
Cost-Effective Social Network Data Placement and Replication using Graph-
Partitioning

Hourieh Khalajzadeh*, Dong Yuan+, John Grundy!, Yun Yang*
*School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, Australia

+School of Electrical and Information Engineering, the University of Sydney, Sydney, Australia
!School of Information Technology, Deakin University, Melbourne, Australia

*{hkhalajzadeh, yyang}@swin.edu.au
+dong.yuan@sydney.edu.au

!j.grundy@deakin.edu.au

Abstract—Social network users are connected based on shared
interests, ideas, association with different groups, etc. Common
social networks such as Facebook and Twitter have hundreds
of millions or even billions of users scattered all around the
world sharing interconnected data. Users demand low latency
access to not only their own data but also their friends’ data.
However, social network service providers wish to pay as less
as possible to store all data items to meet users’ data access
latency requirement. Geo-distributed cloud services with
virtually unlimited capabilities are suitable for large scale
social networks data storage in different geographical
locations. Key problems including how to optimally store and
replicate these huge data items and how to distribute the
requests to different datacentres are addressed in this paper. A
novel graph-partitioning based approach is proposed to find a
near-optimal data placement of replicas to minimise monetary
cost while satisfying the latency requirement. Experiments on a
Facebook dataset demonstrate our technique’s effectiveness in
outperforming other representative placement and replication
strategies.

Keywords-social network; data placement; data replication;
latency; storage cost; graph-partitioning

I. INTRODUCTION
Social networks often have a huge number of

interconnected users geographically scattered all around the
world sharing different types of large data items. Data items
are growing every day in terms of size and number. For
instance, Facebook as the world largest social network
passes 1.55 billion monthly active users and 1.01 billion
daily active users in 2015 [1]. Social network users have
expectations including low latency from their social network
service provider as they can only tolerate a certain threshold
to access their own data or their friends’ data.

A possible solution to have the users’ latency
expectations fulfilled is to store all data items in every

available datacentre. However, it is not economic for social
network providers. Hence, it is always essential to have a
trade-off between the data storage cost and latency. To
reduce the cost related to datacentre setup and maintenance,
a good solution is to make use of cloud datacentres. Cloud
computing is a technology trend where users can rent
software, hardware, and infrastructure on a per use (compute
and/or data) basis.

There are many cloud providers with different
datacentres around the world that facilitate setting up,
managing, and maintaining private storage infrastructure.
Amazon S3 [2], Google Cloud storage [3], and Microsoft
Azure [4] are some examples. By making use of cloud
datacentres, social network providers could store data items
in every geographical location to fulfil the latency
requirement for users with much lower cost. However, as use
of any resource in cloud needs to be paid for as well, the data
storage cost would be still huge if they store data items in all
datacentres. Therefore, users’ data need to be stored in such a
way for all users to access data in an endurable time while
having a minimised cost.

To do the data placement and replication, every user
needs to have a primary copy of data and several secondary
replicas to ensure the latency requirement for his/her friends
who want to access his/her data. The issue we have to
address is to find the most appropriate number of replicas for
every user’s data and their locations by finding the trade-off
between monetary cost and latency. Hence, we need an
algorithm to find the minimum cost storage strategy for data
placement and replication in cloud while guaranteeing
service level agreement such as latency for all users.

As social networks have a large number of users which is
growing every day, to minimise the monetary cost while
guaranteeing latency requirement, we propose a vertex-cut
graph-partitioning (GP) algorithm to assign the connected
users to different groups. Then, instead of doing the data
placement and replication for every user one by one, the data

1st IEEE International Conference on Cognitive Computing (ICCC2017), Hawaii, June 25-30 2017 (c) IEEE

of all users in every group is placed in a same datacentre to
find the most suitable number of replicas and their placement
for every user. Our algorithm is vertex-cut in which users
can be located in several groups and have several replicas of
data.

As the percentage of more than 90% makes much more
sense in most applications [5], our goal is to find the
minimum number of replicas for a given set of users' data to
have the minimum storage cost while guaranteeing that 90th
percentile of individual latencies is less than the desirable
latency, i.e. over 90% of all operations are within the
specified latency requirement. The SNAP Facebook dataset
[6] is used to test our prototype and experimental results
reveal the effectiveness of our algorithm. As verified in
simulation experiments, our GP-based data placement and
replication strategy is capable of finding good solutions in
most cases.

The remainder of this paper is organised as follows.
Section II introduces the problem formulation and cost
model of online social networks. Section III presents the
detailed graph-partitioning algorithm and the data placement
and replication strategy used in this paper. Section IV
demonstrates the simulation results and the evaluation.
Section V discusses related work. Finally, our work is
summarised in Section VI.

II. PROBLEM FORMULATION
We address the problem of data placement and geo-

replication of online social network services data. We want
to optimise service provider’s monetary cost in using
resources of geo-distributed clouds and guaranteeing service
level agreement such as latency for service users. We do not
include data transfer cost because data needs to be
transferred to the users regardless of where they are located,
i.e. no extra transfer cost is involved.

Every user has a primary copy located in their primary
datacentre. It is assumed that all users read their own data
from their primary datacentre and every friend of them reads
their data from their nearest datacentre which stores any
secondary replica of theirs. It is also assumed that every
write operation goes to the primary datacentre.

Suppose there are M datacentres and N users, each with
one data item. The users and their collection of data items
stored in different datacentres are denoted respectively as:

1 2{ , ,..., }NU u u u �

1 2{ , ,..., }ND d d d �

Datacentres in the system are denoted as:

1 2{ , ,..., }MDC dc dc dc �

The solution space is a matrix X of size N×M as follows:

1 Data of user is stored in datacentre
0 Otherwise{ i j

ijs
�

A. Cost Model
Cost used in this paper refers to the cost for storing data

in different datacentres. Considering N as the number of
users, and Ri as the number of replicas for user i, the cost is
the total monetary cost of storing primary copy and replicas
of all users’ data in different datacentres for a specific
duration and is calculated as follows:

1

($)
N

i
i

Cost StorageCost

 ¦
 ����

where

i i iStorageCost UnitStoragePrice StoredDataSize R u u

1

M

i ij
j

R S

 ¦

The UnitStoragePrice is the price for storing one
Gigabyte of data per month in a datacentre and
StoredDataSizei is the data size for user i. Thus, the storage
cost is the cost for storing user’s primary data and replicas
for one month in different datacentres.

B. Latency
Real latencies between users and datacentres are

measured and used in this paper. Every user reads data from
the nearest datacentre that has a copy of the data. The final
latency for every user is the 90 percentile latency between
them and their data and the latency between all their friends
and the nearest secondary replicas to them.

 ()thlatency p latencyi k

 ����

where
1, ..., Number of friends for userik f f ii

The targeted maximal average response delay per request
is set to 100 ms and 150 ms. It means that over 90% of all
latencies between all connected users in the system is set to
be less than 100 ms and 150 ms. We can use alternative
default latency to local datacentre and alternative coefficients
for remote datacentres.

C. Problem Formulation
We aim to minimise the cost while satisfying service

level agreement which in our case is primarily maximum
permitted latency. The problem with desirable latency is
formulated as follows:
minimise:

Cost($)

subject to:

1

N

i
i

latency DesiredLatency

d¦

����

This constraint means that the latency for every user and
all his/her friends to access his/her data must be lower than
the desirable latency in order to ensure the latency
requirement for every user. latencyi is the latency for user i
and all his/her friends to access his/her data. For every user i,
we have the following constraints.

1

1
M

ij
j

p i U

 � �¦
 ����

1 ,ij ijp s i U j S� d � � � �
 ����

1

M

ij i
j

s minR i U

t � �¦
 ����

In these constraints, pij and sij indicate existing primary
and secondary replicas of user i’s data in datacentre j.
Constraint (4) ensures every user has a single primary replica
in only one of the datacentres. Constraint (5) ensures that no
primary and secondary replicas of the same user are co-
located in one datacentre. Finally, constraint (6) specifies the
minimum number of secondary replicas minRi for every user
i to ensure the data availability.

III. OUR APPROACH
Users’ data are accessed by their connected friends.

Therefore, every user’s data and all his/her friends’ data can
be placed in the same datacentres. We present a novel
vertex-cut graph-partitioning algorithm to group connected
users to the same partitions. Then, data placement and
replication are done for the users in every partition by
placing data items of every partition to the nearest datacentre
to the user with the most number of friends in the partition.
As a vertex-cut algorithm in which users can be assigned to
different partitions is considered, users’ data can be
replicated in different datacentres depending on the partitions
they are assigned to.

A. Graph-Partitioning
Our graph-partitioning algorithm is summarised in three

steps. The pseudocode of the proposed graph-partitioning
algorithm is shown in Algorithm 1.

1. First, the list of friends for every user is found. In
our social graph this list is the number of edges
connected to every vertex.

2. For a k-partitioning problem, users are sorted based
on the number of their connections. Then, first k
users with the most number of connections are
chosen and these users and all their connections are
assigned to random partitions. An example for a 2-
partitioning algorithm is shown in Fig. 1.

Unassigned vertices and edges are shown in blue
colour and two different partitions are shown in red
and green colours. Two vertices with the most
number of connections and all their edges are
randomly assigned to one of these two partitions.

Figure 1. Finding users with the most number of friends

3. For all unassigned users starting from assigned
user’s neighbours, we assign all their unassigned
connections to the dominant partition between their
neighbours. The dominant partition for a vertex is
the partition of the most of its connected edges.
Finally, we have all vertices and edges assigned to
different partitions. For the vertices with edges in
more than one partition, the vertices are assigned to
all partitions of the edges. The final partitioned
graph of Fig. 1 is shown in Fig. 2. There is one
vertex in this graph with edges assigned to two
different partitions. Therefore, this vertex is
assigned to both partitions. Hence, a vertex-cut
graph-partitioning algorithm to partition the input
social graph of users and their connection to
different connected partitions is presented so far.

Figure 2. The partitioned graph

In this graph-partitioning algorithm, we might not have a
balanced partitioned graph after finishing the partitioning
algorithm. However, as we assume the users are scattered all
around the world this does not usually occur in our work.
Moreover, as we are using cloud datacentres with virtually
unlimited storage capacity, having a balanced partitioned
graph is not an issue in our work.

In terms of the time complexity of the proposed graph-
partitioning algorithm, if we consider ConnectionsNum in
the pseudocode as M and UsersNum as N, finding the friends
list for every user has the time complexity of O(M). Finding
k users with the most number of friends takes O(N×log(N))

and finding the order of users for assigning partitions to their
connections takes O(N). Therefore, the total time complexity
of this algorithm is O(Nlog(N)+M) which is effectively
O(Nlog(N)) given M is much smaller than N.

Algorithm 1. Graph-Partitioning Pseudo Code

Input:
Social graph of users and connection
Number of connections: ConnectionsNum
Number of users: UsersNum
Locations of users: Coordinates
Number of expected partitions: K
Output:
Partitioned social graph: Partitions
Algorithm:
// Step 1: Finding the friends list for every user
for all users i=1 to ConnectionsNum
 Assign every connection’s users to the
friendsList of each other and increase the
friendsNum for both users
end for
// Step 2: Finding K users with the most
number of friends
Sort the users based on the number of friends
Choose the first K users as the users with the
most number of friends
// Step 3: Finding the order of users for
assigning partitions to their connections
NumAssigned = 0;
while NumAssigned < UsersNum
 Assign users 1 to K with the most number of
friends to UsersOrder(1:K) and update
NumAssigned
 Assign all their friends starting from
UsersOrder(1) to UsersOrder(K+1: UsersNum)
and update NumAssigned
end while
for all users i= UsersOrder(1) to UsersOrder(K)
 Assign all connections related to i to random
partitions from 1:K
end for
for all users i= UsersOrder(K+1) to
UsersOrder(UsersNum)
 Assign all connections related to i to the
partition of its neighbours
end for
// Returning the solution
Return the partitioned social graph

B. Data Placement and Replication Strategy
As discussed in Section II, the problem we have is data

placement and geo-replication of online social network
services data while optimising service provider’s monetary
cost in using resources of geo-distributed clouds and

guaranteeing service level agreement such as latency for
users. Therefore, we need to place the data of partitioned
users to different datacentre with a minimum cost while
having the latency requirement fulfilled for most of the users.
As the number of social network users is large in reality,
instead of doing the data placement and replication for every
individual user, data placement and replication are done
using the partitioned graph in this paper. The strategy is
summarised in two steps as follows:

1. Every partition has a primary datacentre which is
the nearest datacentre to the main user of this
partition. The main user of the partition is the user
with the most number of friends. Data items related
to all users of a partition are placed in the primary
datacentre of the partition.

2. All datacentres are sorted based on the distance to
the main user of the partition and more copies of
data are replicated in the next nearest datacentres
until the latency requirement is fulfilled.

Finally, the data placement is done after these two steps
and for the users who are located in more than one partition;
they have replicas related to all partitions. Therefore, the
number of replicas for different users is the number of
partitions they are assigned to.

In terms of the time complexity of the placement and
replication strategy, the datacentres are sorted for the main
user of every partition and as there are k partitions and k
main users in the system, the time complexity for this part is
klog(M). Latency requirement is checked for all users and if
it is not guaranteed more replicas are added. The time
complexity for finding the latency is N and it is repeated
maximum M times which has the time complexity of
log(MN) and M is 9 in this paper. Therefore, the total time
complexity of the whole algorithm for partitioning the users
O(Nlog(N)) and doing the data placement and replication
log(N) is O(Nlog(N)).

IV. SIMULATION RESULTS
Our new GP-based data placement and replication

strategy is generic and can be used in any social network
application fitting our data placement approach and social
relationships graph. In this section, we demonstrate the
simulation results and comparison of our benchmark with
different placement and replication strategies.

The SNAP (Stanford Network Analysis Project) real
world Facebook dataset [6] was used to demonstrate how our
algorithm finds effective data placement and replication with
the minimised cost while satisfying the latency requirement.

A. Experiment Dataset and Setting
SNAP is an undirected Facebook dataset with 4,039 users

and 88,234 relationships which is used in the experiments.
This dataset contains a social graph of users IDs and the
relations between them. Facebook data was collected from
survey participants using their Facebook app. The
effectiveness of our strategy comparing with other strategies
is shown in this Section.

As we did not have the users’ information such as
location in the introduced dataset, we generated random

locations in one of the 9 regions in Virginia, Oregon,
California, Sao Paulo, Ireland, Sydney, Tokyo, Singapore,
and Frankfurt. Real Amazon datacentres [2] in the same
locations and the real latencies between different Amazon
virtual machines and Amazon datacentres are used in the
experiments. Latencies are shown in Table 1 and are found
by placing documents in different Amazon datacentres (DCs)
and reading them from Amazon virtual machines (VMs).
The unit storage cost for data storage in all datacentres is
considered as $0.125 per GB per month. This could be
refined to use different values per datacentre if needed.
Based on a research in 2012 [7], 500+ Terabytes of data are
ingested to Facebook every day which is for almost 550
million daily active users out of 950 million users in 2012.
Therefore, on average, every active user stores 900 KB (500
TB / 550 Million) information daily in a Facebook datacentre
which is the amount of 27 MB (900×30) monthly. This data
size increases every month. We generated random sizes of
data for users following a normal distribution with this
average size as the mean.

TABLE I. LATENCY BETWEEN AMAZON VIRTUAL MACHINES AND
DATACENTRES

 DC

VM V

irg
in

ia

C
al

ifo
rn

ia

O
re

go
n

Sa
o

Pa
ul

o

Ir
el

an
d

Sy
dn

ey

To
ky

o

Si
ng

ap
or

e

Fr
an

kf
ur

t

Virginia 32 118 127 168 150 320 207 325 116

California 92 34 39 312 176 206 128 222 184

Oregon 127 54 68 267 204 211 156 228 213

Sao Paulo 200 258 274 37 230 517 374 440 290

Ireland 150 176 204 230 56 583 669 244 39

Sydney 313 431 232 516 583 35 208 291 454

Tokyo 231 654 172 766 669 233 31 160 301

Singapore 412 183 225 472 244 220 115 38 288

Frankfurt 116 184 213 290 39 454 301 288 37

B. Evaluation of Different Strategies
Different strategies to replicate and place the described

Facebook users’ data in different datacentres which were
simulated and compared with our strategy are as follows:

(1) The first strategy is our GP-based strategy proposed.
(2) The second strategy is a genetic algorithm (GA)

based algorithm [8] in which one copy of data is
stored in the nearest datacentre. Genetic algorithm is
used to find the near optimal number of replicas and
the near optimal placement for them. Crossover rate
of 0.8, mutation by mutation rate of 0.1, and
tournament selection are used in this GA-based
algorithm.

(3) Random placement and replication of data in
different datacentres. The minimum number of

replicas is 1 because we should have one primary
copy of data and the maximum is 9 as we have 9
datacentres.

(4) Placing one copy of data in a random datacentre.
(5) Placing two copies of data in two random

datacentres.
(6) Placing three copies of data in three random

datacentres.
(7) Full replication of every data in all datacentres.
Datacentres are sorted based on the distance for every

user in the next 3 strategies. Because longer distance causes
higher latency, every user prefers to have a copy of data in
his/her nearest datacentre.

(8) One copy of data is stored in the most preferred
datacentre of every user.

(9) Two copies of data are stored in the two most
preferred datacentres.

(10) Three copies of data are stored in the three most
preferred datacentres.

Datacentres are sorted based on both distance as list1 and
number of friends as list2 for every user in the next two
strategies. Users prefer to have copies of data not only in
their nearest datacentres but also in the datacentres
containing most of their friends.

(11) One copy of data is stored in the most preferred
datacentre in list1 and one more copy is stored in the
most preferred datacentre in list2.

(12) One copy of data is stored in the most preferred
datacentre in list1 and two more copies are stored in
the two most preferred datacentres in list2.

Different settings are assumed to compare the results of
these strategies. These settings are based on the service level
agreement on the latency requirement for users and their
friends to access their data. Latency requirement is defined
as: “pth percentile latency must be lower than the desirable
latency” which means that over p percent of the individual
latencies are less than the desirable latency. As the
percentage of more than 90% makes much more sense in
most applications [5], requirements are assumed as 90% of
the individual latencies are less than 100 ms and 150 ms.

As shown in Figs. 3 and 4, the most affordable strategy
that can guarantee the latency requirement of “90% latencies
lower than 100 ms and 150 ms” is our GP based strategy that
shows the outstanding performance of our strategy
comparing with other strategies. Therefore, our GP based
strategy can find the minimised cost while guaranteeing the
latency requirement for 90 percentile of users. In particular,
in Fig. 3, some strategies such as GA, friend 2, random, and
full replication could guarantee the latency requirement,
however, with a higher cost than our GP based strategy.
Furthermore, in Fig. 4, the only strategies except for our GP
based strategy which are able to guarantee the latency
requirement are GA and full replication. Comparing to the
full replication, our strategy has a cost reduction of almost
50%. Moreover, our strategy finds the solution in the
magnitude of minutes in terms of running time comparing to
the GA based strategy in the magnitude of hours.

Figure 3. Comparison of different strategies with latency requirement of

90% lower than 150 ms.

Figure 4. Comparison of different strategies with latency requirement of
90% lower than 100 ms.

V. RELATED WORK
The focus on this paper is cost-effective data placement

and replication in the cloud. In this section, we compare our
work with existing literature in three categories: first,
optimising online social networks services, second, data
placement and replication in cloud, and third, graph-
partitioning.

Social locality is used to address the issue of OSN
(online social network) data placement at one site with
different servers, in literature. For instance, SPAR [9]
minimises the total number of slave replicas while
maintaining social locality for every user; S-CLONE [10]
maximises the number of users whose social locality can be
sustained, given a fixed number of replicas per user. For
OSN across multiple sites, some propose selective
replication of data across datacentres to reduce the total
inter-data-centre traffic. some other works propose a
framework that captures and optimises multiple dimensions
of the OSN system objectives concurrently [11]. Other works

do not involve quality of service as our geo-distribution and
replication case.

To decrease the network traffic and undesirable long
delays in large distributed systems such as the Internet,
replicating some of the objects at multiple sites is considered
as one possible solution in [12]. The decision of what and
where to replicate is solved by genetic algorithms (GA).
Normal GA is considered for static situations and a hybrid
GA is proposed that takes current replica distribution as
input and then computes a new one using knowledge about
the network attributes and the changes occurred.
Furthermore, problem of co-scheduling job dispatching and
data replication in wide-area distributed systems in an
integrated manner is addressed in [13]. Their system contains
three variables as the order of the jobs, the assignment of the
jobs to the individual compute nodes, and the assignment of
the data objects to the local data stores. A genetic algorithm
is used to find the optimal placement. However, they do not
consider the social network data placement problem in the
cloud.

Some data placement strategies based on genetic
algorithms are proposed in [14] and [15] to reduce data
scheduling between cloud datacentres and the distributed
transaction costs as much as possible. Additionally, the
problem of placing the components of a SaaS and their
related data in the cloud is addresses in [16]. However, data
replication is not considered in these papers.

The inter-datacentre communication of the online social
network services is focused in [17]. Moreover, a geo-cloud
based dynamic replica creation in large global Web sites
such as Facebook is presented in [18]. Volley [19] addresses
the automated data placement challenge which deals with
WAN bandwidth costs and datacentre capacity limitations
while minimising user-perceived latency. Additionally, the
cloud storage reconfiguration while respecting application-
defined constraints to adapt to changes in users’ locations or
request rates is addressed in [20]. However, they do not
consider the monetary cost for replicating data in their work.

A mechanism for selectively replicating large databases
globally while minimising the bandwidth is introduced in
[21]. However, it replicates all records in all locations either
as a full copy or as a stub. Using geo-distributed clouds for
scaling the social media streaming service is used in [22] to
address the challenges for storing and migrating media data
for timely response and moderate expense. It works on
videos and focuses on resource and data migration. The
primary focus in [23] is to minimise the cost incurred by
latency-sensitive application providers while satisfying
consistency and fault-tolerance requirements with taking
workload properties into account. However, latency
definition in their work makes it not comparable with our
work.

The data placement of the OSN services with considering
their monetary cost, quality of service, data availability
requirements, inter-cloud traffic as well as the carbon
footprint is investigated in [11]. The social locality
assumption in which they have to keep all friends’ replicas in
one’s main datacentre makes their work not comparable with
ours. Multi-objective optimisation including reducing the

usage of cloud resources, providing good service quality to
users, and minimising the carbon footprint is addressed in
[24]. However, they consider latency as an objective instead
of constraint which makes it not comparable with our work.

Placing and replicating the data related to social networks
is an issue that is addressed in the reviewed literature. As
there are millions of users who are scattered all around the
world, finding an optimal way to place and replicate the data
related to them in a cost-effective way while guaranteeing
service level agreement is still a challenge. Social networks
data replication in cloud is not addressed by using
partitioning the graph into different partitions.

Graph-partitioning methods can be divided to two
groups: edge-cut and vertex-cut. Edge-cut partitioning is
dividing vertices of a graph into disjoint partitions of almost
equal size while a vertex-cut partitioning divides the edges of
a graph into equal-size partitions. The two endpoint vertices
of an edge are also placed in the same partition as the edge.
However, the vertices are not unique across partitions and
they can be replicated due to the distribution of their edges
across different partitions. A good vertex-cut partitioning
algorithms is the one with minimum number of replicas [25].

A graph-partitioning algorithm to reduce the latency and
bandwidth in social networks is proposed in [26]. They
propose a decentralised community detection algorithm to
partition a distributed structure into a set of computing
clusters. However, they did not consider the cost. Some of
the existing algorithms on both edge-cut and vertex-cut
partitioning are summarised in the following.

Edge-cut partitioning algorithms can be centralised or
distributed. Centralised algorithms assume cheap random
access to the entire graph despite of the distributed
algorithms which do not need the information about the
whole graph. METIS [27] and KAFFPA [28] are some
examples in this category using multi-level graph-
partitioning. GA is used in [29] and [30] in addition to the
multilevel graph-partitioning, and [31] utilises Tabu search.

Parallelisation is a technique used in some researches to
accelerate the partitioning process. PARMETIS [32] and
KAFFPAE [33] are the parallel version of METIS [27] and
KAFFPA [28] respectively. Moreover, a parallel graph-
partitioning technique based on parallel GA is proposed in
[34]. Although these centralised algorithms are fast and able
to produce good minimum cuts, they require access to the
entire graph at all times, which is not possible for large scale
graphs. JA-BE-JA [35], DIDIC [36] and CDC [37] are some
distributed algorithm for graph-partitioning to eliminate
global operations.

While there are numerous solutions for edge-cut
partitioning, very little attention has been given to the vertex-
cut partitioning. SBV-Cut [38] is one of the few algorithms
for vertex-cut partitioning employing hierarchical
partitioning of the graph. PowerGraph [39] is a distributed
graph processing framework that uses vertex-cuts to equally
assign edges of a graph to multiple machines in order to
reduce the communication overhead. GraphX [40] is another
vertex-cut graph processing system on Spark [41]. Finally,
DFEP [42] is a distributed vertex-cut partitioning algorithm

based on a market model, in which the partitions are buyers
of vertices with their budget.

VI. CONCLUSION AND FUTURE WORK
We have proposed a new graph-partitioning algorithm to

divide a social network graph into different partitions of
connected friends. The proposed graph-partitioning
algorithm is used for optimising social media data placement
and replication in cloud datacentres. Comparing to different
placement strategies, our proposed algorithm can find the
most affordable data placement and replication strategy
while guaranteeing the latency requirement for online social
network users. Simulation results on the SNAP Facebook
dataset show the effectiveness of the proposed algorithm.

Updating of data items is not considered in this work
which is postponed to the future. In the future, we will also
adapt the technique as new users come into the system and as
the popularity and links of users evolve in a real online social
network. Moreover, selection of the number of partitions will
be optimised in the future.

ACKNOWLEDGMENT
This research is partly supported by the Australian

Research Council Linkage Project scheme LP130100324 and
Discovery Project scheme DP160102412.

REFERENCES
[1] E. Protalinski. (2015). Facebook Passes 1.55B Monthly Active Users

and 1.01B Daily Active Users. Available:
http://venturebeat.com/2015/11/04/facebook-passes-1-55b-monthly-
active-users-and-1-01-billion-daily-active-users/

[2] Amazon S3. Available: http://aws.amazon.com/s3
[3] Google Cloud Storage. Available: http://cloud.google.com/storage
[4] Windows Azure. Available: http://www.microsoft.com/windowsazure
[5] X. Liu, J. Chen, and Y. Yang, "A Probabilistic Strategy for Setting

Temporal Constraints in Scientific Workflows," in Business Process
Management. vol. 5240, ed: Springer Berlin Heidelberg, 2008, pp.
180-195.

[6] J. Mcauley and J. Leskovec, "Learning to Discover Social Circles in
Ego Networks," in Advances in Neural Information Processing
Systems 25 (NIPS), 2012, pp. 539-547.

[7] J. Constine. (2012). How Big Is Facebook’s Data? 2.5 Billion Pieces
Of Content And 500+ Terabytes Ingested Every Day. Available:
http://techcrunch.com/2012/08/22/how-big-is-facebooks-data-2-5-
billion-pieces-of-content-and-500-terabytes-ingested-every-day/

[8] H. Khalajzadeh, D. Yuan, J. Grundy, and Y. Yang, "Improving
Cloud-based Online Social Network Data Placement and
Replication," in International Conference on Cloud Computing, 2016,
pp. 678-685.

[9] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P.
Chhabra, et al., "The Little Engine(s) That Could: Scaling Online
Social Networks," in ACM Special Interest Group on Data
Communication (SIGCOMM), New Delhi, India, 2010, pp. 375-386.

[10] D. A. Tran, K. Nguyen, and C. Pham, "S-CLONE: Socially-Aware
Data Replication for Social Networks," Computer Networks, vol. 56,
2012, pp. 2001-2013.

[11] L. Jiao, J. Li, T. Xu, W. Du, and X. Fu, "Optimizing Cost for Online
Social Networks on Geo-Distributed Clouds," IEEE/ACM
Transactions on Networking, vol. PP, 2014, pp. 99-112.

[12] T. Loukopoulos and I. Ahmad, "Static and Adaptive Distributed Data
Replication using Genetic Algorithms," Journal of Parallel and
Distributed Computing, vol. 64, 2004, pp. 1270-1285.

[13] T. Phan, K. Ranganathan, and R. Sion, "Evolving Toward the Perfect
Schedule: Co-scheduling Job Assignments and Data Replication in
Wide-Area Systems Using a Genetic Algorithm," in Job Scheduling
Strategies for Parallel Processing. vol. 3834, ed: Springer Berlin
Heidelberg, 2005, pp. 173-193.

[14] W. Guo and X. Wang, "A Data Placement Strategy Based on Genetic
Algorithm in Cloud Computing Platform," in Web Information
System and Application Conference (WISA), 2013, pp. 369-372.

[15] Q. Xu, Z. Xu, and T. Wang, "A Data-Placement Strategy Based on
Genetic Algorithm in Cloud Computing," International Journal of
Intelligence Science, vol. 5, 2015, pp. 145-157.

[16] Z. I. M. Yusoh and M. Tang, "A Penalty-based Genetic Algorithm for
the Composite SaaS Placement Problem in the Cloud," in IEEE
Congress on Evolutionary Computation (CEC), 2010, pp. 1-8.

[17] G. Liu, H. Shen, and H. Chandler, "Selective Data Replication for
Online Social Networks with Distributed Datacenters," in IEEE
International Conference on Network Protocols (ICNP), 2013, pp. 1-
10.

[18] Z. Ye, S. Li, and J. Zhou, "A Two-Layer Geo-Cloud based Dynamic
Replica Creation Strategy," Applied Mathematics & Information
Sciences, vol. 8, 2014, pp. 431-440.

[19] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H.
Bhogan, "Volley: Automated Data Placement for Geo-Distributed
Cloud Services," in USENIX conference on Networked systems
design and implementation, San Jose, California, 2010.

[20] M. S. Ardekani and D. B. Terry, "A Self-Configurable Geo-
Replicated Cloud Storage System," in USENIX conference on
Operating Systems Design and Implementation, Broomfield, CO,
2014, pp. 367-381.

[21] S. Kadambi, J. Chen, B. F. Cooper, D. Lomax, A. Silberstein, E.
Tam, et al., "Where in the World is My Data?," in Very Large Data
Base Endowment Inc. (VLDB Endowment), 2011, pp. 1040-1050.

[22] Y. Wu, C. Wu, B. Li, L. Zhang, Z. Li, and F. C. M. Lau, "Scaling
Social Media Applications into Geo-Distributed Clouds," in IEEE
Conference on Computer Communications (INFOCOM), 2012, pp.
684-692.

[23] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. V.
Madhyastha, "SPANStore: Cost-Effective Geo-Replicated Storage
Spanning Multiple Cloud Services," in ACM Symposium on
Operating Systems Principles, Farminton, Pennsylvania, 2013, pp.
292-308.

[24] L. Jiao, J. Lit, W. Du, and X. Fu, "Multi-Objective Data Placement
for Multi-Cloud Socially Aware Services," in IEEE Conference on
Computer Communication (INFOCOM), 2014, pp. 28-36.

[25] F. Rahimian, A. H. Payberah, S. Girdzijauskas, M. Jelasity, and S.
Haridi, "A Distributed Algorithm for Large-Scale Graph
Partitioning," ACM Transactions on Autonomous and Adaptive
Systems (TAAS), vol. 10, 2015, pp. 1-24.

[26] H. P. Sajjad, F. Rahimian, and V. Vlassov, "Smart Partitioning of
Geo-Distributed Resources to Improve Cloud Network Performance,"
in IEEE International Conference on Cloud Networking
(CloudNet'15), Niagara Falls, Canada, 2015, pp. 112-118.

[27] G. Karypis and V. Kumar, "A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs," SIAM Journal on
Scientific Computing, vol. 20, 1998, pp. 359–392.

[28] P. Sanders and C. Schulz, "Engineering Multilevel Graph Partitioning
Algorithms," Algorithms (ESA’11), Lecture Notes in Computer
Science, vol. 6942, 2011, pp. 469–480, Springer, Berlin, Heidelberg.

[29] A. J. Soper, C. Walshaw, and M. Cross, "A Combined Evolutionary
Search and Multilevel Optimisation Approach to Graph-Partitioning,"
Journal of Global Optimization, vol. 29, 2004, pp. 225–241.

[30] P. Chardaire, M. Barake, and G. P. McKeown, "A Probe-based
Heuristic for Graph Partitioning," IEEE Transactions on Computers,
vol. 56, 2007, pp. 1707–1720.

[31] U. Benlic and J.-K. Hao, "An Effective Multilevel Tabu Search
Approach for Balanced Graph Partitioning," Computers & Operations
Research vol. 38, 2011, pp. 1066-1075.

[32] G. Karypis and V. Kumar, "Parallel Multilevel Series K-way
Partitioning Scheme for Irregular Graphs," Journal of Parallel and
Distributed Computing 48, 1999, pp. 278–300.

[33] P. Sanders and C. Schulz, "Distributed Evolutionary Graph
Partitioning," in Workshop on Algorithm Engineering and
Experiments (ALENEX) 2012, pp. 16-29.

[34] E.-G. Talbi and P. Bessiere, "A Parallel Genetic Algorithm for the
Graph Partitioning Problem," in ACM International Conference on
Supercomputing (ICS’91), 1991, pp. 312–320.

[35] F. Rahimian, A. H. Payberah, S. Girdzijauskas, M. Jelasity, and S.
Haridi, "Jabe-Ja: A Distributed Algorithm for Balanced Graph
Partitioning," in IEEE International Conference on Self-Adaptive and
Self-Organizing Systems (SASO’13), 2013, pp. 51–60.

[36] J. Gehweiler and H. Meyerhenke, "A Distributed Diffusive Heuristic
for Clustering a Virtual P2P Supercomputer," in IEEE International
Parallel & Distributed Processing Symposium Workshops and Phd
Forum (IPDPSW’10), 2010, pp. 1-8.

[37] L. Ramaswamy, B. Gedik, and L. Liu, "A Distributed Approach to
Node Clustering in Decentralized Peer-to-Peer Networks," IEEE
Transactions on Parallel and Distributed Systems (TPDS), vol. 16,
2005, pp. 814–829.

[38] M. Kim and K. S. Candan, "SBV-Cut: Vertex-cut based Graph
Partitioning Using Structural Balance Vertices," Data & Knowledge
Engineering, vol. 72, 2012, pp. 285–303.

[39] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
"PowerGraph: Distributed Graph-Parallel Computation on Natural
Graphs," USENIX Symposium on Operating System Design and
Implementation (OSDI), vol. 12, 2012, pp. 17-30.

[40] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica, "Graphx: A
Resilient Distributed Graph System on Spark," International
Workshop on Graph Data Management Experiences and Systems
(GRADES’13), 2013.

[41] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
"Spark: Cluster Computing with Working Sets," in USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud’10), 2010.

[42] A. Guerrieri and A. Montresor, "Distributed Edge Partitioning for
Graph Processing," arXiv preprint arXiv:1403.6270, 2014.

