the hardware to manage the physical memory layout. These
paging modes are controlled by the control registers CRO and
CR4 of the VM’s CPU. For example, if the CRO.PG bit is set
and CR4.PAE bit is clear, then 32-bit paging is used. If the
CRO.PG bit is set and CR4.PAE bit is set then Physical
Address Extension (PAE) paging is used [23]. We focus in our
current implementation on the 32-bit paging mode, PAE
disabled. In this mode, memory is divided into pages or frames
of 0x1000 (4096) bytes each. Each process has a Page
Directory Table (PDT). Each PDT contains 1024 Page
Directory Entries (PDE). Each PDE contains an address for a

' vCompute and vNetwork libraries are not for public use and
their license can only be provided to security vendors and
security researchers.

Page Table (PT). Each PT contains 1024 PT Entries (PTE),
Each PTE points to the base address of a page. This gives
1024*1024*4096 or 4GB total Virtual Address (VA) space for
each process. In Windows OS, the 4GB of virtual address
space is divided into two halves: the first 2GB (from
0x80000000 to OXFFFFFFFF) is for the kernel address space,
and the second 2GB (from 0x00000000 to 0x7FFFFFFF) is for
the user address space. Thus, to calculate a kernel PA from a
given VA, we subtract 0x80000000. To translate a VA in a
certain process user address space to the corresponding
Physical Address (PA), we use the linear address translation
mechanism which requires the physical address of the PDT for
the given process.

Shadow Page Tables. The hypervisor introduces another
layer of address translation; the mapping of the guest physical
pages to the host physical pages. With Memory Management
Unit virtualization, the hypervisor constructs “shadow page
tables” that combine both the guest page tables and the
additional layer of page tables to directly map a guest linear
page to a host physical page on the hardware page table. As a
result, there are three memory layers: guest virtual memory,
guest physical memory, and host physical memory. As the
hypervisor mediates interactions between VMs and hardware,
the guest physical memory is controlled by the hypervisor
through the shadow page tables, and the hypervisor doesn’t
provide any direct control over the host physical memory even
for CloudSec.

B.  Implementation Details

We selected two important Windows kernel structures to
construct externally as a proof-of-concept for our prototype.
These two data structures are often a target for hackers to
install hooks, inject malicious code, or to hide malicious
processes. These kernel structures are:

1. EPROCESS Structures - by locating such structures in
physical memory pages, we can externally list all the
running processes including their details (e.g. name, 1D,
threads, loaded modules, Export/Import Address Tables,
Virtual ~ Address  Descriptors).  Monitoring  and
constructing processes without relying on the kernel
enables e.g. detecting hidden process, DLL injection and
EAT /IAT hooking.

2. KeServiceDescriptorTable Structure - this structure
references the System Service Dispatcher Table (SSDT)
that contains a list of the native kernel APIs and their
addresses, making it one of the central points of execution
flow control in the kernel. Monitoring this structure
externally without relying on the kernel enables detecting
any system-wide hook.

1) EPROCESS Blocks

Processes in Windows are represented in kernel address
space as executive process blocks called EPROCESS
structures. An EPROCESS structure contains detailed
information about a running process. For each running
process, there is a dedicated EPROCESS structure and all
EPROCESS blocks are structured in a doubly linked list called
ActiveProcessLinks, as shown in figure 2.
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Figure 2. EPROCESS doubly-linked list

Doubly-linked list means that each block has a Flink entry
that refers to the forward node in the doubly linked list and a
Blink entry that refers to the back node. Each node in the
doubly-linked list represents a running Windows process.
Getting the address of one EPROCESS structure enables
obtaining the rest of the running processes” EPROCESS
blocks through traversing the doubly-linked list.

EPROCESS structures are dynamic data objects; their
virtual addresses are assigned at run-time. The key challenge
here is how to get the addresses of the doubly-linked list nodes
taking into consideration that we can only read the VM’s
physical memory bytes. Our solution to getting the addresses
of the processes’ nodes is through recursive traversing for the
physical memory using specific global OS variables that
control the running processes list. In Windows OS, the first
loaded process is always the “System” process and it’s the first
node in the doubly-linked Ilist. The global variable
“PsActiveProcessHead”, points to the ActiveProcessLinks
address of the “System” process, as shown in Figure 2. Figure
3 shows key data structures and items with their offsets in the
EPROCESS structure that we have used to get process details,
and Figure 4 summarizes our algorithm for building the list of
the running processes and their details externally.
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Figure 3. EPROCESS key data structures and items.

The PsActiveProcessHead address is static in Windows
OSs and doesn’t change in run-time, and from the KSD (from
Microsoft Symbols) of XP SP3, its address is 0x805638b8.
Subtracting the offset of the ActiveProcessLinks member
(0x88) from the value pointed to by this address, gets the
“System” process’s EPROCESS VA. After translating this VA
to its PA and reading the corresponding physical memory
page, we can extract process details e.g. process name, ID,
threads, Page Frame Number database and Virtual Address
Descriptors from the EPROCESS structure according to the
KSD offsets of these members.

To build the process loaded modules (DLLs), we first get
the PEB structure VA (offset 0x1b0 in EPROCESS), and then
translate it to PA to read its physical memory page. From the
process PEB structure we extract the address of the
PEB LDR DATA data structure, using their corresponding
osffset. PEB_ LDR DATA contains pointers to doubly-linked
lists for the process loaded modules in different orders: load
order, memory order and initialization order. Each loaded
module is represented with a LDR_ DATA TABLE ENTRY
structure which is part of the modules doubly-linked list and
contains details e.g. module name, base address and size. To
determine the end of the modules list, we check the Flink of
current node against the address of the first module structure
in the list. If the two are equal, then we have got all of the
process loaded modules.

At this point, we have located the details of the first node
“System” process. To extract the rest of the running processes,
we traverse the doubly linked list of the ActiveProcessLinks
structure for the next node, and repeat the previous steps to
build the process details. To determine the end of the process
list, we check the Flink of each EPROCESS against the
address of PsActiveProcessHead. 1f they are equal, then the
current EPROCESS structure is the last process in the list.
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“OS Specific” Set Next = PSActiveProcessHead

Read EPROCESS memory page with
address value in the next pointer

Read Process Name
(offset 0x174)
Read PEB Struct Calculate
(offset Ox1BO0)

Read Process Page
Directory (offset 0x18)

PEB PA

Read PEB
Memory
Pages

Read LDR_DATA
address (offset
0x0C)

Read l{ Calculate
LDR_DATA LDR PA

Read Initial Flink
address (offset 0xOC)

Read LDR_DATA_TABLE_ENTRY

(Assembly Details)
No
Yes Read
Next

Read next
EPROCESS address

Flink
Next = No
PsActiveProcessHead
Yes

Figure 4. EPROCESS semantic gap construction.
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A drawback of listing the processes through the doubly
linked list is that this method becomes vulnerable to process
hiding rootkits that modify the Flink and Blink addresses to
hide a process. Mihir et al. [24] explore different techniques
for detecting hidden processes with their limitations and
drawbacks. They introduce a solution that is based on
monitoring the scheduled threads of the processes. The authors
also mention that their technique can be overcome by recent
rootkits that build their own scheduler. To solve this problem,
we update our process list whenever any creation or
termination for a process occurs. We achieve this by installing
memory access triggers on the physical memory page that
contains the SSDT, to monitor NtCreateProcess and
NtTerminateProcess functions that are exported by the SSDT.
Each of the SSDT functions has a unique system call number.
This number is loaded into the EAX register while the



processor initiates interruption to call a function from the
SSDT. We check the EAX register value within each memory
access to the SSDT physical page. If the EAX register holds
the system call number of one of those functions, then we
build our processes list again. If we find that a process does
not exist in the current process list but exists in the initial
process list, then we check the process ID, PDT and
ThreadListHead members of this process’s EPROCESS.
Those members can’t be changed during the process runtime
[25]. If these members are still available with the same values,
this indicates that the process has been hidden not terminated.

2) KeServiceDescriptorTable Structure

Figure 5 summarizes our algorithm for reconstructing the
SSDT table. The address of the SSDT kernel data structure
can be found within the Service Descriptor Table (SDT). The
SDT is referenced by the KeServiceDescriptorTable global
structure and its address is static in the Windows OS, thus we
can get its address from the appropriate KSD. The first
member of the SDT structure is the KiServiceTable (SSDT
address), and the third entry (offset 0xOc) is the number of
SSDT entries. To enumerate the SSDT entries, we traverse the
physical memory page that contains the SSDT address until
the number of read entries is equal to the value at the offset
0x0c. Reconstructing the SSDT, allows CloudSec to install
write-memory-access triggers on the SSDT page, to detect
SSDT hooking rootkits that target to install system-wide hooks
by modifying the SSDT.

Set KeServiceDescriptorTable Read SSDT table address
address (Offset 0x00)
Entry_offset = 0 Read SSDT table Read SSDT table entries
Entry_index = 0 Memory pages number (Offset 0x0C)
Read Entry » Entry_offset = Entry offset + 4
[i] address d Entry_Index = Entry_Index + 1

A

Yes EntryIndex =
No. of entries

Figure 5. KeServiceDescriptorTable reconstruction.

C. CloudSec Deployment

Our evaluation and implementation platform for CloudSec
is the Intel x86 family of microprocessors. The cloud platform
hardware consists of a HP Z400 — 2.8 GHz Intel® Xeon®
CPU (VT-x) with 6126 MB of RAM. This workstation runs
VMware ESX 4.1. The ESX server hosts three VMs, as shown
in figure 6. These machines were configured as follows:

— CloudSec VM; CloudSec VM is configured with 2 GB of
RAM and two virtual CPUs. CloudSec is a virtual
appliance running Ubuntu Linux 8.04 Server JeOS, and
hosts the vCompute APIs and our monitoring software.
Our monitoring software is a normal Linux C program
written using vCompute APIs and Posix Threads APIs to
support multi-threading , in order to enable monitoring
multiple VMs concurrently. CloudSec is isolated from
other server network workload in a separate virtual

network by creating a dedicated vSwitch in the ESX
hypervisor. CloudSec has a pre-defined network IP and
port to enable monitoring other hosted VMs.

— Monitored VMs; our prototype contained two hosted
VMs for validation purposes. The two VMs are each
allocated with 1.5 GB of RAM and two vCPUs running
Windows XP SP3 32-bit OS. The VMX files of these
VMs were configured to allow introspection by the
vCompute APIL.

A fourth VM was used for development purposes to write
and test our monitoring code. As CloudSec runs a JeOS, and
such OSes are GUl-less, we used an extra VM running
CentOS 5.5 for the purposes of programming.

vCompute APIs Backend

ESX 4.1 Hypervisor

Figure 6. The experimental setup lab.

V. EVALUATION

We used WinDbg from the Debugging Tools for Windows
[26] to validate that CloudSec bridges the semantic gap
successfully. We compared the external view of mapping the
introspected VM’s physical memory to Windows OS kernel
data structures using CloudSec, with the internal view of the
VM using WinDbg. CloudSec accurately gets high-level OS
information from outside a VM without installing any
monitoring code inside the target VM.
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77:70000| 4c68fa8c Aug 16 18:45:00 2010 |C:~WINDOWS\system32~RPCRT4 dll
77£20000| 43433476 Jun 25 18:25:26 2009 |C:~WINDOWS systen32~Secur32.dll .
77£10000| 43006fbs Ot 23 23:36:14 2008 |C~WINDOWS\systen32~GDI32 dll =
s _'l_l

Figure 7. Internal VM view for the running processes list using WinDbg.

CloudSec provides detailed information about the running
processes inside a hosted VM, from outside the VM. Figure 7
shows screenshots for the internal view for the running
processes using WinDbg. We have selected the csrss.exe for
the comparison, and other processes have been omitted for
brevity. The top screenshot shows the csrss.exe basic
information such as the virtual address of the EPROCESS,
PEB, and the DirBase (DTB). The bottom screenshot lists the
loaded DLLs for this process (six modules for brevity). Figure
8 shows the results of CloudSec external view of the
EPROCESS blocks, focusing on the details of a process at the



address 0x896a9020. After constructing the semantic
information we extracted the process name (csrss.exe), PDT
and loaded modules and other information. The comparison
shows that the results are identical in both the internal and
external view. The memory-loaded modules are also the same
with the same base address.

=l

|'— root@dhcp6-227:/usr/VMware/vmsarelib_sdk/samples

Fle Edit View Terminal Tabs Help

[0x8741ed8:VM1] |Process#:3
[0x8741ed8:VM1] |Process WA: 89639020
[0x8741ledB8:VM1] [ProcessName: c5rss.exe|
[0x8741ed8:VM1] Next Active Link VA: 893babT8
[0x8741edB:VM1] Next EProcess PA: 95ba67@
[0x8741ed8:VM1] PEB VA: 7TTd9000 PEE PA: 10452000
[0x8741ed8:VM1] [Process PDT Address : a@80060)] |
[0x8741edB8:VM1] LDR VA: 261e90 LDR PA: 10421e90 T
[8x8741ed8:VM1] FLink VA: 26lec8 FLink PA: 10421ec8
[0x8741ed8:VM1] |Base:7c900000 -- C:\WINDOWS\system32\ntdll.dll
[0x8741ed8:VM1] |Base:7cB800000 -- C:\WINDOWS\system32\kernel32.d11|
[0x8741ed8:VM1] |Base:77ddB0BO -- C:\WINDOWS\system32\ADVAPI3Z.d11|

C

C

[+]

Process PA: 9839028

[0x8741ed8:VM1] |Base:77e70000 -- C:\WINDOWS\system32\RPCRT4.dll
[0x8741ed8:VM1] |Base:77TefB00 -- C:A\WINDOWS\system32\Secur32.dll

-

Figure 8. External view of the running csrss.exe process using CloudSec.

Figure 9 shows screenshots of the internal and external view
of the SSDT using WinDbg and CloudSec respectively. The
top screenshot is the internal view, and the bottom is the
external view. This figure shows the top 10 entries in the
SSDT table for brevity. As mentioned before, each entry has a
unique number so entries are in order. By comparing the
addresses in the internal and external views, we found that our
interpretation for the physical memory pages to OS
information matched accurately. The SSDT address is the
same in both views, which is 0x80504480, and for example,
the first SSDT entry address in the two views is 0x805145f6,
which is the address of the NtComnectPort, because this
function system call index is 0. For the other entries, the
addresses of entries in both views are the same.

Command)- Local kernel - WinDbg:6.12.0002.633 X86 [EE)E)
1kd> d 80504480 ”~
20504480 |805245f6| nt |HtConnectPort+0=60

20504484 nt ! SedccessCheck+0=158

80504488 nt!SeduditingHardLlinkEvent=sWitl
2050448c nt!SedccessCheck+0218a

80504490 nt |SeduditingHardLinkEvent=sWitl
20504494 nt ! SebccessCheck+0=x1c0

80504498 nt | SeduditingHardLinkEventsWitl
8050449 nt |SeduditingHardLinkEventsWitlw
£ >

File Edit View Terminal Tabs Help

[0x80efed8:VM1] S55DT address = 805044804
[0x80efedB:VM1] Entry#(1)::
[0x80efedB:VM1] Entry#(2)::
[0x80efedB:VM1] Entry#(3)::
[0x80efedB:VM1] Entry#(4)::
[0x88efedB:VM1] Entry#(3)::
[0x80efedB:VM1] Entry#(6)::
[0x80efedB:VM1] Entry#(7)::
[0x80efedB:VM1] Entry#(8)::
[0x80efedB:VM1] Entry#(9)::

-

Figure 9. External and Internal memory views of SSDT.

VI. DISCUSSION

To date, nearly all VMI research had been based on the
Xen hypervisor. The Xen hypervisor itself is small
(approximately 100 KLOC) relative to other hypervisors.
However, Xen relies mainly on a Domain0 VM which is part
of the TCB. This results in a large footprint hypervisor,
increasing the possibilities of vulnerabilities and exploits that
can occur. VMware ESX has a smaller footprint than Xen
because the ESX hypervisor doesn’t depend on any external
components. VMI research that is based on the VMware ESX
environment is not seen much in research because the ESX
hypervisor is not open source like Xen.

Our experiments with CloudSec have shown that we can
get rich, high-level OS information about any kernel data
structure from outside the OS with no monitoring support
additions inside the VM. We can also get further information
about the kernel data structures, not just limited to the
structures used in our example implementation. CloudSec
detects data hooks rootkits e.g. SSDT hooking, process hiding
and DLL injection rootkits but does not currently apply any
defence mechanisms. We are extending CloudSec to provide
pre-emptive protection for hosted VMs from kernel and
memory rootkits, based on our architecture that has the ability
to reconstruct any kernel data structure with their running
instances.

CloudSec builds all the necessary information to bridge the
semantic gap and install monitoring triggers once a VM is
booted-up. The performance overhead of CloudSec depends
on the interception overheads of the vCompute APIs and the
amount of processing performed by our monitoring code.
VMsafe APIs (including vCompute) reduce performance
overhead because security inspections are processed in the
hypervisor kernel [27]. To calculate the elapsed time for
running our code, we called CloudSec code functions 1000
times and calculated the average time taken. Figure 10 shows
the elapsed CPU clocks and time in milliseconds (msecs) for
1000 iterations for both the EPROCESS and SSDT
construction and listing functions. Time is calculated by
dividing the CPU clocks for each function calls by the
CLOCK PER SEC (processor dependant variable). Listing
the processes (including processes details and loaded modules)
consumes about 0.96 msecs, and locating and reading the
SSDT table consumes 0.03 msecs. These results indicate that
the performance overhead is minor and thus enables real-time,
monitoring of kernel data structures. The normal boot-up time
for VMs hosted in our platform is 12 seconds, being the time
from the time we press power on until the OS is loaded.
CloudSec reads the SSDT entries before the OS is completely
loaded by 7 seconds. As the VM is powered on, CloudSec
queries the hypervisor to find out the version of the running
OS kernel, and starts locating and reading the SSDT. For
listing the running processes, CloudSec waits until processes
are loaded into memory. Once a process is loaded, CloudSec
reads the process immediately. These results show our
external extraction process is very lightweight.



|'— root@dhcp6-227:/usr/VMware/vmsarelib_sdk/samples
File Edit View Terminal Tabs Help

[0x8b45ed8:VM1] CLOCKS PER SEC = 10008000

[0xBb45edB:VM1] CPU Clocks (55DT),1000 Iterations = 30000
[6x8b45ed8:VM1] Duration in msecs (SSDT),1800 Iterations =
[8x8b45ed8:VM1] CPU Clocks (EPROCESS),1000 Iterations = 960000
[0x8b45ed8:VM1] Duration in msecs (EPROCESS),1le08 Iterations =

Figure 10. CloudSec Performance Overhead.

VIL

laaS cloud platform requires new virtualization-aware
security solutions that have the ability to externally monitor
and protect the hosted VMs externally. In this paper, we
presented CloudSec, a solution that provides active,
transparent and real-time security monitoring for multiple
concurrent VMs hosted on a cloud platform. CloudSec utilizes
VMI techniques to monitor the hosted VM's memory
externally, without installing any monitoring code inside the
hosted VMs. It then constructs an accurate external semantic
view of the VM’s kernel data structures instances from
hypervisor level. CloudSec is deployed as a virtual appliance
to enable reliable and secure deployment for the monitoring
software. We have implemented CloudSec on a VMware ESX
hypervisor using the vCompute API. Our experiments showed
that the constructed external memory view by CloudSec is
identical to the internal view of the hosted VMs’ kernel
structures. We have shown that the performance overhead of
traversing the physical memory to build the kernel data
structures is acceptably low to support real-time external VM
monitoring.

SUMMARY
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