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Abstract—As many applications and services are moving to-
wards a more human-centered design, app vendors are taking
the quality of experience (QoE) increasingly seriously. End-to-end
latency is a key factor that determines the QoE experienced by
users, especially for latency-sensitive applications such as online
gaming, health care, critical warning systems and so on. Recently,
edge computing has emerged as a promising solution to the
high latency problem. In an edge computing environment, edge
servers are deployed at cellular base stations, offering processing
power and low network latency to users within their geographic
proximity. In this paper, we tackle the user allocation problem
in edge computing from an app vendor’s perspective, where the
vendor needs to decide which edge servers to serve which users in
a specific area. Also, the vendor must consider the various levels
of quality of service (QoS) for its users. Each QoS level results
in a different QoE level; thus, the app vendor needs to decide
the QoS level for each user so that the overall user experience
is maximized. To tackle the NP-hardness of this problem, we
formulate it as a potential game then propose QoEGame, an
effective and efficient game-theoretic approach that admits a
Nash equilibrium as a solution to the user allocation problem.
Being a distributed algorithm, QoEGame is able fully utilize the
distributed nature of edge computing. Finally, we theoretically
and empirically evaluate the performance of QoEGame, which
is illustrated to be significantly better than the state of the art
and other baseline approaches.

Index Terms—edge computing, user allocation, quality of
experience, quality of service, game theory

I. INTRODUCTION

In recent years, we are witnessing a rapid growth of
mobile and IoT devices, including smartphones, wearables,
environmental sensors, self-driving vehicles, etc. This comes
with a rich variety and sophistication of applications and
services, such as facial recognition, interactive VR/AR gam-
ing, ultra-low latency streaming, and so on. They usually
require intensive processing power and large energy capacity,
which are not available on thin clients such as mobile or IoT
devices. Traditionally, heavy computation tasks are offloaded
to app vendors’ servers in the cloud. Nevertheless, maintaining
a low-latency connection to users is a major challenge for
app vendors and service providers due to the skyrocketing
number of connected devices, the increasing network traffic
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and computational load, plus the long distance between end-
users and the cloud.

Network latency significantly impacts application perfor-
mance, quality of service, and user experience. This is one
of the main reasons why edge computing, sometimes referred
to as fog computing [1], has emerged to tackle the challenge
of high network latency. Mobile edge computing (MEC) [2]
is one of the most popular edge computing paradigms, which
takes advantage of the highly distributed cellular base station
environment. In an MEC system, numerous edge servers,
which provide both processing power and storage, are de-
ployed at, or near base stations [3]. App vendors can deploy
their apps on edge servers, which are in closer proximity to
their users than the cloud, to remarkably reduce the latency of
accessing those apps [4], [5].

In an MEC environment, edge servers are densely dis-
tributed. The coverage areas of adjacent edge servers1 usually
partially overlap to avoid non-service areas [6], [7] – the
areas in which users cannot be served by any edge server.
A user located in the overlapping area will be allocated to
one of the edge servers covering them (proximity constraint)
as long as that edge server has sufficient computing resources
(resource constraint), e.g. CPU, RAM, storage, or bandwidth,
to serve the user. Compared to a cloud server, a typical
edge server comes with very limited computing resources due
to its size limit [8], [9]. Thus, an ineffective user-to-edge-
server allocation will exhaust edge server computing resources
rather quickly, leaving no available computing resources to
serve more users. In addition, this user allocation problem is
getting more complicated since many applications and services
support dynamic quality of service (QoS), or different levels
of service performance, which can be presented by display
resolution [10], frame rate and bitrate [11], data rate [12],
network loss and jitter [13], etc. Naturally, a higher QoS
level is achieved by a series of computation tasks with higher
complexity, hence requires more computing resources. For
example, high-definition graphics rendering or highly accurate
data analysis would require more CPU, RAM, or bandwidth
of an edge server. Greedily assigning high QoS levels to users

1In this paper, we speak interchangeably of an edge server’s coverage area
and a base station’s coverage area.
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Fig. 1: QoS - QoE correlation

will also exhaust edge server computing resources quickly.
Unlike the computation offloading problem which chal-

lenges the edge infrastructure providers, e.g., AT&T or T-
Mobile, this edge user allocation (EUA) problem challenges
the app vendors who hire computing resources to serve their
own users. It has been gaining a lot of attention [7], [14]–
[16] in recent years. However, most of the existing works
do not address the user quality of experience (QoE), which
is a key criterion in assessing any app vendor’s success. In
this paper, we solve the EUA problem with the objective
of maximizing the total QoE of all the users in a particular
area. A general consensus is that a higher QoS level results
in a higher QoE level. In fact, many works [13], [17], [18]
have shown a quantitative correlation between QoS and QoE
(Figure 1). This correlation can be leveraged by app vendors
to better utilize the resources on edge servers. In general, a
user’s QoE increases by increasing its QoS level. However,
the user’s QoE tends to converge at some point, e.g., W3

in Figure 1, and remains virtually unchanged at the highest
level regardless of further increases in the QoS level. Taking
advantage of this characteristic, an app vendor can maximize
its users’ satisfaction, measured by their total QoE, by jointly
making two decisions – 1) a proper selection of a QoS level
for each user, and 2) a proper user-to-edge-server allocation. In
this paper, we study the quasi-static scenario where users are
relatively stationary during the allocation process, not roaming
across edge servers quickly [15], [19]–[22], e.g. surveillance
cameras, traffic sensors, mobile or IoT users who are not
moving at a high speed.

Solving this QoE-aware EUA problem effectively in an
MEC system is challenging due its NP-hardness [16]. Fur-
thermore, mobile users, which are a major stakeholder in
MEC, could suffer a 30% performance penalty compared to
non-mobile users with wired access [23], [24]. This calls for
an efficient approach for finding solutions to the QoE-aware
EUA problems. In this paper, we propose QoEGame, a game-
theoretic approach for solving QoE-aware EUA problems. The
main contributions of this paper include:
• We formulate this problem as a potential game [25] that

aims to maximize the overall user QoE. The game is
then theoretically analyzed and proven to admit a Nash
equilibrium.
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Fig. 2: Example MEC scenario

• Due to the NP-hardness of the problem, finding an
optimal solution to this problem is intractable, especially
when a small geographic area could involve a great num-
ber of users. To effectively deal with its high complexity,
we propose QoEGame, a distributed iterative algorithm
for finding a Nash equilibrium. This algorithm simulates
each user as a player in the game, whose decision, along
with the decisions of other players, will benefit towards
the final objective – maximizing the total QoE of all users.

• Extensive evaluations based on a real-world dataset are
carried out to demonstrate the effectiveness and efficiency
of QoEGame. The results show that QoEGame signifi-
cantly outperforms the state of the art and other baseline
approaches.

The remainder of the paper is organized as follows. We
provide a motivating example in Section II. Section III for-
mulates the QoE-aware EUA problem, which is then modeled
as a potential game in Section IV. In Section V, we propose
QoEGame, a game-theoretic approach for solving this prob-
lem. It is experimentally evaluated in Section VI. Section VII
summarizes the key related work. Finally, we conclude the
paper and discuss future work in Section VIII.

II. MOTIVATING EXAMPLE

Let us consider a typical game streaming service. Game
video frames are rendered on the game vendor’s servers and
then streamed to player devices. For the majority of players,
there is no perceptible difference between 1080p and 1440p
video resolution on their mobile devices, or even between
1080p and UHD from a distance farther than 1.5x the screen
height regardless of the screen size [26]. Servicing a high-
definition video quality like 1440p or UHD certainly consumes
more resources (bandwidth, CPU, and GPU), which might
be unnecessary since most players on their mobile devices
are likely to be satisfied with 1080p. Instead, those resources
can be utilized to serve players who are currently unhappy



with the service, e.g. those experiencing poor 240p or 360p
graphic, or those not able to play at all due to all nearby servers
being overloaded. Therefore, the QoS level of some users can
be lowered, potentially without causing any noticeable QoE
downgrade, in order to better service users experiencing low
QoS levels. In this way, the users’ overall satisfaction can be
maximized.

In this context, this research aims to allocate app users
to edge servers and select QoS levels for them so that
their total QoE is maximized. Take Figure 2 for example,
there are three possible QoS levels, namely W1,W2, and W3,
which consumes 〈1, 2, 1, 2〉, 〈2, 3, 3, 4〉, and 〈5, 7, 6, 6〉 units of
〈CPU,RAM, storage, bandwidth〉, respectively. User 2 can
be allocated to either edge server 1 or edge server 2, which
has less computing resources than edge server 1. Allocating
user 2 to edge server 2 with a high QoS level will exhaust
the resources that could be used to serve users 1 and 6, or to
upgrade their QoS levels. Allocating user 2 to edge server 1
would result in a higher total QoE.

III. PROBLEM FORMULATION

A. System Model

Edge servers: An MEC system in a particular area consists
of a set of m edge servers denoted by S = {s1, ..., sm}.
Each edge server sj ∈ S, j = 1, ...,m, has a certain amount
of computing resources cj = (cdj ), a |D|-dimensional vector,
where d ∈ D = {CPU,memory, storage, ...}. Each edge
server covers a specific geographical area cov(sj), as shown
in Figure 2.

Edge users: Let U = {u1, ..., un} denote the set of n user
ui, i = 1, ..., n in the area. In the EUA problem, every user
must be allocated to an edge server unless all the servers
covering the user have exhausted their computing resources.
A user will be directly connected to the app vendor’s cloud
server if none of those edge servers has sufficient computing
resources, or if the user is not located within the coverage of
any edge servers.

For an application or service, there are q pre-defined QoS
levels, denoted by W = {W1, ...,Wq}. Each QoS level
Wk, k = 1, ..., q, requires a specific amount of computing
resources Wk = (W d

k ), a |D|-dimensional vector, d ∈ D. A
higher QoS level requires a higher amount of resources.

B. Allocation Decisions

In the QoE-aware EUA problem, an app vendor needs to
jointly make two decisions for each user ui ∈ U :

Definition 1. (SERVER ALLOCATION DECISION) Given the
set of edge servers S = {s1, ..., sm}, let ai ∈ {0} ∪ S denote
the edge server which user ui is allocated to. ai = 0 when ui
is unallocated.

Definition 2. (QOS SELECTION DECISION) Given the set of
QoS levels W = {W1, ...,Wq}, user ui is assigned a QoS
level bi ∈ {0} ∪ W once allocated to an edge server. bi = 0
when ui is unallocated.

Definition 3. (ALLOCATION DECISION PROFILE) Each user
ui ∈ U is associated with a pair of decisions pi = (ai, bi)
as defined above. An allocation decision profile is a set of
allocation decisions, one for each user, denoted by p =
(p1, ..., pn) = ((a1, b1), ..., (an, bn)).

User ui can only be allocated to one of the neighbor edge
servers Sui

, which are the edge servers that have user ui in
their coverage areas (proximity constraint):
ai ∈ {0}∪Sui , where Sui = {sj ∈ S|ui ∈ cov(sj)},∀ui ∈ U

(1)
and the accumulated resource demands of all users allocated
to an edge server must not exceed the available computing
resources of that edge server (resource constraint). Let Ualctsj =
{ui ∈ U|ai = sj} denote the set of users allocated to edge
server sj , we have:∑

ui∈Ualct
sj

bi � cj , ∀sj ∈ S (2)

We use Usj = {ui ∈ U|ui ∈ cov(sj)} to denote the set of
users located within edge server sj’s coverage.

C. System Benefit (QoE) Model

In the QoE-aware EUA problem, an app vendor benefits
from satisfying its users, or maximizing their users’ QoE. In
general, a higher QoS level results in a higher QoE level.
As demonstrated in [13], [17], [18], QoS and QoE exhibit a
nonlinear correlation. When the QoS reaches a particular level,
a user’s QoE shows a very trivial improvement regardless of a
noticeable increase in the QoS. Take the model in Figure 1 for
example, the QoE gained from the W2−W3 upgrade is nearly
1. In the meantime, the QoE gained from the W1−W2 upgrade
is approximately 3 at the expense of a little extra resource.
The logistic function (3) has been widely acknowledged and
employed in a lot of works [27]–[29] to model the correlation
between QoE and QoS due to its generality and simplicity,
which increase the generalizability of this work.

Ep(pi) =
L

1 + e−α(xi−β)
(3)

where Ep(pi) represents the QoE level of user ui given its
QoS level bi, L > 0 is the maximum value of QoE, β > 0
controls where the mid-point of the QoE function is on the
x-axis (QoS level in Figure 1), α > 0 controls the growth rate
of the QoE level (how steep the change from the minimum to
the maximum QoE level is). xi = (

∑
d∈D b

d
i )/|D|, where bdi

is the normalized amount of type-d resource required by user
ui, d ∈ D. We let Ep(pi) = 0 if user ui is unallocated.

D. Optimization Model

Given a set of users U = {u1, ..., un}, a set of edge servers
S = {s1, ..., sm}, and a set of QoS levelsW = {W1, ...,Wq},
the QoE-aware EUA problem can be formulated as a con-
strained optimization problem as follows:

max
∑
ui∈U

Ep(pi)

s.t. (1), (2)
(4)



This formulation maximizes the total QoE of all users
while satisfying the proximity constraint (1) and resource
constraint (2). The solution to this problem is an allocation
decision profile p. [16] proves that this problem is NP-hard
by reducing the Partition problem to a special case of the
decision version of this QoE-aware EUA problem.

IV. QOE-AWARE USER ALLOCATION GAME

In this section, we introduce QoEGame, a game-theoretic
approach for effectively and efficiently solving the QoE-aware
EUA problem. Traditionally, game theory has been widely
applied in numerous areas as a powerful method for analyz-
ing the interactions of players pursuing their own individual
interests. In this paper, the players, i.e., the app users in the
EUA problem, make decisions that could benefit other users
as well, without significantly sacrificing their own benefit.
Furthermore, QoEGame allows app vendors to efficiently solve
the QoE-aware EUA problem in a distributed fashion by
making allocation decisions for each user individually on each
edge server, effectively leveraging the distributed characteristic
of edge computing. App vendors do not have to suffer the
high computational complexity of finding centralized optimal
solutions. This is critical since users in an edge computing
environment are usually highly latency-sensitive.

A. Game Formulation

We formulate a QoE-aware EUA game that finds a decision
profile which effectively selects QoS levels for users and
allocates them to edge servers. The decision profile consists
of two decisions for each user ui ∈ U , namely an edge
server allocation decision ai and a QoS level selection decision
bi. Following the rules of the game, those decisions are
determined so that the app vendor’s objective is achieved. Let
p−i = (p1, ..., pi−1, pi+1, ..., pn) denote the allocation strategy
of all users except user ui. Note that in the EUA problem, a
user makes decisions that benefit the whole system’s goal, i.e.
maximizing the total QoE of all users, instead of selfishly
making decisions for its own benefit. In other words, the
decision made by a user could allow other users to make
”good” decisions accordingly. Based on other users’ decisions
p−i, a user ui can make a suitable decision pi so that the total
QoE of all users is maximized (4).

Then, we model the above QoE-aware problem as a game
Γ = (U , {Pi}ui∈U , {Ei}ui∈U ), where the set of players is the
set of users U , Pi is the set of possible allocation strategies
for users ui, and Ei is the benefit function which measures the
benefit (total QoE) produced by user ui’s decision pi ∈ Pi.
In the game, users’ allocation strategies might conflict. For
example, in Figure 2, allocating users 2 and 4 to edge server
2 might exhaust its available computing resources, preventing
users 1 and 6 from using the app with high QoS levels or
even from being served by edge server 2. A better solution
would be to allocate users 2 and 4 to edge servers 1 and 3,
respectively, if they have sufficient resources, and users 1 and
6 to edge server 2. In this way, the total QoE of all users is
maximized, every user is happy and does not desire to deviate

from their existing allocation strategies. Next, we investigate
whether this game admits at least one Nash equilibrium – a
stable state of the game in which no player can make a decision
that improves its own benefit if other players’ strategies remain
unchanged [30]. In the game, it is a stable state where no user
can make a decision that improves the overall benefit of all
neighbor users instead of its own benefit because our objective
is to maximize the total benefit of all the users, as discussed
above.

Definition 4. (NASH EQUILIBRIUM) An allocation decision
profile p∗ = (p∗1, ..., p

∗
n) is a Nash equilibrium if no user can

unilaterally update its decision to increase the system benefit:

Ep∗−i
(p∗i ) ≥ Ep∗−i

(pi),∀pi ∈ Pi,∀ui ∈ U (5)

Lemma 1. Given a Nash equilibrium p∗ of the game, the
allocation decision p∗i ∈ Pi made for each user ui ∈ U is the
best response to the decisions p−i made by the other n − 1
users.

Proof: See Appendix A.
Lemma 1 guarantees that if a Nash equilibrium does indeed

exist, QoEGame allows users to self-organize into a mutually
agreed strategy. This eliminates the burden of high computa-
tional complexity of finding optimal solutions to large-scale
QoE-aware EUA problems.

B. Game Property

A critical property of a potential game is that it admits at
least one Nash equilibrium [25]. In this section, we confirm
the existence of a Nash equilibrium in the QoE-aware EUA
game by proving that this is a potential game.

Definition 5. (POTENTIAL GAME) A game is a potential game
if the following holds for a potential function φ(p):

Ep−i
(pi) < Ep−i

(p′i)⇒ φp−i
(pi) < φp−i

(p′i) (6)
for any ui ∈ U , pi, p′i ∈ Pi and p−i ∈

∏
l 6=i Pl.

Based on Definition 5, we define a potential function:

φp−i
(pi) =

1

2

∑
ui∈U

∑
uj 6=ui

∑
d∈D

bdi ·
∑
d∈D

bdj (7)

Now, we prove that the QoE-aware EUA game formulated
in Section IV-A is a potential game with potential function
φp−i

(pi) defined in (7).

Theorem 1. The QoE-aware EUA game is a potential game
with the potential function φp−i

(pi).

Proof: See Appendix B.

V. DISTRIBUTED USER ALLOCATION ALGORITHM

In this section, we introduce QoEGame – an iterative
and distributed user allocation algorithm for finding a Nash
equilibrium in a potential game. QoEGame is inspired by best
response dynamics [31], an evolutionary process that involves
a finite number of iterations. In every iteration, each individual
user develops the best allocation strategy in response to
other users’ strategies. It is important to note that the actual



computation happens on edge servers, not on user devices. The
process ends when no user desires to update their decisions,
i.e. a Nash equilibrium. This is called the Finite Improvement
Property of potential games.

A. Algorithm Design

QoEGame (Algorithm 1) is a distributed and iterative mech-
anism that is able to find a Nash equilibrium of the game.
Given a set of users U , edge servers S, and available QoS
levels W , QoEGame allocates users to edge servers with
suitable QoS levels so that the total QoE of all users is
maximized.

Algorithm 1 QoEGame

1: initialization:
2: each user ui chooses an allocation decision pi = (ai, bi) =

(0, 0), ∀ui ∈ U .
3: end initialization
4: repeat
5: for each user ui ∈ U do
6: if ui is unallocated, ai = bi = 0 then
7: find the decision p′i = (a′i, b

′
i) that benefits ui

the most, i.e. highest QoE. a′i ∈ Sui
, b′i ∈ W .

8: else . ui is allocated to an edge server sj ,
ai 6= 0, bi 6= 0

9: find the decision p′i = (a′i, b
′
i) that is the most

beneficial for all involved users Usj .
10: end if
11: if p′i > pi then
12: contend p′i for the decision update opportunity.
13: if ui wins the decision update contention then
14: apply decision p′i.
15: end if
16: end if
17: end for
18: until no users need to update their decisions

Initially, no user is allocated and every user ui starts with
an allocation decision pi = (ai, bi) = (0, 0), ∀ui ∈ U ( Lines
1-3). After that, leveraging the Finite Improvement Property,
the algorithm goes through an iterative process that allows
every user to update their decisions iteration by iteration. The
updated decision p′i must produce a higher total QoE compared
to the previous decision pi.

In each iteration, each user ui individually finds an optimal
allocation decision p′i (Lines 6-10). If p′i leads to a higher QoE
than the previous decision pi, user ui will submit a request to
contend for the opportunity to update pi to p′i (Lines 11-12).
Once all the users have submitted their requests for decision
update, the request with the greatest QoE improvement will
be chosen as the sole winner in that iteration (Lines 13-14)
and the allocation strategy will be updated accordingly (note
that this strategy is not final and can be updated in future
iterations). A request for decision update might involve one
or more users. For example, user ui might want to lower its
QoS level so that other users can utilize the released resources.

If this request is selected as the winner, the allocation of all
involved users will be updated accordingly. The requests for
decision update that did not win will not be updated in the
next iteration. All users affected by the latest decision update
are required to update their decisions in the next iteration.

We now discuss the process for finding an optimal allocation
decision for each user (Lines 6-10) in more detail. There are
two possible cases based on a user’s allocation status in the
previous iteration. First, if ui has not been allocated, it will
select an edge server that can serve it with the highest possible
QoS level (greedy-like approach). Secondly, if ui has already
been allocated to an edge server sj , it will find a decision that
is the most beneficial for all the involved users Usj , i.e. users
located within server sj’s coverage area. User ui can freely
move to another edge server and select another QoS level. The
resources released by ui’s decision or any available resources
can then be utilized to serve more users or to increase the QoS
levels of allocated users. QoEGame is a distributed algorithm
since the process of finding an optimal allocation decision is
executed for each individual user in parallel on edge servers.

Convergence analysis. The Finite Improvement Property
of the potential game ensures that the allocation process will
reach a Nash equilibrium after a finite number of iterations.
Let T be the total number of iterations, Qi ,

∑
d∈D b

d
i ,

Qmin , min (Qi), Qmax , max (Qi), i = 1, ..., n, the
following Theorem 2 holds.

Theorem 2 (Upper Bound of Convergence Time). The maxi-
mum convergence time of QoEGame, measured by the number
of decision iterations, is n2Q2

max/(2(n− 1)Qmin).

Proof: See Appendix C.

B. Price of Anarchy in Total QoE

The design of QoEGame involves non-deterministic factors
– if there are multiple users proposing allocation decisions
with the same system benefit improvement, one of them will
be randomly selected as the winner in that iteration. This leads
to the fact that there might be more than one Nash equilibrium
in the game. Thus, we evaluate the performance of QoEGame
by analyzing the Price of Anarchy (PoA) in the total QoE,
which indicates the ratio between the worst Nash equilibrium
and the optimal allocation strategy [25]. Let χ denote the
set of decision profiles that are able to reach different Nash
equilibria in the game and p∗ = (p∗1, p

∗
2, ..., p

∗
n) denote the

optimal decision profile. Given a decision profile p ∈ χ, let
poaQoE(p) be the PoA measured by the ratio between the
total QoE produced by p and p∗, poaQoE(p) is calculated as
follows:

poaQoE(p) =

min
p∈χ

∑
ui∈U

Ep(pi)∑
ui∈U Ep∗(pi)

(8)

As discussed in Section III, there are two possibilities for
the allocation of a user ui: 1) ui can be allocated (pi 6= (0, 0))
and 2) ui cannot be allocated (pi = (0, 0)). The QoE
benefit of unallocated users is zero. Thus, in the discussion



in this section, we omit the QoE of unallocated users. Ac-
cording to (3), a higher QoS level leads to a higher QoE
level. Let QoE(p) = Ep(pi) = L/(1 + e−α(

Qi
|D|−β)). Then,

QoEmax(p) = L/(1 + e−α(
Qmax
|D| −β)) and QoEmin(p) = L

/(1 + e−α(
Qmin
|D| −β)).

Based on the above definitions, we have Theorem 3.

Theorem 3. Given a decision profile p ∈ χ that achieves
a Nash equilibrium in the QoE-aware EUA game and the
optimal decision profile p∗, the PoA of the game poaQoE(p)
measured by the ratio between the total QoE achieved by p
and p∗, satisfies:

1 ≥ poaQoE(p) ≥
∑
ui∈U QoEmin(p)I{pi 6=(0,0)}∑
ui∈U QoEmax(p∗)I{pi 6=(0,0)}

(9)

where I{condition} is an indicator function which returns 1 if
condition is true, and 0 otherwise.

Proof: See Appendix D.

VI. EMPIRICAL EVALUATION

We have performed a series of experiments on a widely-used
real-world dataset to evaluate the performance of QoEGame
against existing approaches.

A. Performance Benchmark

QoEGame is compared against five representative ap-
proaches, i.e. an optimal approach, three state-of-the-art ap-
proaches for solving the QoE-aware EUA problem, and a
random baseline approach:
• Optimal: This is the optimal approach based on integer

linear programming technique introduced in [16], which
finds optimal solutions to QoE-aware EUA problems, i.e.
the solutions with the highest total QoE. This approach
is implemented with the IBM ILOG CPLEX Optimizer
solver2.

• ICSOC19: Proposed in [16], this greedy approach al-
locates each user to an edge server that has the most
available computing resources. Each user is then assigned
the highest possible QoS level given the computing
resources available on the edge server serving it.

• TPDS19 [15]: This approach solves the EUA problem
with the objectives of maximizing the number of allocated
users and minimizing the overall system cost calculated
based on the costs of required computing resources on
edge servers. Since TPDS19 does not consider dynamic
QoS, users’ QoS levels are randomly pre-specified.

• ICSOC18 [7]: This approach models the EUA problem
as a variable-sized vector bin packing problem and pro-
poses an optimal approach that maximizes the number
of allocated users while minimizing the number of edge
servers required to serve the allocated users. Similar to
TPDS19, this approach does not consider dynamic QoS
either. Thus users are assigned the same QoS levels as
TPDS19.

2www.ibm.com/analytics/cplex-optimizer/

Fig. 3: Base stations in Melbourne CBD (1,800m × 1,000m)

• Random: This approach allocates each user to a random
edge server as long as that edge server has sufficient
computing resources to accommodate this user and has
this user within its coverage area. The QoS level to be
assigned to this user is randomly determined based on
the edge server’s remaining computing resources. For
example, if the maximum QoS level that the edge server
can offer the user is W2, the user will be randomly
assigned either W1 or W2.

All the experiments are conducted on a Windows com-
puter equipped with Intel Core i5-7400T processor (4 CPUs,
2.4GHz) and 8GB RAM.

B. Experimental Settings

The experiments are conducted on the EUA dataset3 [7],
which contains the geographical locations of end-users and
all cellular base stations in Australia. This dataset was also
used in [15], [16], and [7] to evaluate ICSOC19, TPDS19,
and ICSOC18.

Edge servers: To capture the characteristics of a 5G envi-
ronment [32], we simulate a 1.8 km2 Melbourne CBD area
(Figure 3) covered by 125 base stations, each equipped with
an edge server. The coverage radius of each edge server is
randomly generated within 100m - 150m. The computing
resources available on the edge servers are randomly generated
following a normal distribution N (µ, σ2), where µ is the
average capacity of each resource type in D, and the standard
deviation σ = 10 for all conducted experiments. Since a nor-
mal distribution might contain negative numbers, any negative
amount of computing resources generated is rounded up to 1.

Edge users: We assume that for each user, there are three
possible QoS levels W = {< 1, 2, 1, 2 >,< 2, 3, 3, 4 >,<
5, 7, 6, 6 >}, and D = {CPU,RAM, storage, bandwidth}.
We have conducted experiments with other settings and
achieved similar results. Thus, we select those three QoS
levels as representative in this section. Different values of the
parameters in the QoE model (3) have also been tested. In this

3www.github.com/swinedge/eua-dataset/



Fig. 4: Total QoE vs. number of users
(Set #1).

Fig. 5: Total QoE vs. number of edge
servers (Set #2).

Fig. 6: Total QoE vs. edge server’s
available computing resources (Set #3).

TABLE I: Experimental Settings

Users Edge servers Available resources (µ)
Set #1 100, ..., 1000 70% 35
Set #2 500 10%, ..., 100% 35
Set #3 500 70% 5, 10, ..., 50

section, we employ L = 5, α = 1.5, and β = 2, and present
the corresponding results.

To comprehensively analyze the performance of QoEGame
in various EUA scenarios, we conduct a series of experiments
with different varying parameters, including the number of
users, number of edge servers, and edge servers’ available
computing resources. Table I summarizes the settings of the
experiments, which will be discussed in the next section. Each
experiment is repeated 100 times to obtain 100 different user
distributions and the results are then averaged. This allows
extreme cases, such as overly dense or sparse user/server
distributions, to be neutralized. To evaluate the performance of
the approaches in achieving the optimization objective, which
is to maximize the total QoE of all users as discussed in
Section III, we compare the total QoE of all users achieved
by the six approaches, the higher the better. To evaluate the
approaches from another perspective, we also measure the
number of users that are allocated to edge servers by each
approach, the higher the better. The efficiency of QoEGame
is also evaluated.

C. Experimental Results

Figures 4, 5, and 6 demonstrate the effectiveness of all
approaches in experiment Sets #1, #2, and #3 in terms of
the total QoE of all users. Figures 7, 8, and 9 demonstrate
their effectiveness in terms of the number of allocated users.
In general, Optimal, being the optimal approach, clearly
achieves the highest QoE compared to all other approaches
across all experiments. This comes at the cost of its very
high computational overhead (could go up to over 3 seconds
as demonstrated in [16]) and is thus inapplicable in real-
world 5G scenarios, where low latency is critical. QoEGame
achieves a QoE performance very close to Optimal and clearly
outperforms all other approaches. At the same time, QoEGame
is able to allocate a good number of users to edge servers. We
will also demonstrate the efficiency of QoEGame, measured
by its convergence time, i.e. the number of iterations taken

to reach a Nash equilibrium. This is a critical and machine-
independent efficiency indicator for game-theoretic approaches
[20], [21], [33], [34].

1) Effectiveness:
Experiment Set #1. In this set of experiments, the number
of users is varied from 100 users to 1,000 users in steps
of 100. The number of edge servers is fixed at 70% of all
edge servers in the simulated area. Figure 4 shows the total
QoE of all users in the experiments. Under all experimental
settings, the difference in the total QoE achieved by Optimal
and QoEGame is very marginal, which, with the theoreti-
cal analysis in Section V-B, confirms the near-optimality of
QoEGame. From 100 to 400 users, ICSOC19 achieves a QoE
almost as high as Optimal and QoEGame. This occurs under
those settings because the available computing resources are
redundant and therefore almost all users receive the highest
QoS level. However, as the number of users continues to
increase while the total amount of computing resources is
fixed, the average amount of computing resources for each
user becomes more scarce. As a result, the performance of
ICSOC19 deteriorates quickly. Random and the other two
state-of-the-art approaches, i.e. ICSOC18 and TPDS19, are
outperformed by Optimal and QoEGame since they do not
consider the scenario where the QoS level of a user can be
dynamically adjusted. TPDS19 is even worse than Random
since it focuses on minimizing system costs.

Figure 7 shows the percentage of allocated users. We can
observe a decreasing trend here. Clearly, since the amount
of computing resources is fixed, introducing more users will
increase the number of users who cannot be allocated to any
edge servers. ICSOC18, aiming to maximize the number of
users served, is obviously able to allocate the most users as
also demonstrated in Figures 8 and 9, closely followed by
Optimal and QoEGame. Random and TPDS19 allocate fewer
users than ICSOC18, Optimal, and QoEGame. ICSOC19 is
by far the worst because it rapidly exhausts the available
computing resources on edge servers.

Note that given the same amount of computing resources
under all experimental settings, increasing the number of users
will consequently decrease the average QoE of each allocated
user as shown in the inset graph in Figure 4 since the same
amount of computing resources is now to be shared among
more users. ICSOC19 appears to be the best approach in



Fig. 7: Percentage of allocated users vs.
number of users (Set #1).

Fig. 8: Percentage of allocated users vs.
number of edge servers (Set #2).

Fig. 9: Percentage of allocated users
vs. edge server’s available computing
resources (Set #3).

Fig. 10: Number of decision iterations
vs. number of users (Set #1).

Fig. 11: Number of decision iterations
vs. number of edge servers (Set #2).

Fig. 12: Number of decision iterations
vs. edge server’s available capacity (Set
#3).

this aspect since every user is greedily assigned the highest
possible QoS level on an edge server. Nevertheless, this results
in an extremely low number of allocated users. This can be
observed in all other sets of experiments.

Experiment Sets #2 & #3. In these experiment sets, we vary
the number of edge servers available to serve users, from 10%
to 100% in steps of 10% (Figures 5 and 8), and the amount of
available computing resources on edge servers, from 5 to 50 in
steps of 5 (Figures 6 and 9). The total QoE depicted in Figures
5 and 6 exhibits a trend similar to experiment Set #1 (Figure
4), where QoEGame achieves a very near-optimal performance
and outperforms all other approaches by considerable margins.
As we increase the number of edge servers and the available
computing resources, the total computing resources become
more redundant, allowing more users to enjoy the highest
QoS level. This is the reason why ICSOC19 also gradually
approaches the performance of the Optimal. Additionally, as
the computing resources become redundant, more users can be
allocated to edge servers as illustrated in Figures 8 and 9. As
can be seen in the figures, Optimal and QoEGame continue
to outperform TPDS19 and Random. The percentage of users
allocated by ICSOC19 is remarkably lower compared to all
other approaches.

Optimal and QoEGame also outperform TPDS19, IC-
SOC18, and Random, in terms of the average QoE per
allocated user (inset graphs in Figures 5 and 6). ICSOC19
achieves the best performance in this aspect due to the same
reason discussed for experiment Set #1.

2) Efficiency:
It is intractable to find an optimal solution to the NP-

hard QoE-aware EUA problem with Optimal in large-scale
scenarios. As a result, we introduce QoEGame, an iterative
and distributed algorithm. In this section, we discuss the
efficiency of QoEGame and how well it scales with different
experiment parameters. Figures 10, 11, and 12 demonstrate the
convergence time of QoEGame in experiment Sets #1, #2, and
#3, respectively, measured by the average number of iterations
required by QoEGame to reach a Nash equilibrium. In Figure
10, the number of iterations increases linearly with the increase
in the number of users from 100 to 500 users. From 500
users onwards, the convergence time decreases at a slower
pace than it increases. The rationale for these phenomena
lies behind the competitiveness of the game. In the 100 -
500 user range, there are still sufficient computing resources
to accommodate almost all the users (Figure 7). More users
thus lead to more possible decisions to be made for each
individual user, hence the increase in the convergence time.
As the number of users enters the range of 600 - 1,000,
most of the extra users are unallocated due to the scarcity
of computing resources. However, because of the high density
of users, who collectively contribute to finding the solution in
parallel, QoEGame is able to find a Nash equilibrium quicker.

In experiment Set #2 (Figure 11), increasing the number
of edge servers increases the possibility of decision updates,
i.e. more decision updates, or more required iterations, hence
the gradual increase in the convergence time of QoEGame.
In experiment Set #3, as shown in Figure 12, increasing
the available computing resources also increases the decision
update possibility. However, after a certain point, 40 in this
case, the convergence time decreases since there are now



relatively redundant computing resources and more users can
be served with high QoS levels without much competition.

VII. RELATED WORK

Edge computing, sometimes referred to as fog comput-
ing, was introduced by Cisco [1] in 2012 to overcome a
key issue of cloud computing – high latency. Compared to
the traditional cloud computing paradigm, edge computing
possesses numerous unique properties, including wide-spread
geographical distribution, a sizeable number of nodes, location
awareness, the predominant role of wireless access, and a
strong presence of streaming and real-time applications. Those
properties enable edge computing to deliver a new generation
of services and applications at the edge of the network, further
extending the existing cloud computing paradigm [4].

QoE management and QoE-aware resource allocation have
long been a challenge even before the cloud computing era
[35]. Su et al. [36] develop a framework for resource allocation
among media cloud, brokers and mobile social users that
maximizes media cloud’s profit and user’s QoE. While the
concept of brokers is similar to edge servers in our work,
there are some essential differences. In their work, the bro-
ker is just a middleware for transferring tasks between the
cloud and mobile users. Edge servers, on the other hand,
are capable of processing computation tasks. He et al. [37]
study the trade-off between QoE and system costs of virtual
machine provisioning in a centralized video-streaming cloud
environment. In the aforementioned works, QoE is measured
by the processing, playback, or downloading rate. We consider
a more general scenario where QoE is measured based on
QoS levels, which are represented by the required amount of
computing resources.

Relevant QoE-focused problems have started gaining at-
traction in the field of edge computing as well. Chen et
al. [38] introduce an architecture that integrates resource-
intensive computing with mobile applications while leveraging
mobile cloud computing. They aim to provide a new line of
personalized and QoE-aware applications. The authors of [39]
and [40] solve the application placement problem in the edge
computing environment. In their works, the QoE of a user is
estimated based on three levels (low, medium, and high) of
access rate, processing time, and required resources. The user
allocation problem that we are dealing with can be regarded as
the next step after the application placement phase. Hong et al.
[41] address the QoE-aware computation offloading schedul-
ing problem in mobile clouds from a networking perspective,
where the energy consumption of mobile devices and latency
must be considered in most cases. In contrast, in this paper,
the user allocation problem is tackled from the app vendor’s
perspective, who tries to allocate its own users rather than
dealing with low-level computation tasks.

Besides the aforementioned literature, there are a number
of works on user allocation in edge computing [7], [14]–
[16]. [14] considers the user mobility scenario where users can
move from one place to another, which requires reallocating
users among edge servers. We, on the other hand, study

a quasi-static scenario. Furthermore, they do not consider
the dynamic of user’s QoS, thus they measure the capacity
of an edge server by a fixed number of users that can be
allocated to it. [7], [15] tackle the quasi-static scenario but
lack the consideration of dynamically adjustable QoS levels
and QoE. As a results, the approaches proposed in those works
are not suitable for solving the QoE-aware EUA problem
as demonstrated in Section VI-C. The heuristic approach
proposed in [16] is the most relevant to our work. Nevertheless,
it is very ineffective in resource-scare scenarios, which are
very common in edge computing. QoEGame has been shown
to be very effective in all scenarios and able to fully leverage
the distributed characteristic of an edge computing system.

VIII. CONCLUSIONS AND FUTURE WORK

User quality of experience (QoE) is of great significance for
any applications and services that are human-centric. However,
there is very limited work in this area in edge computing. In
this paper, we investigate the edge user allocation problem, in
which an app vendor needs to allocate its own users to proper
edge servers and at the same time, achieve its optimization
objectives. We consider the scenario where the quality of
service (QoS) level of a user can be dynamically adjusted
depending on the current state of the system, e.g. the available
computing resources on the edge servers. Each QoS level can
be mapped to a QoE level, or how satisfied a user is with the
service given a delivered QoS level. Our goal is to maximize
the total QoE experienced by all the users. We formulate this
problem as a potential game and introduce QoEGame – an
iterative and distributed algorithm to find a Nash equilibrium
in the game. The effectiveness and efficiency of QoEGame
are theoretically and empirically demonstrated via a series
of experiments conducted on a real-world dataset, against a
number of baseline and state-of-the-art approaches.

Being a new problem and has not been studied exten-
sively, there are many possible directions for future work; for
example, QoE-aware user allocation in time-varying scenar-
ios, user’s mobility, QoE-aware service migration, web data
caching, service recommendation at the edge, etc. Further-
more, a finer-grained QoE model that considers more domain-
specific factors could also be developed.

APPENDIX A
PROOF OF LEMMA 1

If the allocation decision p∗i made by user ui is not the best
decision in Pi, there must be another better decision pi ∈ Pi
that increases the system benefit (total QoE of all users), i.e.
Ep∗−i

(p∗i ) < Ep∗−i
(pi). As a result, changing from p∗i to pi

leads to greater system benefit. This is in contradictory to (5),
where no user can unilaterally increase the overall benefit in
a Nash equilibrium.

APPENDIX B
PROOF OF THEOREM 1

Let us assume that a user ui has two allocation decisions
pi and p′i such that Ep−i

(pi) < Ep−i
(p′i). According to (3),



Ep−i
(pi) < Ep−i

(p′i) implies:
L

1 + e−α(xi−β)
<

L

1 + e−α(x
′
i−β)

where xi = (
∑
d∈D b

d
i )/|D|. Since L,α, β > 0, we have

Ep−i
(pi) < Ep−i

(p′i)⇒ xi < x′i. Therefore,∑
d∈D b

d
i

|D|
<

∑
d∈D b

d
i
′

|D|
, which implies

∑
d∈D

bdi <
∑
d∈D

bdi
′

(10)
Based on (10), we have:

φp−i
(pi)− φp−i

(p′i) = (
∑
d∈D

bdi −
∑
d∈D

bdi
′
)
∑
uj 6=ui

∑
d∈D

bdj < 0

Therefore, φp−i
(pi) < φp−i

(p′i), i.e., Theorem 1 holds.

APPENDIX C
PROOF OF THEOREM 2

According to (7), we have:

0 ≤ φp−i
(pi) ≤

1

2

∑
ui∈U

∑
uj∈U

Qmax =
1

2
n2Q2

max

A decision change from pi to p′i of a user ui leads to an
increase in the system benefit defined in Section III-C, i.e.,
Ep(pi) < Ep(p′i). According to Definition 5, it also results in
an increase in the potential function φ, denoted by δi, i.e.,

φp−i
(pi) + δi ≤ φp(p′i)

According to the proof of Theorem 1, we have:

φp(p′i)− φp(pi) = (
∑
d∈D

bdi
′ −

∑
d∈D

bdi )
∑
uj 6=ui

∑
d∈D

bdj > 0

Since bdi is the normalized amount of type-d resource
required by user ui, we have

∑
d∈D b

d
i
′−

∑
d∈D b

d
i ≥ 1. Thus,

φp(p′i)−φp(pi) ≥ 1
∑
uj 6=ui

∑
d∈D

bdj =
∑
uj 6=ui

Qj ≥ (n−1)Qmin = δi

We have δi = (n − 1)Qmin representing the minimum
improvement of the potential function between two iterations,
and 1

2n
2Q2

max representing the maximum value of the po-
tential function. Therefore, the number of iterations required
satisfies:

R ≤ n2Q2
max

2(n− 1)Qmin

Therefore, Theorem 2 holds.

APPENDIX D
PROOF OF THEOREM 3

Case 1: For any allocation decision profile p ∈ χ, we have
QoE(p) ≤ QoE(p∗). Thus, 1 ≥ poaQoE(p).

Case 2: For any allocation decision profile p ∈ χ that is not
the optimal decision profile (p 6= p∗), there is at least one user
not allocated to the most suitable edge server or assigned the
most suitable QoE level. The minimum QoE incurred by this
user is QoEmin(p). Thus, the minimum total QoE incurred
by p is: ∑

ui∈U
QoEmin(p)I{pi 6=(0,0)}

Similarly, for the optimal decision profile p∗, the maximum
QoE of one user is QoEmax(p∗), and the maximum total QoE
incurred by p∗ is:∑

ui∈U
QoEmax(p∗)I{pi 6=(0,0)}

Therefore, the minimum PoA of the total QoE is

poaQoE(p) ≥
∑
ui∈U QoEmin(p)I{pi 6=(0,0)}∑
ui∈U QoEmax(p∗)I{pi 6=(0,0)}

Combining Case 1 and Case 2, we prove the theorem:

1 ≥ poaQoE(p) ≥
∑
ui∈U QoEmin(p)I{pi 6=(0,0)}∑
ui∈U QoEmax(p∗)I{pi 6=(0,0)}
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