
Architecture of a Micro-payment System for Thin-
client Web Applications

Xiaoling Dai
Department of Computer Science

 University of Auckland
Private Bag 92019, Auckland

New Zealand
xiaolingd@hotmail.com

John Grundy
Department of Electrical and Electronic Engineering

and Department of Computer Science
University of Auckland

Private Bag 92019, Auckland, New Zealand
john-g@cs.auckland.ac.nz

Abstract

Some web-based services need to be charged for on
a per-use basis, where each usage may be many
thousands or even millions per day. Micro-payment
is an approach to charging for web content
(typically) for situations with a small cost-per-
use/high use-frequency. We describe a prototype
architecture for a new micro-payment model,
called NetPay. We present an object-oriented
design and describe a prototype implementation of
NetPay for an on-line newspaper. We report on
initial evaluation results deploying our NetPay
prototype and outline directions for future research
in micro-payment implementations.
Keywords: electronic-commerce micro-payment
system, software architecture, electronic wallet

1. Introduction

Most current e-commerce systems adopt a
macro-payment model and architecture. A user
makes a small number of purchases which
have a reasonably high cost per purchase. In
order to pay for purchases, a “heavy weight”
interaction between the vendor of the product
or service and an authorisation agent (bank,
credit-card company etc) system is carried out.
This typically involves the user supplying
credit card details or “digital money”
certificates, which are communicated to the
authorisation system using complex
encryption algorithms. Business processing
logic and database updates are performed by
the authoriser before the purchase is approved.
The vendor system waits for approval before
providing the customer with goods or services.
This approach works well for relatively small
numbers of transactions and relatively high
purchase price (to offset the cost of
authorisation) [3]. In some e-commerce
scenarios this approach has a number of
fundamental flaws. It requires the

authorisation system to always be on-line.
High numbers of transactions or low-price
purchase items are infeasible, due to bottle-
necking or prohibitive cost per-transaction. In
addition, with some approaches the customer’s
identity can not generally be hidden from the
vendor.

We describe the NetPay micro-payment
model and architecture we have been
developing. NetPay provides an off-line
micro-payment model using light-weight
hashing-based encryption. A customer buys a
collection of “e-coins” using a macro-payment
from a broker. These coins are cached in an
“e-wallet” on the customer’s machine. The
customer, when buying many small-cost items
from a vendor, pays for these transparently by
the passing of e-coin information to the
vendor. Periodically the vendor redeems the e-
coins with the broker for “real” money. E-
coins can be transparently exchanged between
vendors when the customer moves to another
site. We describe the software architecture and
design we have developed for NetPay for
deployment with thin-client vendor interfaces
i.e. HTML and WML-based interfaces for
customers. We describe a prototype
implementation of NetPay using Java, Java
Server Pages, CORBA and Enterprise
JavaBeans. We comment on the performance
of this prototype and outline our further plans
for research and development.

2. Motivation

Assume a reader wants to browse an on-
line newspaper [3] Using subscription-based
payment, they would first have to subscribe to
the newspaper by supplying payment details
(credit card etc) and the newspaper system
would make an electronic debit to pay for their

jgrundy
2002 International Confertence on Internet Computing, 2002.

Customer

Read Article

Subscribe Make
Macropayment

Authorisation
System

Debit Coin

Get E-coins

Customer

Read Article
Redeem
Debits

Broker

<<uses>

(a) Typical macro-payment interaction model. (b) Possible micro-payment interaction model.

Figure 1. Two on-line newspaper interaction scenarios.

subscription by communicating with an
authorisation server. The user would then
normally go to the newspaper’s site where
they login with an assigned user name and
password. The newspaper looks up their
details and provides them access to the current
edition if their subscription is still current. If
the user’s subscription has run out, they must
renew this by authorising a payment from their
credit card. Figure 1 (a) outlines the key
interaction use cases for this scenario. Problems
with this approach are that there is no anonymity
for the user (the newspaper system knows exactly
who they are and when and what they read), they
can not browse other newspapers without first
subscribing to them too, and they must pay for the
whole newspaper, even if they want just one or
two sections or articles. These issues apply to
many other information sources on the internet
where vendors want to charge for content [1,6].

An alternative approach is a micro-
payment model. There are several approaches
to micro-payment [4,5,7,8,9] - we outline the
basic interactions of the NetPay model we
have developed. Figure 1 (b) outlines the key
interaction use cases for this scenario. The
user first goes to a broker and purchases “E-
coins” using a single macro-payment. These
are stored in an E-wallet on the user’s
machine. The user can then visit any
newspaper site they wish, their wallet giving
the site an E-coin. Each time they view an
article (or section or page, depending on the
item charged for) their E-coin is debited. The
vendor redeems debits with the broker (for
“real” money”) periodically e.g. each
night/week. The user can move to another site
and unspent money associated with their E-
coin is transferred from the first vendor to the
second. If coins run out, the user
communicates with the broker and authorises
another macro-payment debit. The standard
macropayment methods cannot be effectively

or efficiently applied for buying inexpensive
information goods, like single articles of an
on-line newspaper, because transaction costs
are too high [4,7]. Encryption mechanisms
used are slow and each transaction typically
“costs” a few cents. Macro-payment suits
spending small numbers of large amounts. An
Internet micropayment system would allow
spending large numbers of small amounts of
money at web sites in exchange for various
content or services, as in the E-newspaper
scenario above. The design of micro-payment
systems are usually quite different from
existing macro-payment systems, since
micropayment systems must be very simple,
secure, and efficient, with a very low cost per
transaction. This must also be taken into
consideration for transaction security: high
security leads to high costs and computation
time. For micropayments low security can be
applied.

3. Overview of NetPay

A Netpay micro-payment system includes
customers (e.g. newspaper readers), vendors
(e.g. on-line e-newspapers) and a broker. We
assume that the broker is honest and is trusted
by both the readers and the e-newspapers. The
micro-payments only involve readers and e-
newspapers, and the broker is responsible for
the registration of readers and for crediting the
e-newspaper’s account and debiting the
reader’s account. Figure 2 illustrates key
NetPay component interactions.

Initially a reader accesses the broker’s web
site to open an account and acquire a number
of e-coins from the broker (bought using a
single macro-payment). The broker sends an
“e-wallet” that includes the e-coin ID and e-
coins to the reader and the reader’s host caches
this information. The reader browses the home
page of the newspaper web site and finds a

Vendor 2

Open Account Payment for E-coins

Bank

Payment for
Redeeming Coins

Redeem E-coins

Buy E-coins

Store E-coins
in e-Wallet

Debit E-coin

Get Touchstone

<<uses>>

Broker

Reader

Visit Other
Newspaper/Site

Access newspaer
page

<<uses>>

Request Touchstone

Vendor 1

Figure 2. Basic NetPay component interactions.

desired news article to read. Each article will have
a small cost e.g. 5-10c, and the user would
typically read a number of these. When wishing to
read the details of an article, the reader clicks on
the article heading and the vendor system debits
the reader’s e-coins by e.g.. 10c. The vendor
verifies that the e-coin provided by the reader’s e-
wallet is valid by use of a “touchstone” obtained
once only from the broker. If the payment is valid
(coin is verified and sufficient credit remains), the
article is displayed on the screen. The reader may
browse other articles, their coins being debited
(the index of spent coins incremented) each time
an article is read. If coins run out, the reader is
directed to the broker’s site to buy more. When
the reader changes to another online newspaper
(or other kind of vendor using the same e-coin
broker currency), the new vendor site first
requests the current e-coin touchstone information
from previous vendor’s site. The new vendor
contacts the previous vendor to get the e-coin
touchstone and “spent coin” index and then debits
coins for to further news articles. At the end of
each day, the vendors all send the e-coins to the
broker redeeming them for real money (done by
macro-payment bank transfer from the broker to
vendor accounts).

The management of the security of e-coins
is one of key issues in micropayment systems.
Netpay uses a low-cost per transaction yet
high security method between customers and
vendors to secure the use of e-coins [2,3]. This
method adopts the passing of “touchstones”

used to verify the validity of an e-coin passed
to a vendor from a customer’s e-wallet. When
a customer first tries to spend an e-coin the
vendor communicates with the broker to
obtain a validating touchstone for the coin.
Each e-coin encodes a “payword chain” where
a fast hashing function gives the next valid
coin in the chain each time a coin is spent. An
index associated with each e-coin indicates the
amount spent so far. When a customer moves
to another vendor site, the new vendor obtains
the touchstone value and index from the
previous vendor. The transfer of e-coins from
broker to customer is secured by public key
encryption. The index value associated with
the coin is used to prevent customer from
double spending, vendor from over-debiting
and ensures no conflicts between vendors [2].
The vendor does not know the identify of the
customer at any stage, preserving their
anonymity. In Netpay, the customer needs to
contact the broker to buy e-coins only when
his e-coins run out and it is a full off-line
system.

The Netpay system allows customers to
purchase high-volume, low-cost per item
information from vendors on the web without
involving the broker in every transaction. The
number of expensive public-key operations
required per payment are minimised by using
fast hash function operations to get the next
payword chain coin, in order to minimise the
transaction overhead [2,3].

Customer PCs

Browser+EWallet

HTTP

SQL DB Server

Vendor1

SQL DB Server

Vendor2

HTTP

HTTPS
 HTTP Server Staff PCs

SQL DB Server

Broker

Application
Server

SQL

SQL

SQL

 J2EE Server

 EJB container

 Web Container

SQL
CORBA

CORBA

CORBA

 HTTP Server

Application
Server

socket

Authorisation

Bank

CORBA

Figure 3. Basic NeyPay software architecture.

Customers are prevented from double
spending as the index of the payword chain
indicates the balance of the customer’s e-
wallet, and the hashing function can be used to
verify the index from the touchstone. NetPay
allows customers to move transparently from
one vendor site to another, with a single e-coin
touchstone and index transfer between
vendors.

4. Netpay Architecture

We have developed a software architecture
for implementing NetPay-based micro-
payment systems for thin-client web
applications. Netpay micropayment
transactions involve three key parties: the
Broker Server, the Vendor Server, and the
Customer browser. This architecture is
illustrated in Figure 3.

The Broker provides a database holding all
customer and vendor account information,
generated coins and payments, redeemed coins
and macro-payments made (buying coins and
redeeming money to vendors). The Broker
application server provides a set of CORBA
interfaces vendor application servers
communicate with to request touchstones and
redeem e-coins. This server also
communicates with one or more bank servers
to authorise macro-payments (customer

buying coins or broker paying vendors when
redeeming spent coins). The Broker web
server provides a point of access for customers
to buy e-coins and check their e-wallet
balances and transaction history.

The customer runs a web browser that
accesses the broker and vendor servers, and
may also contain an e-wallet implemented by
the use of an Applet or Active-X object. In our
current NetPay prototype we use two other
kinds of e-wallet - one held server-side and
one held client-side. The client-side e-wallet is
an application running on the client PC
holding e-coin information. The server-side e-
wallet resides on the vendor server and is
transferred from the broker to each vendor in
turn the customer is buying content from.
When buying e-coins the Broker’s application
server updates the customer’s e-wallet (cached
e-coin information). When purchasing
information using micro-payment, the
vendor’s web server accesses e-coin
information using the customer’s e-wallet.

The vendor sites provide a web server and
possibly a separate application server,
depending on the web system architecture they
use. The Vendor web server pages providing
content that needs to be paid for access the
customers’ e-wallets to obtain e-coins to
decrement.

 (1)
(2)

(3)

Figure 4. Customer purchasing E-coins from Broker.

The Vendor application server accesses the
Broker application server via CORBA to
obtain touchstone information to verify the
e-coins being spent and to redeem spent e-
coins. They communicate with other vendor
application servers to pass on e-coin indexes
and touchstones via a CORBA interface.
Vendors may use quite different architectures.
In the example above, Vendor #1 uses a web
server, custom application server and
relational database. Vendor #2 uses a J2EE-
based architecture with J2EE server providing
Java Server Pages (web services) and
Enterprise Java Beans (application server
services), along with a relational database to
hold vendor data.

5. NetPay Implementation

5.1 Broker

The broker manages customer and vendor
accounts, e-coin creation and spend
redemption, touchstone supply for e-coin
verification, and macro-payment handling for
e-coin purchase by customers and payment to
vendors for spent e-coins. Our current broker
implementation provides a database holding
this information, an application server
providing these business functions, a CORBA
interface for vendor application servers and a
JSP-implemented HTML interface for
customers.

The CORBA interface allows vendor
systems to request e-coin touchstone
information (allowing vendors to verify a
customer’s e-coins) and redeeming of coins
spent at the vendor by customers. We chose to
use CORBA to provide a platform and
language-independent interface supporting a
wide range of possible vendor implementation
technologies. The HTML interface used by
customers to purchase e-coins is shown in
Figure 4. The customer can register and create
or maintain their account information (1).
When needing to buy some e-coins, the
customer authorises macro-payment by the
broker (2) debiting the customer’s supplied
credit card to pay for the coins (3).

5.2 Customer

We chose to use a thin-client technology to
implement our customer clients – HTML
browsers. This allows for a very wide range
of customers using standard web browser
software, without the need for separate
installation of browsing and micro-payment
clients. When the customer first goes to the
broker and purchases e-coins, the broker’s
Java Server Pages providing the customers’
account management web pages set the e-
wallet in server-side or client-side storing the
bought coins. This forms the customer’s “e-
wallet” as illustrated in Figure 5.

VendorAppServer

EWallet

ECoinInfo
ecoinID : String
paywordChain : String

getECoins()

0..*0..*

CustomerBrower

gotoURL()
getEWallet()

BrokerJSPs

login()
register()
updateAccount()
buyCoins()
checkBalances()

<<uses>>

Bank

macroPayment()
VendorJSPs

search()
browseSite(
)

<<uses>>
CORBA

BrokerAppServer

maintainCustomer()
maintainCoins()
maintainAccounts()
getTouchstoneIndex(
)

buy coins/redeem coins

VendorAppServer

payForArticle()
verifyECoins()
redeemSpending()
getTouchstoneIndex(

getTouchstoneIndex()

<<uses>>

<<uses>>

Figure 5. Customer, broker and vendor key design features.

(1)

(2)

Figure 6. Customer spending E-coins at an E-newspaper site.

Client-side e-wallets are hosted on the
customer PC and are an application that stores
e-coin information for debit by vendor servers
and credit by the broker server. A server-side
e-wallet is held on the vendor server the
customer is currently buying content from. E-
coin information is passed onto a new vendor
when the customer moves to that vendor site
and makes their first micro-payment purchase.

5.3 Vendor

Vendors provide a set of pages
implementing on on-line service provider e.g.
in our scenario, an e-newspaper. The vendor
Java Server Pages not only provide searching,
browsing and newspaper content for the
customer, but also indicate article cost, as
shown in Figure 6 (1). After reading an article,
the vendor Java Server Pages indicate the
amount of e-coins redeemable at this vendor
are left in the customer’s e-wallet (2). When
the customer first tries to read an article, the
vendor obtains the validating touchstone and
index from the broker, in order to verify that
the e-coins are valid [2]. When moving to
another vendor, the touchstone and current
index value of the e-coins are obtained from
the previous vendor via the vendor’s CORBA
interface.

The vendor application server can be
implemented using various technologies. We
have built vendors using Java Server Pages
and are currently building NetPay vendor
Enterprise JavaBeans to provide plug-in
vendor micro-payment support components.

6. Summary

We have developed a prototype
architecture to support an efficient, secure and
anonymous micro-payment system. This
incorporates a broker used to generate, verify
and redeem e-coins, a customer e-wallet stored
either client or server-side, and vendor
application server components. Our NetPay
architecture provides for both secure and high
transaction volume per item by using fast
hashing functions to validate e-coin unspent
indexes. NetPay is an off-line protocol
allowing the vendors to interact only with
customers after initial coin validation. We are
currently building EJB-based components for
vendors to provide plug-and-play micro-

payment support. We are investigating XML-
based interaction between vendors and the
broker using web services to provide a further
abstracted communication mechanism and to
support multiple brokers. We hope to explore
further generalisation of our architecture for a
wider range of E-commerce components.

References

[1] D. Blankenhorn, “Charging for Content,

E-commerce Times”,
http://www.ecommercetimes.com/perl/stor
y/306.html.

[2] X. Dai, and B. Lo, “NetPay – An Efficient
Protocol for Micropayments on the
WWW”, Fifth Australian World Wide
Web Conference, Australia, 1999.

[3] X. Dai, J. Grundy, and B. Lo,
“Comparing and contrasting micro-payment
models for E-commerce systems”,
International Conferences of Info-tech and
Info-net (ICII), China, 2001.

[4] A. Furche and G. Wrightson, “SubScrip –
An efficient protocol for pay-per-view
payments on the Internet”, The 5th Annual
International Conference on Computer
Communications and Networks, USA,
1996.

[5] A. Herzberg, and H. Yochai, "Mini-pay:
Charging per Click on the Web", 1996.
http://www.ibm.net.il/ibm_il/int-lab/mpay

[6] A. Herzberg, "Safeguarding Digital Library
Contents - Charging for Online Content",
D-Lib Magazine, January 1998, ISSN
1082-9873.

[7] M-S. Hwang, I-C. Lin, L-H. Li, “A simple
micro-payment scheme”, Journal of
Systems & Software, vol.55, no.3, Jan.
2001, Elsevier, pp.221-9.

[8] M. Manasse, "The Millicent Protocols for
Electronic Commerce", First USENIX
Workshop on Electronic Commerce, New
York, 1995.

[9] R. Rivest, and A. Shamir, "PayWord and
MicroMint: Two Simple Micropayment
Schemes", Proceedings of 1996
International Workshop on Security
Protocols, Lecture Notes in Computer
Science v. 1189, page 69-87. Springer,
1997.

