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Abstract-It is almost impossible to prove that a given software 
system achieves an absolute security level. This becomes more 
complicated when addressing multi-tenant cloud-based SaaS 
applications. Developing practical security properties and metrics 
to monitor, verify, and assess the behavior of such software systems 
is a feasible alternative to such problem. However, existing efforts 
focus either on verifying security properties or security metrics but 
not both. Moreover, they are either hard to adopt, in terms of 
usability, or require design-time preparation to support monitoring 
of such security metrics and properties which is not feasible for 
SaaS applications. In this paper, we introduce, to the best of our 
knowledge, the first unified monitoring platform that enables SaaS 
application tenants to specify, at run-time, security metrics and 
properties without design-time preparation and hence increases 
tenants’ trust of their cloud-assets security. The platform 
automatically converts security metrics and properties 
specifications into security probes and integrates them with the 
target SaaS application at run-time. Probes-generated 
measurements are fed into an analysis component that verifies the 
specified properties and calculates security metrics’ values using 
aggregation functions. This is then reported to SaaS tenants and 
cloud platform security engineers. We evaluated our platform 
expressiveness and usability, soundness, and performance 
overhead. 

Keywords--Security monitoring, security metrics, run-time 
verification, Cloud computing monitoring 

I. INTRODUCTION 
The outsourcing of enterprise IT systems for hosting on 

third-party platforms e.g. cloud computing, either using 
Software-as-a-Service (SaaS) or Infrastructure-as-a-Service 
(IaaS) service delivery models, improves resources availability 
and accessibility at a manageable cost [1]. On the other hand, it 
increases customers’ concerns about the security of their cloud-
outsourced assets. The loss-of-control is a key security problem 
in adopting the cloud computing model where tenants do not 
have control on their outsourced assets hosted on the cloud. 
Enabling cloud tenants to monitor the security status and 
behavior of their cloud-hosted assets is a key enabler to improve 
tenants’ trust and confidence in the cloud computing model. Of 
course design-time security analysis techniques are helpful, but 

usually not sufficient especially with the cloud computing model 
where SaaS application tenants, and their security requirements, 
are not known until run-time. Monitoring SaaS applications’ 
security (mainly shared application instance model) can help in 
verifying system security properties (usually expressed as 
security policies) [2-4], discovering and reporting any violations 
of security requirements [5, 6], adapting system behavior and 
structure based on current context [7], or through proactive or 
corrective actions [8]. Assessing software systems security is 
usually formulated as a set of: (i) security properties, constraints 
or policies to be checked or enforced  - e.g. only authenticated 
users can access resource X; and (ii) security metrics to be 
collected for the sake of security management and improvement 
- e.g. the ratio of system unauthenticated requests. Any increase 
in unauthenticated requests rate may imply that the system is 
probably under attack.  

Software security monitoring platforms are usually designed 
with three components: security property and/or metric 
specification language, software instrumentation/profiling 
component (observing system behavior externally or using 
instrumentation), and security measurements’ analysis (and may 
be reaction) component. Existing security monitoring efforts 
focus either on security properties or security metrics to be 
assessed, but not both. Property-based security monitoring 
efforts, usually referred to as run-time verification, focus on 
monitoring system security behavior to detect violations in the 
defined security properties or policies for security, reliability, 
etc. This includes MOP [9], MaC, Land JPaX[10], LARVA 
[11]. These efforts depend on adoption of formal languages in 
specifying run-time system (or security) properties. A key 
problem with many is that they do not support parametric 
properties i.e. a property that depends on parameters to decide 
what traces to consider in the analysis phase. MOP, one of the 
most active research approach, has been extended to overcome 
such limitations [12]. Dynamic security enforcement also has 
relevant efforts such as Polymer [13] SPoX [14] and in-lined-
security policy enforcement efforts [15]. These efforts focus on 
monitoring system behavior and intercepting calls to relevant 
actions to enforce user-defined policies. MOP has been also 
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extended with a run-time security policy enforcement extension 
[16]. Using such formal specification languages complicates the 
adoption of such efforts by either security experts or software 
engineers. Most existing efforts assume that the system is to be 
assessed by software providers who are expected to have 
experience with formal languages such as linear temporal logic 
(LTL) [17], regular expressions (RE), context free grammar 
(CFG), or event calculus (EC) [5, 18, 19].  

Metrics-based security monitoring efforts focus on 
providing frameworks that help in conducting security metrics 
development and analysis processes [20-24]. Using such 
approaches usually requires deep involvement of security 
experts and also tends to be both time-consuming and error 
prone. A key problem with these metrics-related efforts is the 
lack of automation. This is because they depend on informal 
metrics’ definitions. Thus, security experts should get involved 
in developing/customizing monitoring tools. 

Analysing efforts in both metric-based & property-based 
security monitoring areas we concluded that the formality, 
familiarity, abstraction, and extensibility of the language used in 
developing security properties and metrics are key issues. These 
factors are very important when addressing security monitoring 
of cloud-based SaaS applications from cloud tenants perspective 
(small experience/knowledge of the application). Moreover, to 
the best of our knowledge, there is no approach that supports 
monitoring and analysing both security properties and metrics 
for neither traditional software systems nor SaaS applications. 
We have formulated these issues into three key research 
questions that we address in this research: 

• What details do we need to capture to fully describe a given 
security property or metric? 

• How can we define formal signatures of such security 
metrics or properties using a familiar and relatively easy to 
use specification language for SaaS application tenants? 

• How can we effectively use such formal specifications in 
automating the security monitoring process? 
 
In this paper, we introduce a new, unified SaaS security 

monitoring approach based on capturing different SaaS tenants’ 
security metrics and properties (policies) to be monitored as 
object constraint language (OCL) expressions [25]. Security 
properties and metrics defined in OCL expressions are used in 
automating the next two main security monitoring tasks: 
generation of security probes to be deployed with the monitored 
system to collect necessary measurements/events/traces; and 
generation of the security analysis programs that will be used in 
analyzing reported measurements. The analysis (checking) could 

work asynchronously (offline analysis) or synchronously (online 
analysis). We have evaluated our approach in capturing 
different metrics and properties, collecting and analysing 
measures, and its performance overhead.  

In section II we introduce our unified monitoring platform 
and provide a usage example. In Section III we describe key 
platform architecture and implementation details. In Section IV 
we present our evaluation results and in Section V we 
summarise key contributions. 

II. UNIFIED SECURITY MONITORING 
In our previous work we introduced a signature-based static 

security analysis approach [26, 27]. We used OCL to capture 
static security threat and vulnerability signatures. These 
signatures are automatically transformed into security analysis 
programs that checks program source code and identify matches 
to the input OCL signatures. We also introduced a run-time 
security engineering approach (MDSE@R) [28, 29] that helps in 
enforcing different cloud SaaS application tenants’ security 
requirements at run-time without modifying the target service 
source code using aspect-oriented programming (AOP). In our 
security monitoring approach, described here, we extend our 
signature-based static vulnerability analysis approach to support 
defining and analyzing system behavior properties and metrics. 
We reuse our MDSE@R approach to deploy these security 
probes within target system entities at run-time using dynamic 
Aspect-oriented Programming - AOP.  

The details of what to capture to fully describe a security 
property or metric are encapsulated in a comprehensive security 
property/metric definition schema. A key entry in this schema is 
the property/metric signature, which we write using OCL. 
Security monitors are externalized from the target application(s), 
such that the application and security monitors could be easily 
changed the need of customizations – i.e. outline monitoring 
instead of inline monitoring. Reported measurements are 
stamped with tenant ID. Thus, we can discriminate between 
measurements reported for different tenants in case of shared, 
multi-tenant SaaS applications. In the next subsections we 
introduce our security metric/property definition schema, 
metric/property specification language, and the realization 
platform. 

A. Security Metric/Property Definition Schema 
We analyzed the key attributes used in defining security 

metrics or properties in existing efforts, and developed a security 
metric definition schema covering all such attributes, as shown 
in Fig. 1. Our security metric schema contains: 



 

 

 
Fig. 1. Our security metric definition schema 

 
Fig. 2. OCL signature interface showing Authentic Requests Metric 

 

Fig. 3. A part of our system description meta-model 

Property/metric ID: every security monitoring property or 
metric has a reference ID that identifies and links collected 
measurements. It also helps in uninstalling security probes 
whenever the metric/property is no longer needed. Metric ID 
includes tenant ID plus a string of alphanumeric characters. 
Metric Category: used in categorizing security metrics and 
properties into operational, management, static, dynamic 
metrics/properties for reporting purposes. Related Objectives: 
each security metric/ property could be linked to one or more of 
the tenant’s security objectives that have been refined into a set 
of security metrics and properties. Related Systems: the target 
software system(s) in case we have multiple systems in the 
operational environment (hosted on the same platform). 
Signature: the security metric or property signature specifies the 
metric formula, property, rule, or expression to be evaluated, 
more details in the next section. Attributes: a list of relevant 
attributes to be enclosed in generated measurements e.g. target 
object, method name, arguments, return value, metric Id, 
timestamp, user identity. Frequency: each security metric 
definition includes the measurement frequency required. This 
may be every X-hours, X-days, X-weeks, X-months, and so on. 
The results collected by the security monitoring probes are 
grouped, evaluated, and consolidated (using metric signature) in 
a security status report to the security metric owner. Minimum-
Maximum Values: each security metric has minimum and 
maximum values that define the valid boundaries of the security 
metric value. Whenever the security metric becomes below the 
minimum value or above the maximum value, security alerts 
should be reported to the security metric owner. Corrective 
Actions: a set of actions to be fired automatically when a 

violation is reported. In our previous work we showed how these 
actions are defined as changes to the software security model 
[30]. 

B. Security Metric/Property Signature Specification 
We use Object Constraint Language (OCL) as a well-

known, extensible, and semi-formal language to specify 
semantic security properties and metrics’ signatures. To 
understand how OCL helps in developing security metrics and 
properties to be monitored we discuss few facts about OCL and 
compare it with other frequently used formal security property 
specification languages. First, OCL has four different collection 
types including set (no duplication of elements, no order), bag 
(duplicate, no order), ordered set (no duplicate, ordered), and 
sequence (duplicate, ordered). This is supported with a set of 
aggregation functions – e.g. maximum, minimum, average, 
variance, etc. that are frequently used in defining security 
metrics. OCL supports defining functions and procedures to be 
used in developing more complicated expressions. Moreover, it 
also supports declaring variables, and control statements 
(conditions and loops). 

LTL and Event Calculus (EC) languages (two key 
languages in run-time verification domain) depend on defining a 
sequence of system events that the system should follow or that 
should not happen at all. To help OCL to support defining 
properties over a sequence of event, each generated 
measurement by our approach has a timestamp and all 
properties’ related system measurements are maintained in 
ordered set based on reporting time. This helps in specifying 
sequences and time-related properties. The LTL language 
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depends on four main operators: always, until, next, and 
eventually. We can express similar operations in OCL using: for 
all, control statements, last, and exists operations. Event 
Calculus is based on events/actions and fluents (variables). EC 
defines a set of predicates that help in defining expected system 
behavior to be verified including: HoldsAt, Initiates, Terminates, 
and Happens operations. OCL supports defining such predicates 
that evaluate the occurrence of certain events as base 
expressions that can be reused in expressing and assessing 
complex expressions. We give examples of possible derived 
security metrics and compound predicates later. 

However, OCL suffers from ambiguity problems. To 
support specifying valid OCL-based metrics/properties 
signatures, we have developed a system-description meta-model, 
as shown in Fig. 3. This model captures key concepts 
(semantics) in object-oriented systems including components, 
deployment package, hosting services (web server), classes, 
instances, inputs, input sources, output, output targets, methods, 
method body. We also use it to capture key security mechanisms 
such as: authentication, authorization, audit controls, etc. Each 
entity has a set of attributes, such as component name, provider, 
platform used, class name, method name, accessibility, variable 
name, variable type, method call, etc. This model captures static 
system attributes, and is used as a reference to develop 
signatures as discussed in Section IV.  

To capture dynamic system attributes, we extended each 
system entity in this meta-model (application, components, 
classes, methods, properties, and security controls) with two 
concepts: Request – in run-time verification domain to capture 
before events; and Response – in run-time verification domain to 
capture after events. The details involved with such concepts 
change according to the system entity - i.e. it change from 
component to class down to method. Moreover, these attributes 
can be extended as needed. Similarly, the system description 
meta-model can be extended to include new concepts in metric 
definition and analysis.  

Fig. 2 shows a snapshot from our tool where tenants specify 
their metrics’ signatures. In this figure we show a signature of 
“authentic requests ratio” metric. This metric has been defined to 
measure the ratio of invalid authentication requests 
(authentication control response said that it is not valid) divided 
by the total number of requests received by the security 
authentication control. Any increase in this ratio reflects the 
possibility of being under attack to break the application-
operated authentication control. Several example metric and 
property signatures are given in the Evaluation section below. 
The authentication control, and its attributes, is an abstract 
concept (model entity), software engineers will need to define 
the actual control – i.e. the actual security authorization function 
or API – in the application platform profile. A platform profile is 
an optional XML configuration file per service used to define a 
mapping between abstract model concepts that we cannot extract 

from code (if the code is available, such as security functions). 
This platform profile is used to define the actual system entities 
we need to intercept for security monitoring. The reason to 
introduce a platform configuration file is to that tenants do not 
know whether the system uses pre-defined security libraries 
(e.g. .Net Membership) or custom security libraries. Software 
engineers, because they know the system, can avoid this profile 
by defining special method calls (for a security control) as a 
basic metric and reuse the metric in composite metrics. 

C. Security Monitoring Platform 
After formalizing security metrics and properties signatures 

using OCL, we need to extract security probes, deploy them 
within the software, collect measurements generated by these 
probes, analyse these measures, and either trigger correction 
action or consolidate results into status report. The architecture 
of our security monitoring platform is shown in Fig. 4 as 
discussed below.  
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Fig. 4. Our security monitoring platform 

Probe Manager (Step 1): once a security metric or 
property is added or updated in the repository, the security probe 
manager does the following: (i) Triggers the probe generator 
component to generate necessary security probes with 
corresponding attributes; (ii) Deploys the generated security 
probes within the system using the system wrapper component 
and remove deployed probes if the metric is no longer required; 
and (iii) Adds a new entry in the metrics analysis timer service 
according to the metric specified frequency. The analysis service 
analyzes new measurements and notifies the reporting service. 

Probe Generator (Step 2): the main responsibility of the 
probe generator is to extract security probes from a given metric 
definition. The probe generator needs to extract: entities to 
monitor, and attributes to collect. The list of entities to be 
monitored is extracted from parsing the OCL abstract syntax tree 
(AST). This list is passed to the system wrapper to add 
interceptors to the system using AOP. The defined metric 
attributes are used to generate a measurement class that extracts 
actual values from the system wrapper (interceptor) at 



 

 

request/response interception time and send these measures to 
the monitoring platform – e.g. Given an OCL signature such as 
“self.AuthenitcationControl.Request…”, this results in a security 
probe that intercepts requests to the system authentication 
control, Another example “…Method.Name=’login’… ”, we 
generate a probe to intercept requests to login method in a 
selected class. A probe for a method request will report 
measurement with: metric Id, tenant Id, timestamp, method 
name, arguments, and target object. A measurement for a 
method response will have: metric Id, tenant Id, timestamp, 
method name, arguments, target object, and return value. 

System Wrapper (Step 3): the system wrapper is 
responsible for injecting interceptors (using dynamic aspect-
oriented programming - AOP) within the target system/service at 
run-time at the critical points (system entities that have security 
properties or metrics defined on them). The system wrapper 
supports two modes of interception: synchronous where the 
system is intercepted and put on hold until the security analysis 
service confirmation (active monitoring tasks, such as intrusion 
prevention systems or application firewalls). This is usually used 
to handle security properties that should be verified at run-time; 
or asynchronous to reduce performance overhead (passive 
monitoring). We use this model with security metrics. The 
system wrapper that we have implemented currently supports 
intercepting requests at the system level, component level, and 
method level, which is adequate for the goal of security 
monitoring and analysis [31, 32]. 

Measures Analysis Service (Step 4): the analysis service 
parses the specified security property or metric signature 
developed in OCL and generates a C# analysis class. These 
security analysis classes deployed within the analysis service 
and loaded at run-time. Then, according to the metric frequency, 
these classes get executed. These security analysis classes check 
the measurements collected looking for violations. Fig. 6 shows 
an example of analysis class generated from the specified metric 
in Fig. 2. The code simply counts how many measurements 
collected for authentic requests metric where the authentication 
control return invalid authentication compared with the total 
number of requests. The output of the analysis service is sent to 
the repository for further use by other metrics (derived metrics, 
to discuss later), and for historical analysis. 

Reporting Service (Step 5): takes the aggregated results 
stored in the repository for the target system and tenant and 
provides a set of visualizations for tenant security engineers. 
Currently a set of tabular and chart visualizations are supported 
and accessed via a web page, as shown in Fig. 5. This figure 
shows the metrics’ values for two different metrics and the trend 
of such metrics. This is helpfully to understand how and when 
the system behavior changes. Security experts will have to 
investigate in root causes of such changes. We are extending the 
reporting service with a visual designer to help designing how 
metrics will be visualized [33]. 

Tenants can define a set of mitigation or recovery actions to 
automatically apply in case of security property/metric violation. 
Currently, we support injection of security controls at run-time 
at the critical points (source of violations) through virtual 
patching using MDSE@R [30]. 

 

Fig. 5. Example of our metrics analysis user interface 

 
Fig. 6. C# code generated from metric signature in Fig. 2 

III. IMPLEMENTATION 
We briefly describe key implementation details of our 

automated, unified security monitoring and analysis tool. First, 
we developed a UI component to assist security experts in 
developing their security metrics definitions and signatures 
using OCL. This provides security metric specification and 
signature editing including checking validity of OCL 
expressions and testing of specifications on sample 
measurements. We use an existing OCL parser [34] to parse and 
validate signatures against our system description model. Once 
validated, the metric definition is stored in the repository.  

Second, we refined an existing OCL-to-C# translator library 
to transform the developed metrics’ signatures into C# analysis 
classes. Each class has a single static method that accesses the 



 

 

metrics’ and measurement repository and applies the C# code on 
these measurements. An example of such generated C# code is 
shown in Fig. 6.  

Third, we developed a probe generator library that analyses 
the OCL expressions and extracts the list of entities to monitor. 
We then generate a probe class that simply copies data from the 
system execution context to the class data members – e.g. copy 
the current user id to the UserID measurement attribute, copy 
method inputs to the measurement method input attributes, etc. 
The default measurement attributes (Metric ID, timestamp, etc.) 
are set with defaults. These results are sent back to the analysis 
service. 

Fourth, we developed a system wrapper to help in injecting 
security probes at the critical system entities. To support run-
time system interception, our platform combines both 
dependency injection and dynamic-weaving AOP approaches. 
The system wrapper supports wrapping of both new 
developments and existing systems. For new development, we 
use the Microsoft Unity application block delivered by 
Microsoft PnP team to support intercepting any arbitrary system 
entity. Unity supports dynamic run-time injection of interceptors 
on methods, attributes and class constructors using system 
configurations. For existing systems we adopted Yiihaw AOP 
tool to modify application binaries (dll and exe files) by adding 
aspects at any arbitrary system entity. In the latter case, we add a 
direct call to our system wrapper. The system wrapper is 
updated with deployed probes. At a given request for a given 
tenant, it triggers tenant metric/property probe object. 

IV. EVALUATION 
In this section we summarize our evaluation experiments we 

performed to assess the capabilities of our approach in defining, 
generating, deploying, collecting measures, and analyzing 
security metrics/properties details. We defined three key 
objectives to address in our evaluation: (i) Approach 
expressiveness by developing a range of security metrics and 
properties, as shown in Table 2, and comparing the 
expressiveness of our OCL-based specifications to other 
formalisms; (ii) Approach soundness applied on example multi-
tenant SaaS application; and (iii) performance overhead. 

A. Approach Expressiveness 
The expressiveness and usability evaluation experiments of 

our specification language covered capturing definitions of 
security metrics and properties ranging from simple condition 
and counting of raw measures up to complicated security metrics 
and properties that incorporate results from other properties. To 
the best of our knowledge, there is no benchmark of security 
properties and metrics (we found a new project led by OWASP 
[35] to come up with critical security metrics in assessing web 
software systems, but it is still in the inception phase). To 
overcome this problem, we did two exercises: (i) a comparative 

analysis of our OCL-based approach against existing 
specification languages; and (ii) used our approach to define a 
set of security properties introduced in different research papers.  

Comparative Analysis. We compared our approach against 
Event Calculus with different extensions as explained in [36], 
PMSL (performance metrics specification language) [37], and 
GMSL (Goanna Metric Specification Language) [38]. EC-
Assertions [36], a first-order predicate calculus that is used to 
develop formal specifications and in reasoning about system 
properties that could be specified in terms of a set of events and 
their effects where the occurrence of these events impacts the 
satisfaction of these system properties. Performance Metric 
Specification Language (PMSL) [37, 39] was developed to 
capture high-level user-defined parallel-systems performance 
metrics. Metrics expressed in the PMSL are fed in the G-PM 
performance analysis tool. PMSL is a declarative functional 
language. PMSL does not include control flow or state altering 
constructs. The PMSL provides a couple of set operations and 
aggregation functions. The list of measurable objects to be 
monitored is limited to a predefined list. GMSL [38], the 
Goanna Metric Specification Language, was developed to assess 
program source code quality using a set of user-defined source 
code metrics assessed using model-checking.  
TABLE 1 . Comparison of metric/property specification languguages 

Criteria EC OCL* PMSL GMSL 

Applications Reasoning / 
verification 
of sys. 
Props.  

Assessing 
system 
properties 
& metrics  

Parallel 
systems 
performance 
metrics 

Static 
program 
quality 
metrics 

Key Features  Events, 
properties, 
relations 

Declarative, 
properties, 
relations & 
set fns 

Declarative, 
Built-in 
attributes, 
metrics & fns. 

Declarative, 
built-in code 
analysis 
functions. 

Operators ü* ü û û 

Quantifiers ü* ü ü ü 

Temporal 
Events 

ü* ü ü û 

Pre-cond ü* ü ü ü 

Post-cond û ü û û 

Complexity û ü ü ü 

Extensibility û ü û û 

Domain 
Specific  

ü° ü l l 

Limitations No 
aggregation 
or historical 
Fns  

A bit 
lengthy 
compared 
to LTL. 

No control 
flow, no 
alterable state 

Work on 
codebase 
AST only 

û: not supported          ü: supported       ü* supported as a language extension 

l support one domain         ü° Require user involvement 
 



 

 

Table 1 summarizes the comparison we did between these 
languages and our OCL-based approach. The criteria we used 
include: possible applications of the language, supported 
features, limitations, supporting specification of Boolean logic 
expressions, logic quantifiers, temporal events, pre-conditions 
and post-conditions, complexity of the language from the user 
perspective, is domain specific, and extensibility to user defined 
metrics/properties. We selected these criteria because they 
represent the key constructs in defining most of the 
properties/metrics. Table 1 illustrates that using these assessment 
criteria, our new OCL-based language is more rich and 
expressive in developing different types of metrics than the 
compared approaches. OCL can help in capturing system 
properties in design models [26] and source code level [40], and 
now dynamic properties and metrics. OCL is based on set 
theory. It supports development of boolean expressions using 
and/or operators. The original design of OCL targeted 
development of pre and post constraints/properties, easy to 
extend with new domain concepts as we did in our language 
using our meta-model, supports different aggregation functions, 
which are useful in metrics specification. 

Specification of Security Metrics and Properties. In this 
experiment, we developed 10 security properties and metrics to 
assess the practical expressiveness of our approach. The 
security properties we used were collected from different 
research papers written in different formal languages: a set of 
security properties in [41] are modelled in Event Calculus, 
examples from [13] using Polymer language, and a set of 
policies introduced in [16] using MOP CFG. We were able to 
successfully specify these properties using our OCL-based 
approach, as shown in Table 2. The signature of these properties 
in other formal languages can be found in the sources above.  

Information Disclosure Property [41]: The information 
communicated from agent A should not be disclosed to agent B 
unless it has been authorized – i.e. we must find a valid 
authorization record before proceeding with a system response 
accessing confidential information. 

Chinese Wall Policy [16]: This policy states that subject S 
should not be able to access object O in the same conflict of 
interest datasets. This means that we cannot find a request to 
method M (read object O) of conflict in any of the methods of S.  

Restrict System Calls [16]: Restricting the program from 
accessing system resources. This could be done by disabling 
execution of external code, such as OS system calls. In this 
policy signature we locate requests to the SystemHandler class 
(assumed to by the class responsible for external code execution) 
and simply return false if any happened. The authors in [16] 
have specified call bypass action. This could be achieved 
through our system wrapper. 

Separation of Duties: Disallow a user to perform more 
than one action for a given request. The user might have 

privilege to execute a certain action, but they might be 
disallowed to perform other actions that contradict with actions 
they have performed. Thus we assume that the user is already 
authorized. We also assume that the focus is that the user cannot 
do all actions on one object – i.e. the user may do X operations 
on a given cheque but not all operations. An easier version could 
be to limit user to defined actions. 

Authenticated Requests Metric: the ratio of requests 
received by the authentication component against total system 
requests. The higher this ratio, the more secure the system. 

 

TABLE 2 . Example signatures of security metrics/properties in OCL 

Metric Signature 

Information 
Disclosure 

context Method inv InfoDisclosure: 
Let access : Request := self.Requests->last() in 
Let authorized : Response :=   
             self.AuthorizationControl.Responses-> select(R| 

R.IsValid = True AND access.UserID = R.UserID)->last() 
in  IF (authorized) THEN true ENDIF 

Chinese Wall 

Let Subject := Classes->select(Name = 'Subj')->first() in 
Let Obj: Class := Classes->select(Name = 'Object')->first()  
Let mthdCall : Request := self.Requests->last() in  
Let mthdReturn: Response := self.Responses->last() in  
Let access : Request := self.Requests->last() in  
IF (access.RequestTime > mthdCall.RequestTime  and     
     access.RequestTime < mthdReturn.ResponseTime) 

THEN Not self.Conflictlist->exists(R| R = access.Target) 
Restrict 
System Calls 

Let SystemCalls : Request := Classes->select(Name = 
‘SystemHandler’)->first().Requests()->last()  in  
   IF (SystemCalls <>  null) THEN   false  ENDIF  

Separation of 
Duties 

Let xReq : Request:= Requests(Entity = 'MthdX') in 
Let yReq : Request:= >Requests(Entity = 'MthdY') in 
Let zReq : Request:= >Requests(Entity = 'MthdZ') in 
IF (xReq.UserID = yReq.UserID and xReq.Target = 

yReq.Target Or xReq.UserID = zReq.UserID and 
zReq.Target = zReq.Target Or yReq.UserID = zReq.UserID 
and xReq.Target = yReq.Target) THEN  false ENDIF 

Authenticated 
Requests 

context System  inv AuthenticatedRequests: 
self.AuthenticationControl.Requests->select()->count()/ 

self.Request->select()->count()                        

Authentic 
Requests 

context System inv AuthenticRequests: 
 self.AuthenticationControl.Response->select(R | 

R.IsValid = true)->count()/  
self.AuthenticationControl.Request->select()->count()  

Last(10) 
Authz.  Reqs 

context System inv Last10AuthzCtl: 
self.AuthorizationControl.Requests->select()->Last(10) 

Top(10) 
admin 
Requests  

context System inv Top10AuthnCtl: 
   self.AuthenticationControl.Responses->select(R | 

R.UserID = ‘Admin’)->count() 

Mean Time 
Between 
Unauthentic 
Request 

context System inv MTBUnauthenticRequests: 
self.AuthenticationControl.Responses->select(R | R.IsValid 
= false)>differences(‘Measurementtime’)-> sum() / 
self.AuthenticationControl.Responses->select(R | R.IsValid 
= false) )->count() 

Authenticated 
Requests 
Trend 

context System inv Authenticated RequestsTrend: 
self.AuthenticatedRequests.Differences(‘AuthenticatedReq
uests’)->sum() / self.AuthenticatedRequests-> count() 

MTBUR 
Over Systems 

context System inv MTBUROverSystems: 
  self.MTBUnauthenticRequests->sum()/ 
self.MTBUnauthenticRequests->count() 

 



 

 

Last (e.g. 10) Authorization Requests: This metric is used 
to take a random sample of the recent requests sent to the 
authorization security control. This metric can be used by 
admins to check the details (e.g. identity of requesters) of 
requests sent to the authorization security control after certain 
period of the day – e.g. out of the working hours. 

Top (e.g. 10) admin Authentication Requests: This metric 
could be used by management to check how frequently 
administrators logged in to the system in the last period. Such 
metric can be detailed to reflect details of these requests 
including time of these requests, IP (source) of these requests, 
etc. It can assist identifying several vulnerabilities, including 
components with excessive privileges or lacking isolation. 

Average Time between Unauthentic Requests: this metric 
measures the average time between consecutive unauthentic 
requests reported by the authentication control. A high 
measurement value means the underlying system is stable and 
secure. This metric could be used with authentic requests metric 
to know if the system is under attack or not. 

Developing complex properties and metrics is always a 
requirement in any monitoring and analysis domain. These 
complicated metrics make use of other basic security 
properties/metrics. In Table 2, the last two rows show examples 
of complex, derived security metrics.  

Security Metric Trend: This security metric helps in 
assessing the trend of certain metric values over a period of time. 
Here, we apply it on the authenticated requests metric defined 
above. This helps in figuring out whether there is an increasing 
or decreasing trend in the number of unauthenticated requests. 

Security Metric over Multiple Systems 
(MTBUROverSystems): This security metric helps in following up 
the security status over enterprise IT systems as one number. 
Here, we apply it on the average of mean time between 
unauthentic requests over IT systems. 

B. Approach Soundness 
In this set of experiments we aim assessing our approach’s 

accuracy and soundness in two key areas: (i) the automatic 
generation, deployment of security probes from input security 
metrics’ and properties’ signatures. This includes accuracy of 
reported measurements; and (ii) the automatic generation of the 
security analysis service and its results, which is based on the 
metrics’ signatures. We figure out that we can combine the 
evaluation of both areas in the same experiment by testing the 
soundness of the whole platform –e.g. a request to a software 
resource R should result in a measurement M (if the security 
probe was generated and deployed correctly). Such measurement 
M should imply a change C in the value/state of a security 
metric or property S (if the security analysis module function as 
expected). Although, we did experiment on both metrics and 
properties, we show here evaluation results of one security 

property plus three different security metrics because metrics are 
usually more complicated in terms of calculations required – i.e. 
usually metrics include constraints plus aggregation functions. 

A key problem we faced with these experiments is that we 
need to consider and enumerate different variables related to 
system usage and our security monitoring soundness including: 
number of concurrent users, number of requests per second, 
number of malicious (injected faults) requests sent to the 
software system, and system entities to be accessed. As a 
workaround solution, we conducted a set of planned experiments 
with different sets of variables’ values to assess the security 
monitoring platform. In our evaluation we used a random number 
generator to generate random numbers for each experimental 
variable – i.e. number of users, user requests, malicious requests. 
At every time step, we generate a random number that is used to 
represent the number of concurrent users. Then we generate a 
random number for the number of requests to be issued for each 
concurrent user. The same applies for each experiment variable. 
For system entities to be accessed, we generated a hash map of 
some system entities with IDs. Based on the generated random 
number we retrieve system entity to be requested and issue a set 
of random valid requests and a set of malicious requests 
according to the total and malicious random numbers at every 
time step. Due to space limitations, Table 3 shows the 
experimental evaluation results on GalacticERP (a web-based 
ERP system developed internally in our research group for 
evaluation purposes) using one security property and three 
security metrics taken from Table 2. We have evaluated our 
approach on “Litware HR” a sample multi-tenant application 
built by a team at Microsoft.  
TABLE 3. Security monitoring platform evaluation results 

Time Step Step 1 Step 2 Step 3 Step 4 
#Users 69 56 32 84 
#Requests 3429 3180 2738 4455 
#Malicious 
Requests 

2096 1921 2074 2631 

Authenticated 
Requests [1] 

90% 85% 58% 92% 

Authentic 
Requests [2] 

39% 40% 25% 41% 

avg Time Between 
Unauthentic 
Requests (mSec) [3] 

2.1 1.8 0.5 3.4 

Information 
Disclosure [4] 

2096 1921 1436 2631 

TABLE 4. Performance Overhead of our security monitoring platform prototype 
implementation (values in mSec). Metrics/properties are the same from Table 3. 

Metric/ 
property 

Generate 
Probe 

Deploy 
probe 
 

Intercept 
Exec. 

Extraction Evaluate 
Metric 

100 Reqs 
Time  #Records 

[1] 10 3 5 6 2 8 
[2] 11 3 5 4 1 11 
[3] 14 3 5 3 1 18 

[4] 8 3 5 5 2 11 



 

 

 

Table 3 shows only four time steps in our evaluation 
experiments. A malicious request is a request with invalid data. 
This depends on the property or metric being evaluated: (i) in 
information disclosure property, a malicious request is a request 
where the user is not authorized to execute the requested 
method. (ii) in Authenticated Requests metric, a malicious 
request is a request that was not authenticated. (iii) in Authentic 
Requests metric and Mean Time Between Unauthentic Requests 
metric, a malicious request is a request where the authentication 
control reported as an invalid request. Except for authentic 
requests and mean time between unauthentic requests, we did 
separate experiments for each metric/property at each time step. 
Moreover, for the authenticated request metric, we did modify 
the authentication control integration by MDSE@R to be 
applied on three methods only out of ten methods used for the 
evaluation experiments. The results summarized in Table 3 show 
that the monitoring platform successfully and accurately 
reported all planned violations of the information disclosure 
property. The same results reported for the other three operated 
security metrics. 

C. Performance Overhead 
In this experiment, we assessed the performance overhead of 

our security monitoring platform considering five key aspects: 
time to generate security probes and metric evaluation functions; 
time to deploy probes; overhead when intercepting system 
execution requests; time cost to extract system measurements 
required by specified security metrics; and time cost in evaluating 
metrics from collected security measurements. The first task is 
fulfilled offline without any impact on system performance. The 
same applies on the last one (evaluation) in case of security 
metrics. The deployment of probes does not impact system 
performance as well because we add interception points to the 
application configuration file at run-time. Both system 
interceptions for requests and measurements collections have 
impact on system performance. To assess the approach 
performance overhead, we ran a set of experiments compiling, 
deploying, monitoring and analyzing the set of metrics as shown 
in Table 2 on our Galactic multi-tenant cloud application when 
under heavy user loading. 

Table 4 summarizes the time taken in each of these aspects in 
milliseconds. The time to deploy and intercept requests is 
relatively constant and on average takes 3 and 5 mSecs 
respectively. The time to generate measurement depends on the 
number of measurements required to verify the property or the 
metric (e.g. in information disclosure we need a measurement 
from the authorization control and a measurement from the 
method being accessed) and the details included in each 
measurement record. The analysis time depends on the 
complexity of the specified metric signature complexity. We 
measured the performance overhead of the analysis component 
on 100 system measurements. This is an offline task in security 
metrics evaluation. However, the verification of security 

properties requires the evaluation component to be online with 
the application. The performance overhead results of both metrics 
and properties show a very low performance overhead on 
application performance. 

V. SUMMARY 
We introduced a new tenant-oriented security monitoring 

approach that supports capturing and enforcing tenants’ security 
policies and properties and assessing system security status using 
statistical metrics. To the best of our knowledge, this is the first 
approach that (i) delivers a tenant-oriented run-time security 
monitoring approach; (ii) combines both security properties and 
metrics; and (iii) uses an accessible specification language for 
software and security engineers. Our approach delivers a formal 
and familiar security metrics and properties specification 
language using OCL supported by a system description meta-
model that helps in validating and compiling these signatures. 
The formalized metrics signatures are used to generate security 
probes that collect security measurements from a multi-tenant 
cloud system at run-time. They are also used in generating 
analysis programs that is used in analyzing the collected 
measurements to verify the specified security properties and 
assess system status. Our approach is extensible in terms of 
entities to be monitored and attributes to be measured at each 
measurement through customization of the system description 
meta-model. We have evaluated our approach’s expressiveness 
compared to existing efforts, soundness in assessing and 
verifying such metrics, and the performance overhead of the 
approach. The evaluation results show that our approach is sound 
and expressive. It incurs very low performance overhead. 

ACKNOWLEDGMENT 
This research is supported by Swinburne, Swinburne 

Software Innovation Lab (SSIL) and NICTA (Data61) as a part 
of YellowBox research project. 

REFERENCES 
[1] M. Almorsy, J. Grundy, and I. Mueller, "An analysis of the cloud 

computing security problem," in Proc. 2010 Asia Pacific Cloud 
Workshop, Colocated with APSEC, Sydney, Australia, 2010. 

[2] I. Ben Lahmar, H. Mukhtar, and D. Belaid, "Monitoring of Non-
functional Requirements Using Dynamic Transformation of 
Components," in Proc. of The 2010 Sixth International Conference on 
Networking and Services (ICNS), 2010, pp. 61-66. 

[3] T. i. Holmes, E. Mulo, U. Zdun, and S. Dustdar, "Model-Aware 
Monitoring of SOAs for Compliance Service Engineering," in Service 
Engineering, S. Dustdar and F. Li, Eds., ed: Springer, 2011, pp. 117-136. 

[4] A. J. Ramirez, B. H. C. Cheng, and P. K. McKinley, "Adaptive 
monitoring of software requirements," in Requirements@Run.Time 
(RE@RunTime), 2010 First International Workshop on, 2010, pp. 41-50. 

[5] D. Lorenzoli and G. Spanoudakis, "EVEREST+: run-time SLA violations 
prediction," in Proceedings of the 5th International Workshop on 
Middleware for Service Oriented Computing, Bangalore, India, 2010. 

[6] F. Raimondi, J. Skene, and W. Emmerich, "Efficient online monitoring of 
web-service SLAs," presented at the Proceedings of the 16th ACM 
SIGSOFT International Symposium on Foundations of software 
engineering, Atlanta, Georgia, 2008. 



 

 

[7] Roland Reichle, Mohammad Ullah Khan and Kurt Geihs, "How to 
combine parameter and compositional adaptation in the modelling of self-
adaptive applications," presented at the PIK - Praxis der 
Informationsverarbeitung und Kommunikation - Special Issue: Modelling 
of Self-Organizing Systems, 2008. 

[8] A. Amin, L. Grunske, and A. Colman, "An automated approach to 
forecasting QoS attributes based on linear and non-linear time series 
modeling," in Proc. of the 27th IEEE/ACM International Conference on 
Automated Software Engineering, Essen, Germany, 2012, pp. 130-139. 

[9] F. Chen and G. Roşu, "Towards monitoring-oriented programming: A 
paradigm combining specification and implementation," Electronic Notes 
in Theoretical Computer Science, vol. 89, pp. 108-127, 2003. 

[10] K. Havelund, G. Ro, "An Overview of the Runtime Verification Tool Java 
PathExplorer," Form. Methods Syst. Des., vol. 24, pp. 189-215, 2004. 

[11] C. Colombo, A. Francalanza, R. Mizzi, and G. Pace, "polyLarva: Runtime 
Verification with Configurable Resource-Aware Monitoring Boundaries," 
in Software Engineering and Formal Methods. vol. 7504, G. Eleftherakis, 
M. Hinchey, and M. Holcombe, Eds., ed: Springer Berlin Heidelberg, 
2012, pp. 218-232. 

[12] P. O. N. Meredith, D. Jin, F. Chen, and G. Roşu, "Efficient monitoring of 
parametric context-free patterns," Automated Software Engineering, vol. 
17, pp. 149-180, 2010. 

[13] L. Bauer, J. Ligatti, and D. Walker, "Composing security policies with 
polymer," SIGPLAN Not., vol. 40, pp. 305-314, 2005. 

[14] K. W. Hamlen and M. Jones, "Aspect-oriented in-lined reference 
monitors," presented at the Proceedings of the third ACM SIGPLAN 
workshop on Programming languages and analysis for security, Tucson, 
AZ, USA, 2008. 

[15] F. B. Schneider, "Enforceable security policies," ACM Trans. Inf. Syst. 
Secur., vol. 3, pp. 30-50, 2000. 

[16] S. Hussein, P. Meredith, G. Ro, "Security-policy monitoring and 
enforcement with JavaMOP," presented at the Proceedings of the 7th 
Workshop on Programming Languages and Analysis for Security, Beijing, 
China, 2012. 

[17] Ma Jianli, Zhang Dongfang, Xu Guoai and Yang Yixian, "Model 
Checking Based Security Policy Verification and Validation," in 2nd 
International Workshop on Intelligent Systems and Applications, Wuhan 
2010, pp. 1-4. 

[18] Arosha K Bandara, Emil C Lupu, and Alessandra Russo, "Using event 
calculus to formalise policy specification and analysis," in IEEE 4th 
International Workshop on Policies for Distributed Systems and 
Networks. , 2003, pp. 26-39. 

[19] G. Spanoudakis, C. Kloukinas, and K. Mahbub, "The SERENITY 
Runtime Monitoring Framework," Security and Dependability for 
Ambient Intelligence, Information Security, vol. 45, pp. 213-238, 2009. 

[20] R. M. Savola and H. Abie, "Development of security metrics for a 
distributed messaging system," in Proc. of The 2009 International 
Conference on Application of Information and Communication 
Technologies, 2009, pp. 1-6. 

[21] R. M. Savola and H. Abie, "Identification of Basic Measurable Security 
Components for a Distributed Messaging System," presented at the Proc. 
of the 2009 Third International Conference on Emerging Security 
Information, Systems and Technologies, 2009. 

[22] R. M. Savola and P. Heinonen, "Security-Measurability-Enhancing 
Mechanisms for a Distributed Adaptive Security Monitoring System," in 
Proc. of The 2010 4th International Conference on Emerging Security 
Information Systems and Technologies (SECURWARE), 2010, pp. 25-34. 

[23] R. M. Savola and P. Heinonen, "A visualization and modeling tool for 
security metrics and measurements management," in Proc. of 2011 
Conference Information Security South Africa (ISSA), 2011, pp. 1-8. 

[24] A. Muñoz, J. Gonzalez, and A. Maña, "A Performance-Oriented 
Monitoring System for Security Properties in Cloud Computing 
Applications," The Computer Journal, vol. 55, pp. PP. 979-994, 2012. 

[25] M. ı. V. Cengarle and A. Knapp, "OCL 1.4/5 vs. 2.0 Expressions Formal 
semantics and expressiveness," Software and Systems Modeling, vol. 3, 
pp. 9-30, 2004. 

[26] M. Almorsy, J. Grundy, and A. S. Ibrahim, "Automated Software 
Architecture Security Risk Analysis Using Formalized Signatures," in 
Proc. of The 36th International Conference of Software Engineering, San 
Francisco, 2013, pp. 300-309. 

[27] M. Almorsy, J. Grundy, and A. S. Ibrahim, "Supporting Automated 
Vulnerability Analysis using Formalized Vulnerability Signatures," 
Swinburne University of TechnologyMarch 2012 2012. 

[28] M. Almorsy, J. Grundy, and A. S. Ibrahim, "MDSE@R: Model-Driven 
Security Engineering at Runtime," presented at the Proc. of the 4th 
International Symposium on Cyberspace Safety and Security Melbourne, 
Australia, 2012. 

[29] M. Almorsy, J. Grundy, and A. S. Ibrahim, "TOSSMA: Tenant-Oriented 
SaaS Applications Security Management Architecture," in Proc. of The 
5th International Conference on Cloud Computing, Hawaii, USA, 2012, 
pp. 981- 988. 

[30] M. Almorsy, J. Grundy, and A. Ibrahim, "VAM-aaS: Online Cloud 
Services Security Vulnerability Analysis and Mitigation-as-a-Service," in 
Web Information Systems Engineering - WISE 2012, X. S. Wang, I. Cruz, 
A. Delis, and G. Huang, Eds., ed: Springer Berlin Heidelberg, 2012, pp. 
411-425. 

[31] M. Almorsy, J. Grundy, and A. S. Ibrahim, "Adaptable, Model-driven 
Security Engineering for SaaS Cloud-based Applications," Automated 
Software Engineering Journal, vol. to appear, 2013. 

[32] M. Almorsy, J. Grundy, and A. S. Ibrahim, "Supporting automated 
software re-engineering using re-aspects," presented at the Proc.  of 27th 
IEEE/ACM International Conference on Automated Software 
Engineering, Essen, Germany, 2012. 

[33] I. Avazpour and J. Grundy, "CONVErT: A framework for complex model 
visualisation and transformation," in 2012 IEEE Symposium on Visual 
Languages and Human-Centric Computing (VL/HCC), 2012, pp. 237-238. 

[34] T. a. Vajk, G. Mezei, and T. e. Levendovszky, "An Incremental OCL 
Compiler for Modelling Environments," In Electronic Communications of 
the EASST, vol. Volume 15: OCL Concepts and Tools., 2008. 

[35] OWASP. (2006). Monitor security metrics. Available: 
https://www.owasp.org/index.php/Monitor_security_metrics 

[36] I. Cervesato, M. Franceschet, and A. Montanari, "A guided tour through 
some extensions of the Event Calculus," Computational Intelligence, vol. 
16, pp. 307–347, 2000. 

[37] B. Baliś, M. Bubak, W. Funika, R. Wismüller, M. Radecki, T. Szepieniec, 
et al., "Performance Evaluation and Monitoring of Interactive Grid 
Applications," in Recent Advances in Parallel Virtual Machine and 
Message Passing Interface. vol. 3241, D. Kranzlmüller, P. Kacsuk, and J. 
Dongarra, Eds., ed: Springer Berlin Heidelberg, 2004, pp. 345-352. 

[38] A. Vogelsang, A. Fehnker, R. Huuck, and W. Reif, "Software metrics in 
static program analysis," in Proc. of the 12th international conference on 
Formal engineering methods and software engineering, Shanghai, China, 
2010, pp. 485-500. 

[39] R. Wismüller, M. Bubak, and W. Funika, "High-Level Application 
Specific Performance Analysis Using the G-PM Tool," in Recent 
Advances in Parallel Virtual Machine and Message Passing Interface. 
vol. 3666, B. Martino, D. Kranzlmüller, and J. Dongarra, Eds., ed: 
Springer Berlin Heidelberg, 2005, pp. 317-324. 

[40] M. Almorsy, J. Grundy, and A. S. Ibrahim, "Supporting automated 
vulnerability analysis using formalized vulnerability signatures," 
presented at the Proc. of 27th IEEE/ACM International Conference on 
Automated Software Engineering, Essen, Germany, 2012. 

[41] G. Spanoudakis, C. Kloukinas, and K. Androutsopoulos, "Towards 
security monitoring patterns," presented at the Proceedings of the 2007 
ACM symposium on Applied computing, Seoul, Korea, 2007. 

[42] W. Jansen, "Directions in Security Metrics Research," NIST2009. 
[43] S. Stolfo, S. M. Bellovin, and D. Evans, "Measuring Security," Security & 

Privacy, IEEE, vol. 9, pp. 60-65, 2011. 
[44] M. Kamalrudin, J. Hosking, and J. Grundy, "Improving requirements 

quality using essential use case interaction patterns," presented at the 
Proceedings of the 33rd International Conference on Software 
Engineering, Waikiki, Honolulu, HI, USA, 2011.  


