
SMURF: Supporting Multi-tenancy Using
Re-Aspects Framework

Mohemed Almorsy and John Grundy

 Computer Science & Software Engineering, Faculty of Information & Communication Technologies
Swinburne University of Technology, Hawthorn, Victoria, Australia

[malmorsy, jgrundy]@swin.edu.au

Abstract — Software-as-a-service multi-tenancy helps service
providers to cut cost, improve resource utilization, and reduce
service customization and maintenance time as the tenants
share the same service instance. However, existing large-scale
business applications inherently do not support multi-tenancy.
This hinders these applications’ vendors from adopting the
cloud model. Thus reengineering such applications to support
multi-tenancy has become a key requirement. Reengineering
such applications to support multi-tenancy is a complex and
challenging task as it requires a deep understanding of the
given application and almost all system modules need to be
revisited. In this paper we introduce SMURF, Supporting
Multi-tenancy Using Reengineering Aspects “Re-Aspect”
Framework, to help service providers reengineering their
applications to support multi-tenancy. SMURF is based on our
new re-aspects concept. A given system modification including
code to be disabled, modified, replaced or injected is
encapsulated in a re-aspect. SMURF realizes given system
modifications by automating the change impact analysis
process as well as the change propagation process. We analyze
the multi-tenancy pattern, discuss the set of requirements to
migrate a single-tenant application to support multi-tenancy,
describe SMURF approach, architecture and implementation.
We discuss our evaluation experiments of SMURF using a set
of open source web applications.

Keywords: Cloud Computing; Software-as-a-Service; Multi-
tenancy Reengineering; Re-Aspects

I. INTRODUCTION
Cloud computing [1] is a new paradigm shift in

computing platforms with an emphasis on increasing
business benefits. The cloud model is leading the IT
industry towards new service delivery models based on
service outsourcing and the pay-as-you-go payment model.
Customers can rent services occasionally and pay only for
amount of resources they use. Software-as-a-service (SaaS)
[2] is one of the key service deliver models delivered by the
cloud computing. SaaS helps reducing infrastructure, license
and administration cost. This helps servicing small and
medium enterprises (SMEs) “long-tail-market” as well as
mega customers at the same time probably on the same
service instance using multi-tenancy pattern.

Multi-tenancy helps in delivering services including
infrastructure, platform and software that can be shared
between different tenants. In the IaaS model, multi-tenancy
is achieved through using hypervisors that virtualize the
server resources. Thus the OS does not need to be changed.

Moreover, each customer has a separate instance (VM).
However, In the SaaS model, multi-tenancy has different
possible deployment models including a separate instance
for each tenant up to a single instance for all tenants. The
later deployment model is definitely the optimal model.
However, it requires the SaaS application to handle multi-
tenancy and tenants isolation itself.

Supporting multi-tenancy requires the SaaS application
to support capturing, processing and storing data of different
tenants in the same application instance. Moreover, the SaaS
application should maintain security and performance
isolation between its tenants. This requires considering
multi-tenancy as a key requirement from the early stage of
the system development process. Many of the existing well-
known, large-scale business applications that are widely
used nowadays are locked-in a high cost business model.
This prohibits them from targeting/servicing the “long-tail-
market”. Thus, it becomes a business need to migrate such
applications to support multi-tenancy. Migration of such
applications to support multi-tenancy is a very complicated
task as it requires a deep understand of the application.
Moreover, there are lots and lots of system modifications
are required to be delivered. This requires revising/updating
almost all system modules.

Existing efforts to support multi-tenancy either focus on
extending applications to support multi-tenancy by
wrapping a single-tenant application with a platform that
manages the multi-tenancy dimension [3-8]. The same
approach has been followed in industrial efforts as well [9].
Using these approaches, applications are locked-in to cloud
platforms that have such multi-tenancy platform hosted.
Moreover, features such as user interface customization,
application model extension, etc. will not be available for
tenants if the original applications do not support them.
Limited efforts targeted conducting real reengineering of
applications to support multi-tenancy [10, 11]. These efforts
focus only on providing a systematic process to be followed
by system engineers to support multi-tenancy. It does not
have tool support to automate this process.

We introduce SMURF, a novel application
reengineering process and approach, along with a tool
support, to support multi-tenancy. Our approach is based on
reengineering-aspects “Re-Aspects” concept where a given
system modification (change request) is captured as a re-
aspect. The re-aspect includes the signature of code snippets

jgrundy
17th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS 2012), Paris, France, July 2012, IEEE CS Press.

to be modified, action to be applied on identified locations
(instances of these signatures) include inserting, modifying,
replacing, or deleting code parts, and code to modify,
replace or insert. We conduct a thorough analysis of the
multi-tenancy pattern for web applications and come up
with a set of key requirements/modifications that should be
addressed at the database, data access layer, business logic
layer, and presentation layer levels. Moreover, we studied
the requirements for security and performance isolation.
We developed a set of modification patterns that the system
engineers can use when reengineering applications to
support multi-tenancy. Given these modifications specified
as re-aspects, SMURF analyzes the system source code to
identify code snippets that match the specified re-aspect’s
signatures, and then it performs impact analysis to identify
the entities that need to be modified to realize the given
modification. Finally, SMURF use the specified re-aspect
actions to update the identified matches. We have
implemented a prototype for SMURF and tested it in
reengineering an ERP system, developed internally, to
support multi-tenancy. We have evaluated our approach in
reengineering a set of open source web applications to
support multi-tenancy.
 The paper is organized as follows: section II shows a
motivating example for our research problem. Section III
reviews related work in the area of reengineering SaaS to
support multi-tenancy. Section IV introduces an analysis of
the SaaS multi-tenancy reengineering requirements. Section
V gives an overview on Re-Aspects. In section VI, we
discuss the implementation of our approach. Section VII
shows the results of evaluating our approach in
reengineering a set of open source applications. Section IX
explains the implications of our work and further research.

II. MOTIVATION
Consider SwinSoft a software house that has an existing

web-based ERP system called Galactic. Galactic is
developed using C# and ASP.net. It is currently used by a
noticeable number of customers. SwinSoft is attracted by
potential market share of SaaS. Thus they has decided to
migrate Galactic to the cloud (to support multi-tenancy) to
address the long tail market customers and increase their
return of investment.
 Galactic delivers a set of modules including sales
management, human resources management and purchasing.
Its architecture is made up of a database that has more than
100 tables along with a set of views and stored procedures.
Some of these tables are expected to maintain huge number
of records including customers, invoices, payments and
returns tables. The data access layer developed using
NHibernate; a business logic layer including business
objects, business rules and workflow; and presentation layer
developed using ASP.net. Data lookups are retrieved using
stored procedures directly without using business objects.
 SwinSoft has conducted a preliminary analysis to
identify the requirements to address to support multi-
tenancy. The key requirements identified from this analysis

include securely isolating different tenants’ data, supporting
extensible database schema (tenants can define their own
fields), user interface customization and branding per tenant,
different workflow and business rules based on current
tenant, etc. On the other hand, SwinSoft is suffering from a
high turnover rate. Moreover, the documentation of Galactic
is outdated. It is highly required to lunch Galactic-for-Cloud
as soon as possible to take part in the market share.

III. RELATED WORK
The area of multi-tenant cloud applications is relatively

new. Moreover, a limited number of these efforts focus on
reengineering applications to support multi-tenancy as a
new architectural pattern. Most of these efforts target
introducing system wrappers to adapt existing single-tenant
applications to support multi-tenancy without modifying the
target system itself. Bezemer et al [12] discuss the possible
challenges in migrating a single-tenant application to
support multi-tenancy. This includes performance, security,
scalability, Zero-Downtime, etc. They also propose a new
blueprint of a SaaS platform [3] that can extend a single
tenant application to support multi-tenancy. The platform
wraps the system and extends its authentication and
configuration capabilities to support multi-tenancy.
Moreover, the platform has a filtering component that stands
between the system and the database. It adds “tenantID = X”
filter to every query sent to the database. Although, the
platform requires limited modifications, it depends on the
target system delivered features. Thus if the system does not
support defining custom fields for example, the multi-tenant
version will not support it. Moreover, it has a performance
overhead as every transaction has to pass through the
platform first. Hong Cai et al [4, 5] propose a transparent
approach to transform existing web applications into multi-
tenant SaaS applications. They intercept Web requests to the
target system and derive the tenant context, carry the tenant
context with a thread in the Web container, manipulate the
isolation points, and propagate tenant context to application
resources. Chang Jie Guo et al [6] developed a multi-
tenancy enabling framework. The framework is based on a
set of common services that provide security isolation and
performance isolation. Their security isolation pattern
considers the case of different security requirements (for
authentication and access control only). However, it
depends on the tenant’s administration to manually
configure security policies, map tenant’s users and roles to
the application predefined roles. Dunhui et al [7] propose an
architecture for cloudification of legacy applications. The
architecture consists of three parts: a Web portal, a SaaS
service supermarket, and a SaaS application development
platform. The web portal and the Saas application
development platform are fixed components will the SaaS
service supermarket is used to register a given legacy
system. IBM [9] introduce application reengineering process
along with a multi-tenant server to enable applications to
support multi-tenancy without re-engineering. Application

requests to access the database are passed to an abstract
database that can append filters for requests based on the
requesting tenant. Application configuration is supported by
a SaaS Cockpit.

Xuesong et al [10] introduce a systematic process to
extend applications to support multi-tenancy. They focus on
data model, access control and tenant management aspects.
They define a target multi-tenant application architecture
model and define gaps between the existing legacy
application and the target model. For each requirement they
describe what the service providers need to do to meet the
specified requirements. No tool support to help service
providers in identifying or realizing the possible gaps.

IV. ANALYSIS OF MULTI-TENANCY RE-ENGINEERING
REQUIREMENTS

Before we explain how to migrate applications to
support multi-tenancy using SMURF, we introduce an
analysis of the possible modifications that may be required
when reengineering an application to support multi-tenancy.
We project our analysis to a typical architecture of a web
application explaining what need to be added, modified,
replaced, or deleted during the process of supporting multi-
tenancy. Service providers have to make their own decisions
based on their application architecture and the multi-tenancy
paradigm they plan to adopt.

A. Multi-tenant Data Model
The multi-tenant application’s database has different

possible architecture models. The service provider has to
select between these architecture models based on the
isolation level they plan to deliver, scalability of the
application, number of tables, expected sizes of the data
tables and impact on system performance, and many other
factors. This architecture models include [13]:
1. Separate database. In this model, the service provider
maintains a separate database for every tenant. This
represents the highest level of isolation of the three models.
Moreover, this model is the easiest model for migration. On
the other hand, database servers are usually limited in
number of databases that they can host.
2. Shared database but separated schema. In this model, all
tenants share the same database but different schemas. Thus
each tenant has his own set of tables grouped under one
schema. This provides a logical isolation between tenants’
data. This approach has a problem with database restore.
Moreover, this approach is suitable for applications that
have small number of tables. It mitigates the limitation arise
from using separate database.
3. Shared database and shared schema. In this model, all
tenants share the same database and the same schema.
Although this model is considered the most cost effective
solution, it highlights the isolation problem between tenants’
data. Developers have to make sure that every tenant cannot
access other tenants’ data. This may require modifying the
whole application to consider passing the tenantID in every
query. This requires an intensive analysis of every system

function. A simple common solution to this problem is to
use database views to perform the filtering task. This in turn
requires modifying all database queries to work on views-
level not tables. To save these efforts, developers can
rename all tables to be (initial + table name) – e.g. rename
table Employees to sys_Employees. Then create views for
all tables with the original table name – e.g.

CREATE VIEW Employees AS
SELECT * FROM sys_Employees WHERE TenantID = USERID

Thus all application queries will be projected on views
where data are already filtered by the current tenant. Of
course, this requires using security impersonation when
application connects to the database server. Another
possible option is to modify the database connection in the
data access layer so that all requests are redirected to a
proxy where queries are validated and filtered before
submitted to the actual database.
4. Mix Model. In this model, the service provider support
different data models and leave it to the tenant to select the
model that best fits his needs (scale, security…).

Another issue that should be considered is how to enable
data model extensibility – i.e. every tenant may have special
fields or data items that they need to maintain for every
operation (record). This is straight forward when
maintaining separate database or separate schema per tenant.
However, it still has to be propagated to the next layers.
There are different approaches to realize the data model
extensibility including: pre-allocated fields where service
providers define a set of dummy columns in every table they
expect that their tenants may need to extend; Name-value
pairs where the service provider define one or more table to
maintain other tables extensions. This table structure will
look like tableID, tenantID, attributeName, and
attributeValue; and XML extension column where every
table has a predefined column of type XML where tenant
extension columns can be maintained as one entity that can
be saved and loaded.

The selection of the database model and the model
extensibility to adopt, impacts the modifications required in
the next layers/tiers.

B. Data Access and Business Logic Layers
In these layers we need to modify public methods’

signatures to expect tenantID as a parameter. Methods’
bodies should be modified as well to process the tenantID –
e.g. adding tenantID to database queries, file access
commands, database connection strings, loading business
rules, loading and initializing workflow engine based on
current tenant. The tenantID is usually propagated from the
presentation layer to these layers. Both the data access layer
and the business logic layer should handle custom fields
(data model extension) based on the model adopted in the
database. This includes how to load, store, and query these
fields. Business objects’ classes should be modified to
include data members for tenant’s information.

C. Presentation Layer
This layer has a set of potential modifications including

user interface customization and branding (e.g. company
logo, styles, themes, etc.), adding TenantID to session state,
modifying calls to business logic layer functions to pass
tenantID, modifying used business objects to set/get
tenantID. Moreover, the presentation layer should support
displaying different custom fields based on the current
requesting tenant.

D. Non-Functional Requirements
Multi-tenant application has to be scalable to support the

potential number of tenants and their workloads. This
requires the service providers to deploy their application
using web farms and clusters. SaaS SLAs usually capture
tenants’ security, performance, availability, etc.
requirements that should be satisfied by the SaaS
application. This resulted in issues related to how to
maintain performance isolation where the execution flow of
a given tenant should not be impacted by other tenants’.
Load balancers with performance controllers can help in
solving this problem. This requires applications to be
stateless. SaaS applications should maintain session
information either on the client side or on a shared server
that is accessible to all other servers in the cluster.

Security is another nonfunctional requirement that
should be addressed. A SaaS application should support
customizing applications to support tenants’ security
“tenant-oriented security”. This can be achieved by
externalizing the security from the multi-tenant system by
calling a standard library that performs authentication,
authorization, etc. based on tenants’ requirements and
security controls. This enables every tenant to use his
security controls – e.g. to use his LDAP server to
authenticate and authorize users.

E. Metadata services
This is a key module in a multi-tenant application. It

helps tenants and service providers to customize (branding)
the application to match tenants’ business needs. This
includes customizing the user interface text, fields,
visibility, and security capabilities, customizing the business
workflow and business rules.

F. Tenant On-boarding (Tenant Provisioning System)
The registration of a new tenant should be managed by a

separate tenant administration service (may be an extension
of an existing system administration module). This includes
batches to restore a new database instance of the system
template if the “separate DB” model is applied, or create a
new schema with necessary tables. This module should also
enable specifying security permissions for users, roles,
screens and controls. It may also include screens’
customization and localization.

Table1 shows a summary of the modifications required
in reengineering a given system to support multi-tenancy.

V. RE-ASPECTS OVERVIEW
The reengineering aspects “Re-Aspect” is a new concept

inspired from the AOP in order to effectively support
system re-engineering and maintenance domains. In re-
engineering, an existing target application has code scattered
through it that we need to remove, replace, modify or add
additional code to, in order to effect the desired changes. In
effect, we want to identify such code blocks, sometimes
replacing them, sometimes selectively modifying, and
sometimes inserting new code into them. Such code blocks
can be coarse-grained (classes and methods) or fine-grained
(lines-of-code). Moreover, these blocks may have different
formats, structure or even written in different languages.
This leads us to the concept of re-engineering aspects, or
“re-aspects”. A Re-aspect is analogous the “aspect” in
traditional AOP excepting that we want to apply
modification actions on the matched source code blocks in
the target system.

A re-aspect specifies an atomic modification to be
applied on the target system. Figure 1 shows the re-aspect
definition grammar. Every re-aspect should have signature,
action, and an advice. A re-aspect signature defines the
target system entities that should be
deleted/modified/replaced or into which new code is
inserted – may be a line of code or declaration, whole
method, or class. The signature should specify the signature
type and the signature expression. A re-aspect instance is a
system entity that matches a given re-aspect signature. A re-
aspect action specifies what to do in every identified re-
aspect instance. The action should specify the action type
and conditions, if any. The advice specifies code to replace
or inject or the code used to modify the existing code.

Re-aspect Definition ::= s:{Signature} a:{Action} d:{Advice}
 Signature ::= st:Signature Type se:{Signature Expression}
 Signature Type ::= code-snippet | ocl-expression
 Action ::= at:Action Type ac: {Action Condition}
 Action Type ::= Delete | Modify | Replace | Inject
 Action Condition ::= ocl-expression

Figure 1: Re-aspect Grammar
Based on the re-aspect action type, we have four

possible re-aspects types: Adding re-aspect: this is a
conventional aspect. Code to be injected is specified in a
separate advice that is weaved with the target system at a
given re-aspect instance. It has more capabilities to add any
static structure to system entities. Deletion re-aspect “anti-
aspect”: this re-aspect has only signature and no
implementation. The identified code blocks - re-aspect
instances - are removed from the target system. Replacing
re-aspect: this aspect is a combination of deletion and
adding-aspect. It includes signature of code to be removed
and an advice to be injected. Modifying re-aspect: this is the
most complicated re-aspect. It makes use of the identified
re-aspect instance code to allow the aspect developer to
specify selective deletion, reordering, or addition of new
nodes into the identified code instance.

Supporting system reengineering requires a powerful
signature specification approach. Re-aspect supports hybrid

approach based on a flexible syntactical code snippet
signature specification approach and a semantic signature
specification approach.

1
2
3
4
5
6
7
8
9

10
11
12
13

//update namespace name for specific namespace, if any
 namespace DummyNamespace {
// update Class name for re-aspects on specific class
 class DummyClass {
 // update method modifier, return type or
 // name for specific method signatures
 public void DummyMethod() {
 DummyStatement;
 // update method body in case of code block re-aspect
 if (DummyCondition) {
 }
 for (dummy1; dummy2 ; dummy3) {
 } } } }

Figure 2: code snippet re-aspect template
The Syntactical Code Snippet Pointcut Designator (Fig2)
helps developers to specify a flexible code snippet as a re-
aspect signature. Developers can specify in which
namespace, class, or method this code snippet signature
should exist or they can leave it dummy which means that
any class, or method that matches the code snippet. The
same applies for method body statements.

A Context Method inv PublicMethods:
 self.IsPublic = true

B Context Method inv:
self.Body.Contains(stmt:InvocationExpression |
stmt.Method.Name = “XYZ”)
Listing 1: Sample OCL-based re-aspect signatures

The Semantic Pointcut Designator (OCL-based) approach
(Listing 1) supports more formal and semantic re-aspect
signatures. It uses the Object Constraint Language (OCL) as
a signature definition language. It is easier, familiar for
developers. Moreover, it is extensible and formal. To
support specifying an OCL constraint, we developed a
system-description class diagram capturing entities that
exist in a given system including component, class, instance,
method, inputs, and input sources. This model is used as a
reference to validate developers’ specified OCL signatures.

Figure 3: Re-Aspects system reengineering Framework
VI. SMURF: SUPPORTING MULTI-TENANCY USING RE-

ASPECTS FRAMEWORK
The architecture and process of reengineering an application
using re-aspects framework, Figure3, goes as follows:
Build the Target System Model – This is automated using
reverse engineering techniques either applied on system
binaries (Reflection) or system source code (using language
parsers). If the system models already exist (UML), we can
use them directly.

Model System Perspectives - This step is very crucial in case
we are interested to get SMURF to help in specifying re-
aspects signatures that take into account system perspectives
rather than source code – e.g. get all methods that realize a
given feature such as workflow engine. Moreover, it helps
in extending the change impact analysis of a given change
request to include system perspectives – e.g. test cases,
features, security as well as source code entities.
Model Re-aspects – System engineers model system
modifications they want to carry out on the target system.
For each required system modification, system engineers
specify a set of re-aspects that delete, replace, modify, or
insert code at different places based on a given re-aspect
signature. Fig4 shows a sample of a re-aspect definition.
This is a re-aspect to modify business layer methods and
add a tenantID parameter. The re-aspect signature type is
(OCL), the re-aspect signature is (get all methods in the
business layer). The action type to apply is (modify), the
action condition is (methods that do not have parameters of
business-object which should have the tenantID
encapsulated inside the given business object. The advice to
apply is to modify the method signature by adding more
parameter called TenantID with type string. Table2 shows a
summary of possible system modifications re-aspects’
signatures for modification shown in Table1.

1
2
3
4
5
6
7
8
9

10

s:{ st:OCL
 se:{
 Context Method inv: self.Contains(s : MethodDeclaration |
 s.Namespace.Contains(“BusinessLayer”))
 } }
a:{ at:{Modify}
 ac:{self.Params.OCLType().BaseClass <> “BusinessObj” } }
d:{
 self.Params.Add(new Parameter(“string”, “TenantID”)
 }

Figure 4: Re-aspect Instance
Locating Defined Re-aspects - Given a re-aspect definition,
SMURF checks the aspect signature type first. If it is a code
snippet it traverses the code Abstract Syntax Tree (AST)
looking for matches to the given re-aspect signature. If it is
OCL-based, it generates a Visitor class to implement the
specified OCL constraints to be used while traversing AST
nodes. Fig5 shows a snapshot of the UI of the re-aspect
locator. We developed this locator to be used in testing
purpose while developing re-aspects’ signatures, we can use
this tool to make sure that the specified signature retrieves
the expected instances.
Re-aspects Enforcement – Given the identified instances of
the current re-aspect, SMURF executes the specified actions
for the given re-aspects including injecting code (adding re-
aspect), removing code (anti-aspect), replacing code
(replacing re-aspect), or executing the aspect code
(modifying-re-aspect). The Aspect Enforcer propagates
changes on source code as well as the system class and
perspectives’ diagrams. Then it compiles the resultant code
to make sure that no compilation errors have been
introduced. The code injected by the enforcer depends on
the target system entity language not on the aspect language.

Figure5: Re-Aspect Locator

VII. USAGE EXAMPLE
Here we demonstrate how the service provider can use
SMURF in reengineering their applications to support multi-
tenancy. We use the motivating example from section II.
1. Define change requests’ and signatures: SwinSoft
system engineers should define signatures for isolation
points including fields and methods. Examples of isolation-
points signatures defined using re-aspects specification
language are shown in Listing2. Table1 shows a full list of
possible system modifications. Table2 shows a full list of
their corresponding re-aspects’ signatures. These tables can
be used as a reference for engineers based on their needs.

Static Fields Context FieldDeclaration inv staticFields:
Self.IsStatic = true AND
Self.ParentClass.IsPublic = true

Presentation
Layer Methods

Context Method inv PublicMethods:
self.IsPublic = true AND
self.Class.Parent = “Page”

Listing 2: Samples of isolation-points signatures
2. Locating Isolation-Points: the re-aspects framework
uses the specified re-aspects signatures defined by the
system engineers in the previous step. The framework
engine locates code snippets/entities that matches the
signatures specified, as shown in Fig5.

Modify Method
Signature

Method.Parameters.Add(new
Parameter(“TenantID”, “Guid”)

Inject code to
extract TenantID

String currentTenatID = Session[“TenantID”];

Modify Method
Invocation

InvocationExpression.Argument.Add(new
IdentifierExpression(currentTenatID));

Inject code to
add TenantID
Param

db.AddInParameter(command, "tenantId",
DbType.Guid, tenantId);

Listing 3: Samples of code modifications aspects
3. Specifying Required Modifications: the next step in
our reengineering process is to define modifications to be
applied on every Re-Aspect instance. Static Fields may be
replaced by lists or dynamic arrays, or it may be replaced by
a class that reads and writes these values in configuration
files based on current requesting tenant. Methods identified
in the Presentation layer should be modified to extract
tenantID from the current session context. And all calls to
business logic layer methods should be updated by passing

TenatID. Listing3 shows examples of these system
modifications. Here we have different possible
modifications including modify, inject, delete, and replace.
4. Applying the Specified Re-Aspects: SMURF applies
the specified modifications on the identified re-aspects’
instances. This results in updating the application source
code – i.e. weaving specified advices (Listing3) at the
identified re-aspects’ instances.

VIII. IMPLEMENTATION
SMURF is implemented using .Net technology. Re-

aspects details (signature, action, advice) are captured using
a domain-specific visual language developed by Microsoft
VS2010 modeling tool. We use .Net parsers to generate the
system Abstract Syntax Tree (AST) for the given system.
This helps in simplifying OCL signatures to be on abstract
level not code level.

The signature locator module traverses the source code
AST to locate code parts that match re-aspects captured as
code snippets. If the re-aspect signature is defined as OCL
expression, the signature locator generates a corresponding
visitor class (a class that is used to traverse AST looking for
nodes of special types and build special conditions).
Methods of the visitor class are triggered whenever a match
is found in the AST. The signature locator has a UI where
system developers can test their signatures validity.

The weaving module is used to update the source code
with actions specified in the re-aspect’s definition. The
procedure to follow in weaving depends on the re-aspect
type. For addition re-aspect, the weaver injects the re-aspect
advice source code at the re-aspects instances’ locations. For
deletion re-aspect, it deletes the retrieved nodes (re-aspects’
instances) directly from the source code AST. For replacing
re-aspect, it translates the given replacing code into AST
and the deletes the AST node of the re-aspect instance and
insert the new code sub-AST instead of it. For modifying re-
aspects, the weaver uses the specified re-aspect advice (how
to modify) as a function and pass the re-aspect instance by
reference to the advice code, which can modify the passed-
in AST.

Table1: List of changes required for every layer
Layer Change Request

Presentation Layer (1) All web pages should load layout, localization and menus based on requesting tenant.
(2) Entity extension fields should be loaded based on current tenant.
(3) Every page grid-view column, user control should be enabled based on user security customization for current user’s tenant.
(4) All business functions should receive tenantID param.
(5) Set tenantID field for every business entity created in the presentation or the business logic layer.
(6) All entities display pages should include the tenant defined custom fields.
(7) All entity insert/edit pages should include the tenants’ defined custom fields.

Business Layer (8) All workflow definitions should filter by tenantID.
(9) Update web services to have tenantID param.
(10) Update all business functions to have tenantID param.

Data Access (11) All SQL queries should filter by tenantID.
(12) All Linq queries should filter by tenantID.
(13) All stored procedures should have parameter tenantID.
(14) All business entities should have extra attribute of tenantID.

Database (15) Update all database tables with tenantID column.
(16) Add new table for tenants’ data.

QOS (17) User Authentication and Authorization should be done through the customer security controls, if any.
(18) Support Load balancing and meet tenants’ SLA.

Table2: List of Re-Aspects defined in Table1 signatures
CR No. CR Signature

1 Context Method inv loadMethods: self.Class.GetBaseType() = “Page” AND self.Name = “Page_Load”!
2 Context Method inv fieldExtension: self.Class.GetBaseType() = “Page” AND self.Name = “Page_Load” AND self.Contains(s : IfElseStatement |

s.condition = “Page.IsPostBack”
3 Context Method inv fieldSecurity: self.Class.GetBaseType() = “Page” AND self.Name = “Page_Load” AND self.Contains(s : IfElseStatement |

s.condition = “Page.IsPostBack”
4 Context Method inv businessfns: self.Contains(s : InvocationExpression | s.fnName.Contains(“BusinessLayer”))
5 Context Method inv businessentity: self.contains(s : newObjectStatement | s.ClassName = “businessentity”)
6 Context Method inv fieldExtension: self.Class.GetBaseType() = “Page” AND self.Name = “Page_Load” AND self.Contains(s : IfElseStatement |

s.condition = “Page.IsPostBack”
7 Context Method inv fieldExtension: self.Class.GetBaseType() = “Page” AND self.Name = “Page_Load” AND self.Contains(s : IfElseStatement |

s.condition = “Page.IsPostBack”
8 Context Method inv wrkflwfns: self.Class.Component = “Workflow”
9 Context Method inv webservicemethods: self.Class.GetBaseType() = “Webservice”

10 Context Method inv businesfns: self.Class.Component = “BusinessLayer”
11 Context Method inv sqlqueries: self.Contains(s: InvocationExpression | s.fnName = “ExecuteScalar” OR “ExecuteQuery”)
12 Context Method inv Linqqueries: self.Contains(s: QueryExpression)
13 Context Method inv sqlqueries: self.Contains(s: InvocationExpression | s.fnName = “ExecuteScalar” OR “ExecuteQuery”
14 Context Class inv businessentityDef: self.ClassName = “businessentity”

15, 16 DB script
17 Context Method inv sqlqueries: self.Contains(s: InvocationExpression | s.fnName = “Redirect” AND TargetObject = “Response” AND

Arguments.Contains(“Login.aspx”)
18 Context Class inv sessionmgmt: self.GetBaseClassType() = “IHttpModule”

Table 3: Results of validating SMURF against .Net open source applications and its performance

IX. DISCUSSION
A. Experimental evaluation
To evaluate our re-aspects-based multi-tenancy re-
engineering approach - SMURF, we have identified a set of
18 changes that should be implemented on a given web
application to enable multi-tenancy, shown in table 1. We
have grouped these requirements based on the layer it is
related to (presentation layer, business logic layer, etc.). For
each one of these changes we have developed a re-aspect
signature as well as actions required to be taken for each re-
aspect, shown in table 2. These signatures need to be
changed slightly from an application to another. We have
used SMURF to migrate a set of five .NET applications,

shown in Table 3. Table 3 shows that we have successfully
applied SMURF to migrate these applications. Some of
these applications do not have features that we look for to
change (○). SMURF failed to apply some changes on a set of
given applications (×). This is specific for BlogEngine as
code is mixed with html in the same file. Also SMURF has
successfully implemented other changes (√). We have
evaluated the SMURF performance in locating the instances
to be identified for all changes defined in table1. The results
of our performance evaluation are shown in table 3.
B. Threats to validaty
SMURF is based on the “re-aspects” concept, where
engineers specify change requests required on a target

System KLOC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Time (sec)
GalacticERP 7 √ √ √ √ √ √ √ √ √ √ √ √ ○ √ 8
PetShop 1 √ √ √ √ ○ √ √ ○ ○ √ √ ○ ○ √ 5
SplendidCRM 194 √ ● √ √ ○ √ √ × ○ ○ √ √ ○ 90
NopCommerce 355 √ √ √ √ √ √ √ √ √ √ √ √ √ √ 205
BlogEngine 18 √ × √ √ √ × × ○ ○ ● √ √ ○ √ 15

 (√) CR successfully implemented (●) CR Partially succeeded
 (×) CR modification failed (○) CR is not required

system to replace, insert or modify system code snippets to
meet the new requirements. Re-aspects provide more
customizable actions than weaving code before, after or
around a system entity (AOP). Re-aspects signatures are
highly flexible to capture syntactical and semantic code
snippets and signatures on abstract representation rather
than the system source code. Re-aspects signatures can also
capture semantic signatures with dimensions other than code
such as system features, architecture, design and testing
entities using OCL expressions. A Key issue with the re-
aspect signature is how to make sure that the developers
have written the correct signature definition for target
system entities they want to locate and change. This is, of
course, also an issue for conventional AOP aspect
specification and debugging. Currently we provide the re-
aspect locator UI, Fig5, to help developers in testing their
signatures. Moreover, we depend on testing to make sure
that the specified modifications correctly implemented.

Code updating usually suffers from code dependency
problems where the existing code depends on code parts that
we have modified, replaced or taken out. We have identified
two key cases for dependency analysis. First, change in an
entity static structure – e.g. changing a method name from
M1 to M2 - typically impacts other system entities “global
impact”. Existing efforts identify entities that need to be
modified – e.g. methods that call method M1. In our
approach we support a further analysis by generating
signatures of entities to be modified – e.g. as we renamed
M1 to M2 we generate another re-aspect with signature
specifying locating all method invocation to M1. Thus using
the re-aspect locator we pinpoint not only the entities but
also the specific lines of code to be updated in every entity.
Table 3 shows different examples of system updates along
with the further modifications required along with their
signatures. Code required for update may be easy to deduce
– e.g. changing name from M1 to M2 is easy to handle. But
some cases such as adding a new method parameter,
requires manual specification by the re-aspect developer to
specify how to obtain get/pass the new argument in every
method call. Second, change in a method body. In this case
we use existing techniques of control flow and data flow
analysis to make sure that the resultant code is still
consistent. Moreover, we compile the resultant code to
make sure that no compilation errors have been introduced
during the reengineering process and the final binary file is
verified using Microsoft PEVerify.
The re-aspects concept is generally extensible. System
engineers can specify their own re-aspect type that does
actions other than those delivered by our original re-aspect
objective – e.g. code-documentation or code-printing-re-
aspect is to document, print, or may be translate to another
language, code snippets that match a given aspect signature.
Our prototype SMURF delivers model-driven support for
re-aspects and applying them onto source code and relevant
system models. This helps saving time required to
understand the target system and in conducting system

maintenance tasks by using a more visual and model-driven
approach rather than using re-aspects scripts. SMURF,
while re-engineering, takes into consideration updating
other system models such as system features, architecture,
design, aspects, etc. This helps solving the inconsistency
problem, between the system source code and models.

X. SUMMARY
We introduce a new multi-tenancy reengineering approach –
SMURF – that help software engineers in migrating their
applications to support multi-tenancy. SMURF is based on
the re-aspects concepts where software engineers model the
modifications they need to apply on their systems in terms
of reengineering aspects. A re-aspect capture the signature
of system entities to be modified in terms of OCL
constraints; actions to be applied including insert, replace,
modify, and delete; and code to apply. SMURF then uses
these re-aspects’ signatures to locate system entities to be
modified and applying the actions specified for each re-
aspect. We have developed the set of modifications that may
be required to migrate a given system to multi-tenancy. We
used these modifications’ set in validating SMURF against a
set of five open source .Net applications. SMURF
successfully helped in migrated these applications to support
multi-tenancy. We have conducted performance evaluation
of SMURF in migrating applications with different sizes.
SMURF focuses on updating the original application to
support real multi-tenancy instead of using SaaS platforms
that wrap the single-tenant applications and simulate multi-
tenancy only as security filters.

REFERENCES
[1] Mohamed Almorsy, John Grundy, and Ingo Mueller, "An analysis of the cloud

computing security problem," presented at the Asia Pacific Cloud Workshop,
Colocated with APSEC2010, Sydney, Australia, 2010.

[2] Peter Mell, and Tim Grance, "The NIST Definition of Cloud Computing," 2009,
www.wheresmyserver.nz/storage/media/faqfiles/cloud-def-v15.pdf, (April, 2010).

[3] C. P. Bezemer, A. Zaidman, B. Platzbeecker, T. Hurkmans, and A. t Hart,
"Enabling multi-tenancy: An industrial experience report," in Software
Maintenance (ICSM), 2010 IEEE Int. Conference on, 2010, pp. 1-8.

[4] Hong Cai, Ning Wang, Ming Jun Zhou, "A Transparent Approach of Enabling
SaaS Multi-tenancy in the Cloud," in 6th World Cong. Services, 2010, pp. 40-47.

[5] Hong Cai, Ke Zhang, Ming Jun Zhou, et al, "An End-to-End Methodology and
Toolkit for Fine Granularity SaaS-ization," in IEEE Int. Conference on Cloud
Computing, 2009, 2009, pp. 101-108.

[6] Chang Jie Guo, Wei Sun, et al, "A Framework for Native Multi-Tenancy
Application Development and Management," in 9th IEEE Int. Conference on E-
Commerce Technology and the 4th IEEE Int. Conference on Enterprise
Computing, E-Commerce, and E-Services, 2007. pp. 551-558.

[7] Y. Dunhui, W. Jian, H. Bo, L. Jianxiao, Z. Xiuwei, H. Keqing, and Z. Liang-Jie,
"A Practical Architecture of Cloudification of Legacy Applications," in Services
(SERVICES), 2011 IEEE World Congress on, 2011, pp. 17-24.

[8] T. N. Thomas Kwok, Linh Lam,,, "A Software as a Service with Multi-tenancy
Support for an Electronic Contract Management Application," in Services
Computing, 2008. SCC '08. IEEE Int. Conference on, 2008, pp. 179-186.

[9] I. developerWorks, Convert your web application to a multi-tenant SaaS solution.
www.ibm.com/develperworks/cloud/library/cl-ultitenantsaas/index.html?ca=drs-

[10] Z. Xuesong, S. Beijun, T. Xucheng, and C. Wei, "From isolated tenancy hosted
application to multi-tenancy: Toward a systematic migration method for web
application," in Software Engineering and Service Sciences (ICSESS), 2010 IEEE
International Conference on, 2010, pp. 209-212.

[11] Norihiko Sakamoto, "Construction of Saas-Based e-Learning system in Japan,"
FUJITSU Sci. Tech. Journal, vol. 45, pp. 290-298, 2006.

[12] A. Z. Cor-Paul Bezemer, "Multi-tenant SaaS applications: maintenance dream or
nightmare?," in the Joint ERCIM Workshop on Software Evolution and Int.
Workshop on Principles of Software Evolution, Antwerp, Belgium, 2010.

[13] Microsoft. (2006, October, 2010). Multi-Tenant Data Architecture. Available:
http://msdn.microsoft.com/en-us/library/aa479086.aspx

