
Improving Tenants’ Trust In SaaS Applications Using
Dynamic Security Monitors

Mohamed Almorsy Abdelrazek*, John Grundy# and Amani S. Ibrahim#
* School of Information Technology, Faculty of Science, Engineering and Built Environment, Deakin Univ, Geelong, Australia

School of Software and Electrical Engineering, Faculty of Science, Engineering and Technology, Swinburne University of
Technology, Hawthorn, Victoria, Australia

mohamed.abdelrazek@deakin.edu.au, jgrundy@swin.edu.au, aibrahim@swin.edu.au

Abstract-It is almost impossible to prove that a given software
system achieves an absolute security level. This becomes more
complicated when addressing multi-tenant cloud-based SaaS
applications. Developing practical security properties and metrics
to monitor, verify, and assess the behavior of such software systems
is a feasible alternative to such problem. However, existing efforts
focus either on verifying security properties or security metrics but
not both. Moreover, they are either hard to adopt, in terms of
usability, or require design-time preparation to support monitoring
of such security metrics and properties which is not feasible for
SaaS applications. In this paper, we introduce, to the best of our
knowledge, the first unified monitoring platform that enables SaaS
application tenants to specify, at run-time, security metrics and
properties without design-time preparation and hence increases
tenants’ trust of their cloud-assets security. The platform
automatically converts security metrics and properties
specifications into security probes and integrates them with the
target SaaS application at run-time. Probes-generated
measurements are fed into an analysis component that verifies the
specified properties and calculates security metrics’ values using
aggregation functions. This is then reported to SaaS tenants and
cloud platform security engineers. We evaluated our platform
expressiveness and usability, soundness, and performance
overhead.

Keywords--Security monitoring, security metrics, run-time
verification, Cloud computing monitoring

I. INTRODUCTION
The outsourcing of enterprise IT systems for hosting on

third-party platforms e.g. cloud computing, either using
Software-as-a-Service (SaaS) or Infrastructure-as-a-Service
(IaaS) service delivery models, improves resources availability
and accessibility at a manageable cost [1]. On the other hand, it
increases customers’ concerns about the security of their cloud-
outsourced assets. The loss-of-control is a key security problem
in adopting the cloud computing model where tenants do not
have control on their outsourced assets hosted on the cloud.
Enabling cloud tenants to monitor the security status and
behavior of their cloud-hosted assets is a key enabler to improve
tenants’ trust and confidence in the cloud computing model. Of
course design-time security analysis techniques are helpful, but

usually not sufficient especially with the cloud computing model
where SaaS application tenants, and their security requirements,
are not known until run-time. Monitoring SaaS applications’
security (mainly shared application instance model) can help in
verifying system security properties (usually expressed as
security policies) [2-4], discovering and reporting any violations
of security requirements [5, 6], adapting system behavior and
structure based on current context [7], or through proactive or
corrective actions [8]. Assessing software systems security is
usually formulated as a set of: (i) security properties, constraints
or policies to be checked or enforced - e.g. only authenticated
users can access resource X; and (ii) security metrics to be
collected for the sake of security management and improvement
- e.g. the ratio of system unauthenticated requests. Any increase
in unauthenticated requests rate may imply that the system is
probably under attack.

Software security monitoring platforms are usually designed
with three components: security property and/or metric
specification language, software instrumentation/profiling
component (observing system behavior externally or using
instrumentation), and security measurements’ analysis (and may
be reaction) component. Existing security monitoring efforts
focus either on security properties or security metrics to be
assessed, but not both. Property-based security monitoring
efforts, usually referred to as run-time verification, focus on
monitoring system security behavior to detect violations in the
defined security properties or policies for security, reliability,
etc. This includes MOP [9], MaC, Land JPaX[10], LARVA
[11]. These efforts depend on adoption of formal languages in
specifying run-time system (or security) properties. A key
problem with many is that they do not support parametric
properties i.e. a property that depends on parameters to decide
what traces to consider in the analysis phase. MOP, one of the
most active research approach, has been extended to overcome
such limitations [12]. Dynamic security enforcement also has
relevant efforts such as Polymer [13] SPoX [14] and in-lined-
security policy enforcement efforts [15]. These efforts focus on
monitoring system behavior and intercepting calls to relevant
actions to enforce user-defined policies. MOP has been also

2015 International Conference on Engineering Complex Computing Systems (ICECCS 2015), Gold Coast, Australia, 9-12 December, (c) IEEE.

extended with a run-time security policy enforcement extension
[16]. Using such formal specification languages complicates the
adoption of such efforts by either security experts or software
engineers. Most existing efforts assume that the system is to be
assessed by software providers who are expected to have
experience with formal languages such as linear temporal logic
(LTL) [17], regular expressions (RE), context free grammar
(CFG), or event calculus (EC) [5, 18, 19].

Metrics-based security monitoring efforts focus on
providing frameworks that help in conducting security metrics
development and analysis processes [20-24]. Using such
approaches usually requires deep involvement of security
experts and also tends to be both time-consuming and error
prone. A key problem with these metrics-related efforts is the
lack of automation. This is because they depend on informal
metrics’ definitions. Thus, security experts should get involved
in developing/customizing monitoring tools.

Analysing efforts in both metric-based & property-based
security monitoring areas we concluded that the formality,
familiarity, abstraction, and extensibility of the language used in
developing security properties and metrics are key issues. These
factors are very important when addressing security monitoring
of cloud-based SaaS applications from cloud tenants perspective
(small experience/knowledge of the application). Moreover, to
the best of our knowledge, there is no approach that supports
monitoring and analysing both security properties and metrics
for neither traditional software systems nor SaaS applications.
We have formulated these issues into three key research
questions that we address in this research:

• What details do we need to capture to fully describe a given
security property or metric?

• How can we define formal signatures of such security
metrics or properties using a familiar and relatively easy to
use specification language for SaaS application tenants?

• How can we effectively use such formal specifications in
automating the security monitoring process?

In this paper, we introduce a new, unified SaaS security

monitoring approach based on capturing different SaaS tenants’
security metrics and properties (policies) to be monitored as
object constraint language (OCL) expressions [25]. Security
properties and metrics defined in OCL expressions are used in
automating the next two main security monitoring tasks:
generation of security probes to be deployed with the monitored
system to collect necessary measurements/events/traces; and
generation of the security analysis programs that will be used in
analyzing reported measurements. The analysis (checking) could

work asynchronously (offline analysis) or synchronously (online
analysis). We have evaluated our approach in capturing
different metrics and properties, collecting and analysing
measures, and its performance overhead.

In section II we introduce our unified monitoring platform
and provide a usage example. In Section III we describe key
platform architecture and implementation details. In Section IV
we present our evaluation results and in Section V we
summarise key contributions.

II. UNIFIED SECURITY MONITORING
In our previous work we introduced a signature-based static

security analysis approach [26, 27]. We used OCL to capture
static security threat and vulnerability signatures. These
signatures are automatically transformed into security analysis
programs that checks program source code and identify matches
to the input OCL signatures. We also introduced a run-time
security engineering approach (MDSE@R) [28, 29] that helps in
enforcing different cloud SaaS application tenants’ security
requirements at run-time without modifying the target service
source code using aspect-oriented programming (AOP). In our
security monitoring approach, described here, we extend our
signature-based static vulnerability analysis approach to support
defining and analyzing system behavior properties and metrics.
We reuse our MDSE@R approach to deploy these security
probes within target system entities at run-time using dynamic
Aspect-oriented Programming - AOP.

The details of what to capture to fully describe a security
property or metric are encapsulated in a comprehensive security
property/metric definition schema. A key entry in this schema is
the property/metric signature, which we write using OCL.
Security monitors are externalized from the target application(s),
such that the application and security monitors could be easily
changed the need of customizations – i.e. outline monitoring
instead of inline monitoring. Reported measurements are
stamped with tenant ID. Thus, we can discriminate between
measurements reported for different tenants in case of shared,
multi-tenant SaaS applications. In the next subsections we
introduce our security metric/property definition schema,
metric/property specification language, and the realization
platform.

A. Security Metric/Property Definition Schema
We analyzed the key attributes used in defining security

metrics or properties in existing efforts, and developed a security
metric definition schema covering all such attributes, as shown
in Fig. 1. Our security metric schema contains:

Fig. 1. Our security metric definition schema

Fig. 2. OCL signature interface showing Authentic Requests Metric

Fig. 3. A part of our system description meta-model

Property/metric ID: every security monitoring property or
metric has a reference ID that identifies and links collected
measurements. It also helps in uninstalling security probes
whenever the metric/property is no longer needed. Metric ID
includes tenant ID plus a string of alphanumeric characters.
Metric Category: used in categorizing security metrics and
properties into operational, management, static, dynamic
metrics/properties for reporting purposes. Related Objectives:
each security metric/ property could be linked to one or more of
the tenant’s security objectives that have been refined into a set
of security metrics and properties. Related Systems: the target
software system(s) in case we have multiple systems in the
operational environment (hosted on the same platform).
Signature: the security metric or property signature specifies the
metric formula, property, rule, or expression to be evaluated,
more details in the next section. Attributes: a list of relevant
attributes to be enclosed in generated measurements e.g. target
object, method name, arguments, return value, metric Id,
timestamp, user identity. Frequency: each security metric
definition includes the measurement frequency required. This
may be every X-hours, X-days, X-weeks, X-months, and so on.
The results collected by the security monitoring probes are
grouped, evaluated, and consolidated (using metric signature) in
a security status report to the security metric owner. Minimum-
Maximum Values: each security metric has minimum and
maximum values that define the valid boundaries of the security
metric value. Whenever the security metric becomes below the
minimum value or above the maximum value, security alerts
should be reported to the security metric owner. Corrective
Actions: a set of actions to be fired automatically when a

violation is reported. In our previous work we showed how these
actions are defined as changes to the software security model
[30].

B. Security Metric/Property Signature Specification
We use Object Constraint Language (OCL) as a well-

known, extensible, and semi-formal language to specify
semantic security properties and metrics’ signatures. To
understand how OCL helps in developing security metrics and
properties to be monitored we discuss few facts about OCL and
compare it with other frequently used formal security property
specification languages. First, OCL has four different collection
types including set (no duplication of elements, no order), bag
(duplicate, no order), ordered set (no duplicate, ordered), and
sequence (duplicate, ordered). This is supported with a set of
aggregation functions – e.g. maximum, minimum, average,
variance, etc. that are frequently used in defining security
metrics. OCL supports defining functions and procedures to be
used in developing more complicated expressions. Moreover, it
also supports declaring variables, and control statements
(conditions and loops).

LTL and Event Calculus (EC) languages (two key
languages in run-time verification domain) depend on defining a
sequence of system events that the system should follow or that
should not happen at all. To help OCL to support defining
properties over a sequence of event, each generated
measurement by our approach has a timestamp and all
properties’ related system measurements are maintained in
ordered set based on reporting time. This helps in specifying
sequences and time-related properties. The LTL language

Metric	Definition

Signature
Frequency

Description

ID

Attributes

Minimum	Value

Corrective	Actions

Maximum	Value
Related	Objectives

Metric	Category

Related	Systems

1

2

3

4

5

depends on four main operators: always, until, next, and
eventually. We can express similar operations in OCL using: for
all, control statements, last, and exists operations. Event
Calculus is based on events/actions and fluents (variables). EC
defines a set of predicates that help in defining expected system
behavior to be verified including: HoldsAt, Initiates, Terminates,
and Happens operations. OCL supports defining such predicates
that evaluate the occurrence of certain events as base
expressions that can be reused in expressing and assessing
complex expressions. We give examples of possible derived
security metrics and compound predicates later.

However, OCL suffers from ambiguity problems. To
support specifying valid OCL-based metrics/properties
signatures, we have developed a system-description meta-model,
as shown in Fig. 3. This model captures key concepts
(semantics) in object-oriented systems including components,
deployment package, hosting services (web server), classes,
instances, inputs, input sources, output, output targets, methods,
method body. We also use it to capture key security mechanisms
such as: authentication, authorization, audit controls, etc. Each
entity has a set of attributes, such as component name, provider,
platform used, class name, method name, accessibility, variable
name, variable type, method call, etc. This model captures static
system attributes, and is used as a reference to develop
signatures as discussed in Section IV.

To capture dynamic system attributes, we extended each
system entity in this meta-model (application, components,
classes, methods, properties, and security controls) with two
concepts: Request – in run-time verification domain to capture
before events; and Response – in run-time verification domain to
capture after events. The details involved with such concepts
change according to the system entity - i.e. it change from
component to class down to method. Moreover, these attributes
can be extended as needed. Similarly, the system description
meta-model can be extended to include new concepts in metric
definition and analysis.

Fig. 2 shows a snapshot from our tool where tenants specify
their metrics’ signatures. In this figure we show a signature of
“authentic requests ratio” metric. This metric has been defined to
measure the ratio of invalid authentication requests
(authentication control response said that it is not valid) divided
by the total number of requests received by the security
authentication control. Any increase in this ratio reflects the
possibility of being under attack to break the application-
operated authentication control. Several example metric and
property signatures are given in the Evaluation section below.
The authentication control, and its attributes, is an abstract
concept (model entity), software engineers will need to define
the actual control – i.e. the actual security authorization function
or API – in the application platform profile. A platform profile is
an optional XML configuration file per service used to define a
mapping between abstract model concepts that we cannot extract

from code (if the code is available, such as security functions).
This platform profile is used to define the actual system entities
we need to intercept for security monitoring. The reason to
introduce a platform configuration file is to that tenants do not
know whether the system uses pre-defined security libraries
(e.g. .Net Membership) or custom security libraries. Software
engineers, because they know the system, can avoid this profile
by defining special method calls (for a security control) as a
basic metric and reuse the metric in composite metrics.

C. Security Monitoring Platform
After formalizing security metrics and properties signatures

using OCL, we need to extract security probes, deploy them
within the software, collect measurements generated by these
probes, analyse these measures, and either trigger correction
action or consolidate results into status report. The architecture
of our security monitoring platform is shown in Fig. 4 as
discussed below.

….Service	1 Service	2 Service	n

M
et
ric
	Sp

ec
ifi
ca
tio

n
Probe	Manager

Probe	Generator

System	Wrapper

Measures	Analysis Re
po

rti
ng
	se

rv
ice

M
et
ric
s’	
De

fin
iti
on

s	
an
d	
M
ea
su
re
m
en

ts

Probe Probe ProbeProbe

Fig. 4. Our security monitoring platform

Probe Manager (Step 1): once a security metric or
property is added or updated in the repository, the security probe
manager does the following: (i) Triggers the probe generator
component to generate necessary security probes with
corresponding attributes; (ii) Deploys the generated security
probes within the system using the system wrapper component
and remove deployed probes if the metric is no longer required;
and (iii) Adds a new entry in the metrics analysis timer service
according to the metric specified frequency. The analysis service
analyzes new measurements and notifies the reporting service.

Probe Generator (Step 2): the main responsibility of the
probe generator is to extract security probes from a given metric
definition. The probe generator needs to extract: entities to
monitor, and attributes to collect. The list of entities to be
monitored is extracted from parsing the OCL abstract syntax tree
(AST). This list is passed to the system wrapper to add
interceptors to the system using AOP. The defined metric
attributes are used to generate a measurement class that extracts
actual values from the system wrapper (interceptor) at

request/response interception time and send these measures to
the monitoring platform – e.g. Given an OCL signature such as
“self.AuthenitcationControl.Request…”, this results in a security
probe that intercepts requests to the system authentication
control, Another example “…Method.Name=’login’… ”, we
generate a probe to intercept requests to login method in a
selected class. A probe for a method request will report
measurement with: metric Id, tenant Id, timestamp, method
name, arguments, and target object. A measurement for a
method response will have: metric Id, tenant Id, timestamp,
method name, arguments, target object, and return value.

System Wrapper (Step 3): the system wrapper is
responsible for injecting interceptors (using dynamic aspect-
oriented programming - AOP) within the target system/service at
run-time at the critical points (system entities that have security
properties or metrics defined on them). The system wrapper
supports two modes of interception: synchronous where the
system is intercepted and put on hold until the security analysis
service confirmation (active monitoring tasks, such as intrusion
prevention systems or application firewalls). This is usually used
to handle security properties that should be verified at run-time;
or asynchronous to reduce performance overhead (passive
monitoring). We use this model with security metrics. The
system wrapper that we have implemented currently supports
intercepting requests at the system level, component level, and
method level, which is adequate for the goal of security
monitoring and analysis [31, 32].

Measures Analysis Service (Step 4): the analysis service
parses the specified security property or metric signature
developed in OCL and generates a C# analysis class. These
security analysis classes deployed within the analysis service
and loaded at run-time. Then, according to the metric frequency,
these classes get executed. These security analysis classes check
the measurements collected looking for violations. Fig. 6 shows
an example of analysis class generated from the specified metric
in Fig. 2. The code simply counts how many measurements
collected for authentic requests metric where the authentication
control return invalid authentication compared with the total
number of requests. The output of the analysis service is sent to
the repository for further use by other metrics (derived metrics,
to discuss later), and for historical analysis.

Reporting Service (Step 5): takes the aggregated results
stored in the repository for the target system and tenant and
provides a set of visualizations for tenant security engineers.
Currently a set of tabular and chart visualizations are supported
and accessed via a web page, as shown in Fig. 5. This figure
shows the metrics’ values for two different metrics and the trend
of such metrics. This is helpfully to understand how and when
the system behavior changes. Security experts will have to
investigate in root causes of such changes. We are extending the
reporting service with a visual designer to help designing how
metrics will be visualized [33].

Tenants can define a set of mitigation or recovery actions to
automatically apply in case of security property/metric violation.
Currently, we support injection of security controls at run-time
at the critical points (source of violations) through virtual
patching using MDSE@R [30].

Fig. 5. Example of our metrics analysis user interface

Fig. 6. C# code generated from metric signature in Fig. 2

III. IMPLEMENTATION
We briefly describe key implementation details of our

automated, unified security monitoring and analysis tool. First,
we developed a UI component to assist security experts in
developing their security metrics definitions and signatures
using OCL. This provides security metric specification and
signature editing including checking validity of OCL
expressions and testing of specifications on sample
measurements. We use an existing OCL parser [34] to parse and
validate signatures against our system description model. Once
validated, the metric definition is stored in the repository.

Second, we refined an existing OCL-to-C# translator library
to transform the developed metrics’ signatures into C# analysis
classes. Each class has a single static method that accesses the

metrics’ and measurement repository and applies the C# code on
these measurements. An example of such generated C# code is
shown in Fig. 6.

Third, we developed a probe generator library that analyses
the OCL expressions and extracts the list of entities to monitor.
We then generate a probe class that simply copies data from the
system execution context to the class data members – e.g. copy
the current user id to the UserID measurement attribute, copy
method inputs to the measurement method input attributes, etc.
The default measurement attributes (Metric ID, timestamp, etc.)
are set with defaults. These results are sent back to the analysis
service.

Fourth, we developed a system wrapper to help in injecting
security probes at the critical system entities. To support run-
time system interception, our platform combines both
dependency injection and dynamic-weaving AOP approaches.
The system wrapper supports wrapping of both new
developments and existing systems. For new development, we
use the Microsoft Unity application block delivered by
Microsoft PnP team to support intercepting any arbitrary system
entity. Unity supports dynamic run-time injection of interceptors
on methods, attributes and class constructors using system
configurations. For existing systems we adopted Yiihaw AOP
tool to modify application binaries (dll and exe files) by adding
aspects at any arbitrary system entity. In the latter case, we add a
direct call to our system wrapper. The system wrapper is
updated with deployed probes. At a given request for a given
tenant, it triggers tenant metric/property probe object.

IV. EVALUATION
In this section we summarize our evaluation experiments we

performed to assess the capabilities of our approach in defining,
generating, deploying, collecting measures, and analyzing
security metrics/properties details. We defined three key
objectives to address in our evaluation: (i) Approach
expressiveness by developing a range of security metrics and
properties, as shown in Table 2, and comparing the
expressiveness of our OCL-based specifications to other
formalisms; (ii) Approach soundness applied on example multi-
tenant SaaS application; and (iii) performance overhead.

A. Approach Expressiveness
The expressiveness and usability evaluation experiments of

our specification language covered capturing definitions of
security metrics and properties ranging from simple condition
and counting of raw measures up to complicated security metrics
and properties that incorporate results from other properties. To
the best of our knowledge, there is no benchmark of security
properties and metrics (we found a new project led by OWASP
[35] to come up with critical security metrics in assessing web
software systems, but it is still in the inception phase). To
overcome this problem, we did two exercises: (i) a comparative

analysis of our OCL-based approach against existing
specification languages; and (ii) used our approach to define a
set of security properties introduced in different research papers.

Comparative Analysis. We compared our approach against
Event Calculus with different extensions as explained in [36],
PMSL (performance metrics specification language) [37], and
GMSL (Goanna Metric Specification Language) [38]. EC-
Assertions [36], a first-order predicate calculus that is used to
develop formal specifications and in reasoning about system
properties that could be specified in terms of a set of events and
their effects where the occurrence of these events impacts the
satisfaction of these system properties. Performance Metric
Specification Language (PMSL) [37, 39] was developed to
capture high-level user-defined parallel-systems performance
metrics. Metrics expressed in the PMSL are fed in the G-PM
performance analysis tool. PMSL is a declarative functional
language. PMSL does not include control flow or state altering
constructs. The PMSL provides a couple of set operations and
aggregation functions. The list of measurable objects to be
monitored is limited to a predefined list. GMSL [38], the
Goanna Metric Specification Language, was developed to assess
program source code quality using a set of user-defined source
code metrics assessed using model-checking.
TABLE 1 . Comparison of metric/property specification languguages

Criteria EC OCL* PMSL GMSL

Applications Reasoning /
verification
of sys.
Props.

Assessing
system
properties
& metrics

Parallel
systems
performance
metrics

Static
program
quality
metrics

Key Features Events,
properties,
relations

Declarative,
properties,
relations &
set fns

Declarative,
Built-in
attributes,
metrics & fns.

Declarative,
built-in code
analysis
functions.

Operators ü* ü û û

Quantifiers ü* ü ü ü

Temporal
Events

ü* ü ü û

Pre-cond ü* ü ü ü

Post-cond û ü û û

Complexity û ü ü ü

Extensibility û ü û û

Domain
Specific

ü° ü l l

Limitations No
aggregation
or historical
Fns

A bit
lengthy
compared
to LTL.

No control
flow, no
alterable state

Work on
codebase
AST only

û: not supported ü: supported ü* supported as a language extension

l support one domain ü° Require user involvement

Table 1 summarizes the comparison we did between these
languages and our OCL-based approach. The criteria we used
include: possible applications of the language, supported
features, limitations, supporting specification of Boolean logic
expressions, logic quantifiers, temporal events, pre-conditions
and post-conditions, complexity of the language from the user
perspective, is domain specific, and extensibility to user defined
metrics/properties. We selected these criteria because they
represent the key constructs in defining most of the
properties/metrics. Table 1 illustrates that using these assessment
criteria, our new OCL-based language is more rich and
expressive in developing different types of metrics than the
compared approaches. OCL can help in capturing system
properties in design models [26] and source code level [40], and
now dynamic properties and metrics. OCL is based on set
theory. It supports development of boolean expressions using
and/or operators. The original design of OCL targeted
development of pre and post constraints/properties, easy to
extend with new domain concepts as we did in our language
using our meta-model, supports different aggregation functions,
which are useful in metrics specification.

Specification of Security Metrics and Properties. In this
experiment, we developed 10 security properties and metrics to
assess the practical expressiveness of our approach. The
security properties we used were collected from different
research papers written in different formal languages: a set of
security properties in [41] are modelled in Event Calculus,
examples from [13] using Polymer language, and a set of
policies introduced in [16] using MOP CFG. We were able to
successfully specify these properties using our OCL-based
approach, as shown in Table 2. The signature of these properties
in other formal languages can be found in the sources above.

Information Disclosure Property [41]: The information
communicated from agent A should not be disclosed to agent B
unless it has been authorized – i.e. we must find a valid
authorization record before proceeding with a system response
accessing confidential information.

Chinese Wall Policy [16]: This policy states that subject S
should not be able to access object O in the same conflict of
interest datasets. This means that we cannot find a request to
method M (read object O) of conflict in any of the methods of S.

Restrict System Calls [16]: Restricting the program from
accessing system resources. This could be done by disabling
execution of external code, such as OS system calls. In this
policy signature we locate requests to the SystemHandler class
(assumed to by the class responsible for external code execution)
and simply return false if any happened. The authors in [16]
have specified call bypass action. This could be achieved
through our system wrapper.

Separation of Duties: Disallow a user to perform more
than one action for a given request. The user might have

privilege to execute a certain action, but they might be
disallowed to perform other actions that contradict with actions
they have performed. Thus we assume that the user is already
authorized. We also assume that the focus is that the user cannot
do all actions on one object – i.e. the user may do X operations
on a given cheque but not all operations. An easier version could
be to limit user to defined actions.

Authenticated Requests Metric: the ratio of requests
received by the authentication component against total system
requests. The higher this ratio, the more secure the system.

TABLE 2 . Example signatures of security metrics/properties in OCL

Metric Signature

Information
Disclosure

context Method inv InfoDisclosure:
Let access : Request := self.Requests->last() in
Let authorized : Response :=
 self.AuthorizationControl.Responses-> select(R|

R.IsValid = True AND access.UserID = R.UserID)->last()
in IF (authorized) THEN true ENDIF

Chinese Wall

Let Subject := Classes->select(Name = 'Subj')->first() in
Let Obj: Class := Classes->select(Name = 'Object')->first()
Let mthdCall : Request := self.Requests->last() in
Let mthdReturn: Response := self.Responses->last() in
Let access : Request := self.Requests->last() in
IF (access.RequestTime > mthdCall.RequestTime and
 access.RequestTime < mthdReturn.ResponseTime)

THEN Not self.Conflictlist->exists(R| R = access.Target)
Restrict
System Calls

Let SystemCalls : Request := Classes->select(Name =
‘SystemHandler’)->first().Requests()->last() in
 IF (SystemCalls <> null) THEN false ENDIF

Separation of
Duties

Let xReq : Request:= Requests(Entity = 'MthdX') in
Let yReq : Request:= >Requests(Entity = 'MthdY') in
Let zReq : Request:= >Requests(Entity = 'MthdZ') in
IF (xReq.UserID = yReq.UserID and xReq.Target =

yReq.Target Or xReq.UserID = zReq.UserID and
zReq.Target = zReq.Target Or yReq.UserID = zReq.UserID
and xReq.Target = yReq.Target) THEN false ENDIF

Authenticated
Requests

context System inv AuthenticatedRequests:
self.AuthenticationControl.Requests->select()->count()/

self.Request->select()->count()

Authentic
Requests

context System inv AuthenticRequests:
 self.AuthenticationControl.Response->select(R |

R.IsValid = true)->count()/
self.AuthenticationControl.Request->select()->count()

Last(10)
Authz. Reqs

context System inv Last10AuthzCtl:
self.AuthorizationControl.Requests->select()->Last(10)

Top(10)
admin
Requests

context System inv Top10AuthnCtl:
 self.AuthenticationControl.Responses->select(R |

R.UserID = ‘Admin’)->count()

Mean Time
Between
Unauthentic
Request

context System inv MTBUnauthenticRequests:
self.AuthenticationControl.Responses->select(R | R.IsValid
= false)>differences(‘Measurementtime’)-> sum() /
self.AuthenticationControl.Responses->select(R | R.IsValid
= false))->count()

Authenticated
Requests
Trend

context System inv Authenticated RequestsTrend:
self.AuthenticatedRequests.Differences(‘AuthenticatedReq
uests’)->sum() / self.AuthenticatedRequests-> count()

MTBUR
Over Systems

context System inv MTBUROverSystems:
 self.MTBUnauthenticRequests->sum()/
self.MTBUnauthenticRequests->count()

Last (e.g. 10) Authorization Requests: This metric is used
to take a random sample of the recent requests sent to the
authorization security control. This metric can be used by
admins to check the details (e.g. identity of requesters) of
requests sent to the authorization security control after certain
period of the day – e.g. out of the working hours.

Top (e.g. 10) admin Authentication Requests: This metric
could be used by management to check how frequently
administrators logged in to the system in the last period. Such
metric can be detailed to reflect details of these requests
including time of these requests, IP (source) of these requests,
etc. It can assist identifying several vulnerabilities, including
components with excessive privileges or lacking isolation.

Average Time between Unauthentic Requests: this metric
measures the average time between consecutive unauthentic
requests reported by the authentication control. A high
measurement value means the underlying system is stable and
secure. This metric could be used with authentic requests metric
to know if the system is under attack or not.

Developing complex properties and metrics is always a
requirement in any monitoring and analysis domain. These
complicated metrics make use of other basic security
properties/metrics. In Table 2, the last two rows show examples
of complex, derived security metrics.

Security Metric Trend: This security metric helps in
assessing the trend of certain metric values over a period of time.
Here, we apply it on the authenticated requests metric defined
above. This helps in figuring out whether there is an increasing
or decreasing trend in the number of unauthenticated requests.

Security Metric over Multiple Systems
(MTBUROverSystems): This security metric helps in following up
the security status over enterprise IT systems as one number.
Here, we apply it on the average of mean time between
unauthentic requests over IT systems.

B. Approach Soundness
In this set of experiments we aim assessing our approach’s

accuracy and soundness in two key areas: (i) the automatic
generation, deployment of security probes from input security
metrics’ and properties’ signatures. This includes accuracy of
reported measurements; and (ii) the automatic generation of the
security analysis service and its results, which is based on the
metrics’ signatures. We figure out that we can combine the
evaluation of both areas in the same experiment by testing the
soundness of the whole platform –e.g. a request to a software
resource R should result in a measurement M (if the security
probe was generated and deployed correctly). Such measurement
M should imply a change C in the value/state of a security
metric or property S (if the security analysis module function as
expected). Although, we did experiment on both metrics and
properties, we show here evaluation results of one security

property plus three different security metrics because metrics are
usually more complicated in terms of calculations required – i.e.
usually metrics include constraints plus aggregation functions.

A key problem we faced with these experiments is that we
need to consider and enumerate different variables related to
system usage and our security monitoring soundness including:
number of concurrent users, number of requests per second,
number of malicious (injected faults) requests sent to the
software system, and system entities to be accessed. As a
workaround solution, we conducted a set of planned experiments
with different sets of variables’ values to assess the security
monitoring platform. In our evaluation we used a random number
generator to generate random numbers for each experimental
variable – i.e. number of users, user requests, malicious requests.
At every time step, we generate a random number that is used to
represent the number of concurrent users. Then we generate a
random number for the number of requests to be issued for each
concurrent user. The same applies for each experiment variable.
For system entities to be accessed, we generated a hash map of
some system entities with IDs. Based on the generated random
number we retrieve system entity to be requested and issue a set
of random valid requests and a set of malicious requests
according to the total and malicious random numbers at every
time step. Due to space limitations, Table 3 shows the
experimental evaluation results on GalacticERP (a web-based
ERP system developed internally in our research group for
evaluation purposes) using one security property and three
security metrics taken from Table 2. We have evaluated our
approach on “Litware HR” a sample multi-tenant application
built by a team at Microsoft.
TABLE 3. Security monitoring platform evaluation results

Time Step Step 1 Step 2 Step 3 Step 4
#Users 69 56 32 84
#Requests 3429 3180 2738 4455
#Malicious
Requests

2096 1921 2074 2631

Authenticated
Requests [1]

90% 85% 58% 92%

Authentic
Requests [2]

39% 40% 25% 41%

avg Time Between
Unauthentic
Requests (mSec) [3]

2.1 1.8 0.5 3.4

Information
Disclosure [4]

2096 1921 1436 2631

TABLE 4. Performance Overhead of our security monitoring platform prototype
implementation (values in mSec). Metrics/properties are the same from Table 3.

Metric/
property

Generate
Probe

Deploy
probe

Intercept
Exec.

Extraction Evaluate
Metric

100 Reqs
Time #Records

[1] 10 3 5 6 2 8
[2] 11 3 5 4 1 11
[3] 14 3 5 3 1 18

[4] 8 3 5 5 2 11

Table 3 shows only four time steps in our evaluation
experiments. A malicious request is a request with invalid data.
This depends on the property or metric being evaluated: (i) in
information disclosure property, a malicious request is a request
where the user is not authorized to execute the requested
method. (ii) in Authenticated Requests metric, a malicious
request is a request that was not authenticated. (iii) in Authentic
Requests metric and Mean Time Between Unauthentic Requests
metric, a malicious request is a request where the authentication
control reported as an invalid request. Except for authentic
requests and mean time between unauthentic requests, we did
separate experiments for each metric/property at each time step.
Moreover, for the authenticated request metric, we did modify
the authentication control integration by MDSE@R to be
applied on three methods only out of ten methods used for the
evaluation experiments. The results summarized in Table 3 show
that the monitoring platform successfully and accurately
reported all planned violations of the information disclosure
property. The same results reported for the other three operated
security metrics.

C. Performance Overhead
In this experiment, we assessed the performance overhead of

our security monitoring platform considering five key aspects:
time to generate security probes and metric evaluation functions;
time to deploy probes; overhead when intercepting system
execution requests; time cost to extract system measurements
required by specified security metrics; and time cost in evaluating
metrics from collected security measurements. The first task is
fulfilled offline without any impact on system performance. The
same applies on the last one (evaluation) in case of security
metrics. The deployment of probes does not impact system
performance as well because we add interception points to the
application configuration file at run-time. Both system
interceptions for requests and measurements collections have
impact on system performance. To assess the approach
performance overhead, we ran a set of experiments compiling,
deploying, monitoring and analyzing the set of metrics as shown
in Table 2 on our Galactic multi-tenant cloud application when
under heavy user loading.

Table 4 summarizes the time taken in each of these aspects in
milliseconds. The time to deploy and intercept requests is
relatively constant and on average takes 3 and 5 mSecs
respectively. The time to generate measurement depends on the
number of measurements required to verify the property or the
metric (e.g. in information disclosure we need a measurement
from the authorization control and a measurement from the
method being accessed) and the details included in each
measurement record. The analysis time depends on the
complexity of the specified metric signature complexity. We
measured the performance overhead of the analysis component
on 100 system measurements. This is an offline task in security
metrics evaluation. However, the verification of security

properties requires the evaluation component to be online with
the application. The performance overhead results of both metrics
and properties show a very low performance overhead on
application performance.

V. SUMMARY
We introduced a new tenant-oriented security monitoring

approach that supports capturing and enforcing tenants’ security
policies and properties and assessing system security status using
statistical metrics. To the best of our knowledge, this is the first
approach that (i) delivers a tenant-oriented run-time security
monitoring approach; (ii) combines both security properties and
metrics; and (iii) uses an accessible specification language for
software and security engineers. Our approach delivers a formal
and familiar security metrics and properties specification
language using OCL supported by a system description meta-
model that helps in validating and compiling these signatures.
The formalized metrics signatures are used to generate security
probes that collect security measurements from a multi-tenant
cloud system at run-time. They are also used in generating
analysis programs that is used in analyzing the collected
measurements to verify the specified security properties and
assess system status. Our approach is extensible in terms of
entities to be monitored and attributes to be measured at each
measurement through customization of the system description
meta-model. We have evaluated our approach’s expressiveness
compared to existing efforts, soundness in assessing and
verifying such metrics, and the performance overhead of the
approach. The evaluation results show that our approach is sound
and expressive. It incurs very low performance overhead.

ACKNOWLEDGMENT
This research is supported by Swinburne, Swinburne

Software Innovation Lab (SSIL) and NICTA (Data61) as a part
of YellowBox research project.

REFERENCES
[1] M. Almorsy, J. Grundy, and I. Mueller, "An analysis of the cloud

computing security problem," in Proc. 2010 Asia Pacific Cloud
Workshop, Colocated with APSEC, Sydney, Australia, 2010.

[2] I. Ben Lahmar, H. Mukhtar, and D. Belaid, "Monitoring of Non-
functional Requirements Using Dynamic Transformation of
Components," in Proc. of The 2010 Sixth International Conference on
Networking and Services (ICNS), 2010, pp. 61-66.

[3] T. i. Holmes, E. Mulo, U. Zdun, and S. Dustdar, "Model-Aware
Monitoring of SOAs for Compliance Service Engineering," in Service
Engineering, S. Dustdar and F. Li, Eds., ed: Springer, 2011, pp. 117-136.

[4] A. J. Ramirez, B. H. C. Cheng, and P. K. McKinley, "Adaptive
monitoring of software requirements," in Requirements@Run.Time
(RE@RunTime), 2010 First International Workshop on, 2010, pp. 41-50.

[5] D. Lorenzoli and G. Spanoudakis, "EVEREST+: run-time SLA violations
prediction," in Proceedings of the 5th International Workshop on
Middleware for Service Oriented Computing, Bangalore, India, 2010.

[6] F. Raimondi, J. Skene, and W. Emmerich, "Efficient online monitoring of
web-service SLAs," presented at the Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations of software
engineering, Atlanta, Georgia, 2008.

[7] Roland Reichle, Mohammad Ullah Khan and Kurt Geihs, "How to
combine parameter and compositional adaptation in the modelling of self-
adaptive applications," presented at the PIK - Praxis der
Informationsverarbeitung und Kommunikation - Special Issue: Modelling
of Self-Organizing Systems, 2008.

[8] A. Amin, L. Grunske, and A. Colman, "An automated approach to
forecasting QoS attributes based on linear and non-linear time series
modeling," in Proc. of the 27th IEEE/ACM International Conference on
Automated Software Engineering, Essen, Germany, 2012, pp. 130-139.

[9] F. Chen and G. Roşu, "Towards monitoring-oriented programming: A
paradigm combining specification and implementation," Electronic Notes
in Theoretical Computer Science, vol. 89, pp. 108-127, 2003.

[10] K. Havelund, G. Ro, "An Overview of the Runtime Verification Tool Java
PathExplorer," Form. Methods Syst. Des., vol. 24, pp. 189-215, 2004.

[11] C. Colombo, A. Francalanza, R. Mizzi, and G. Pace, "polyLarva: Runtime
Verification with Configurable Resource-Aware Monitoring Boundaries,"
in Software Engineering and Formal Methods. vol. 7504, G. Eleftherakis,
M. Hinchey, and M. Holcombe, Eds., ed: Springer Berlin Heidelberg,
2012, pp. 218-232.

[12] P. O. N. Meredith, D. Jin, F. Chen, and G. Roşu, "Efficient monitoring of
parametric context-free patterns," Automated Software Engineering, vol.
17, pp. 149-180, 2010.

[13] L. Bauer, J. Ligatti, and D. Walker, "Composing security policies with
polymer," SIGPLAN Not., vol. 40, pp. 305-314, 2005.

[14] K. W. Hamlen and M. Jones, "Aspect-oriented in-lined reference
monitors," presented at the Proceedings of the third ACM SIGPLAN
workshop on Programming languages and analysis for security, Tucson,
AZ, USA, 2008.

[15] F. B. Schneider, "Enforceable security policies," ACM Trans. Inf. Syst.
Secur., vol. 3, pp. 30-50, 2000.

[16] S. Hussein, P. Meredith, G. Ro, "Security-policy monitoring and
enforcement with JavaMOP," presented at the Proceedings of the 7th
Workshop on Programming Languages and Analysis for Security, Beijing,
China, 2012.

[17] Ma Jianli, Zhang Dongfang, Xu Guoai and Yang Yixian, "Model
Checking Based Security Policy Verification and Validation," in 2nd
International Workshop on Intelligent Systems and Applications, Wuhan
2010, pp. 1-4.

[18] Arosha K Bandara, Emil C Lupu, and Alessandra Russo, "Using event
calculus to formalise policy specification and analysis," in IEEE 4th
International Workshop on Policies for Distributed Systems and
Networks. , 2003, pp. 26-39.

[19] G. Spanoudakis, C. Kloukinas, and K. Mahbub, "The SERENITY
Runtime Monitoring Framework," Security and Dependability for
Ambient Intelligence, Information Security, vol. 45, pp. 213-238, 2009.

[20] R. M. Savola and H. Abie, "Development of security metrics for a
distributed messaging system," in Proc. of The 2009 International
Conference on Application of Information and Communication
Technologies, 2009, pp. 1-6.

[21] R. M. Savola and H. Abie, "Identification of Basic Measurable Security
Components for a Distributed Messaging System," presented at the Proc.
of the 2009 Third International Conference on Emerging Security
Information, Systems and Technologies, 2009.

[22] R. M. Savola and P. Heinonen, "Security-Measurability-Enhancing
Mechanisms for a Distributed Adaptive Security Monitoring System," in
Proc. of The 2010 4th International Conference on Emerging Security
Information Systems and Technologies (SECURWARE), 2010, pp. 25-34.

[23] R. M. Savola and P. Heinonen, "A visualization and modeling tool for
security metrics and measurements management," in Proc. of 2011
Conference Information Security South Africa (ISSA), 2011, pp. 1-8.

[24] A. Muñoz, J. Gonzalez, and A. Maña, "A Performance-Oriented
Monitoring System for Security Properties in Cloud Computing
Applications," The Computer Journal, vol. 55, pp. PP. 979-994, 2012.

[25] M. ı. V. Cengarle and A. Knapp, "OCL 1.4/5 vs. 2.0 Expressions Formal
semantics and expressiveness," Software and Systems Modeling, vol. 3,
pp. 9-30, 2004.

[26] M. Almorsy, J. Grundy, and A. S. Ibrahim, "Automated Software
Architecture Security Risk Analysis Using Formalized Signatures," in
Proc. of The 36th International Conference of Software Engineering, San
Francisco, 2013, pp. 300-309.

[27] M. Almorsy, J. Grundy, and A. S. Ibrahim, "Supporting Automated
Vulnerability Analysis using Formalized Vulnerability Signatures,"
Swinburne University of TechnologyMarch 2012 2012.

[28] M. Almorsy, J. Grundy, and A. S. Ibrahim, "MDSE@R: Model-Driven
Security Engineering at Runtime," presented at the Proc. of the 4th
International Symposium on Cyberspace Safety and Security Melbourne,
Australia, 2012.

[29] M. Almorsy, J. Grundy, and A. S. Ibrahim, "TOSSMA: Tenant-Oriented
SaaS Applications Security Management Architecture," in Proc. of The
5th International Conference on Cloud Computing, Hawaii, USA, 2012,
pp. 981- 988.

[30] M. Almorsy, J. Grundy, and A. Ibrahim, "VAM-aaS: Online Cloud
Services Security Vulnerability Analysis and Mitigation-as-a-Service," in
Web Information Systems Engineering - WISE 2012, X. S. Wang, I. Cruz,
A. Delis, and G. Huang, Eds., ed: Springer Berlin Heidelberg, 2012, pp.
411-425.

[31] M. Almorsy, J. Grundy, and A. S. Ibrahim, "Adaptable, Model-driven
Security Engineering for SaaS Cloud-based Applications," Automated
Software Engineering Journal, vol. to appear, 2013.

[32] M. Almorsy, J. Grundy, and A. S. Ibrahim, "Supporting automated
software re-engineering using re-aspects," presented at the Proc. of 27th
IEEE/ACM International Conference on Automated Software
Engineering, Essen, Germany, 2012.

[33] I. Avazpour and J. Grundy, "CONVErT: A framework for complex model
visualisation and transformation," in 2012 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), 2012, pp. 237-238.

[34] T. a. Vajk, G. Mezei, and T. e. Levendovszky, "An Incremental OCL
Compiler for Modelling Environments," In Electronic Communications of
the EASST, vol. Volume 15: OCL Concepts and Tools., 2008.

[35] OWASP. (2006). Monitor security metrics. Available:
https://www.owasp.org/index.php/Monitor_security_metrics

[36] I. Cervesato, M. Franceschet, and A. Montanari, "A guided tour through
some extensions of the Event Calculus," Computational Intelligence, vol.
16, pp. 307–347, 2000.

[37] B. Baliś, M. Bubak, W. Funika, R. Wismüller, M. Radecki, T. Szepieniec,
et al., "Performance Evaluation and Monitoring of Interactive Grid
Applications," in Recent Advances in Parallel Virtual Machine and
Message Passing Interface. vol. 3241, D. Kranzlmüller, P. Kacsuk, and J.
Dongarra, Eds., ed: Springer Berlin Heidelberg, 2004, pp. 345-352.

[38] A. Vogelsang, A. Fehnker, R. Huuck, and W. Reif, "Software metrics in
static program analysis," in Proc. of the 12th international conference on
Formal engineering methods and software engineering, Shanghai, China,
2010, pp. 485-500.

[39] R. Wismüller, M. Bubak, and W. Funika, "High-Level Application
Specific Performance Analysis Using the G-PM Tool," in Recent
Advances in Parallel Virtual Machine and Message Passing Interface.
vol. 3666, B. Martino, D. Kranzlmüller, and J. Dongarra, Eds., ed:
Springer Berlin Heidelberg, 2005, pp. 317-324.

[40] M. Almorsy, J. Grundy, and A. S. Ibrahim, "Supporting automated
vulnerability analysis using formalized vulnerability signatures,"
presented at the Proc. of 27th IEEE/ACM International Conference on
Automated Software Engineering, Essen, Germany, 2012.

[41] G. Spanoudakis, C. Kloukinas, and K. Androutsopoulos, "Towards
security monitoring patterns," presented at the Proceedings of the 2007
ACM symposium on Applied computing, Seoul, Korea, 2007.

[42] W. Jansen, "Directions in Security Metrics Research," NIST2009.
[43] S. Stolfo, S. M. Bellovin, and D. Evans, "Measuring Security," Security &

Privacy, IEEE, vol. 9, pp. 60-65, 2011.
[44] M. Kamalrudin, J. Hosking, and J. Grundy, "Improving requirements

quality using essential use case interaction patterns," presented at the
Proceedings of the 33rd International Conference on Software
Engineering, Waikiki, Honolulu, HI, USA, 2011.

