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Abstract—Social network users are connected based on shared 
interests, ideas, association with different groups, etc. Common 
social networks such as Facebook and Twitter have hundreds 
of millions or even billions of users scattered all around the 
world sharing interconnected data. Users demand low latency 
access to not only their own data but also their friends’ data. 
However, social network service providers wish to pay as less 
as possible to store all data items to meet users’ data access 
latency requirement. Geo-distributed cloud services with 
virtually unlimited capabilities are suitable for large scale 
social networks data storage in different geographical 
locations. Key problems including how to optimally store and 
replicate these huge data items and how to distribute the 
requests to different datacentres are addressed in this paper. A 
novel graph-partitioning based approach is proposed to find a 
near-optimal data placement of replicas to minimise monetary 
cost while satisfying the latency requirement. Experiments on a 
Facebook dataset demonstrate our technique’s effectiveness in 
outperforming other representative placement and replication 
strategies.  

Keywords-social network; data placement; data replication; 
latency; storage cost; graph-partitioning 

I.  INTRODUCTION 
Social networks often have a huge number of 

interconnected users geographically scattered all around the 
world sharing different types of large data items. Data items 
are growing every day in terms of size and number. For 
instance, Facebook as the world largest social network 
passes 1.55 billion monthly active users and 1.01 billion 
daily active users in 2015 [1]. Social network users have 
expectations including low latency from their social network 
service provider as they can only tolerate a certain threshold 
to access their own data or their friends’ data.  

A possible solution to have the users’ latency 
expectations fulfilled is to store all data items in every 

available datacentre. However, it is not economic for social 
network providers. Hence, it is always essential to have a 
trade-off between the data storage cost and latency. To 
reduce the cost related to datacentre setup and maintenance, 
a good solution is to make use of cloud datacentres. Cloud 
computing is a technology trend where users can rent 
software, hardware, and infrastructure on a per use (compute 
and/or data) basis. 

There are many cloud providers with different 
datacentres around the world that facilitate setting up, 
managing, and maintaining private storage infrastructure. 
Amazon S3 [2], Google Cloud storage [3], and Microsoft 
Azure [4] are some examples. By making use of cloud 
datacentres, social network providers could store data items 
in every geographical location to fulfil the latency 
requirement for users with much lower cost. However, as use 
of any resource in cloud needs to be paid for as well, the data 
storage cost would be still huge if they store data items in all 
datacentres. Therefore, users’ data need to be stored in such a 
way for all users to access data in an endurable time while 
having a minimised cost. 

To do the data placement and replication, every user 
needs to have a primary copy of data and several secondary 
replicas to ensure the latency requirement for his/her friends 
who want to access his/her data. The issue we have to 
address is to find the most appropriate number of replicas for 
every user’s data and their locations by finding the trade-off 
between monetary cost and latency. Hence, we need an 
algorithm to find the minimum cost storage strategy for data 
placement and replication in cloud while guaranteeing 
service level agreement such as latency for all users. 

As social networks have a large number of users which is 
growing every day, to minimise the monetary cost while 
guaranteeing latency requirement, we propose a vertex-cut 
graph-partitioning (GP) algorithm to assign the connected 
users to different groups. Then, instead of doing the data 
placement and replication for every user one by one, the data 
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of all users in every group is placed in a same datacentre to 
find the most suitable number of replicas and their placement 
for every user. Our algorithm is vertex-cut in which users 
can be located in several groups and have several replicas of 
data. 

As the percentage of more than 90% makes much more 
sense in most applications [5], our goal is to find the 
minimum number of replicas for a given set of users' data to 
have the minimum storage cost while guaranteeing that 90th 
percentile of individual latencies is less than the desirable 
latency, i.e. over 90% of all operations are within the 
specified latency requirement. The SNAP Facebook dataset 
[6] is used to test our prototype and experimental results 
reveal the effectiveness of our algorithm. As verified in 
simulation experiments, our GP-based data placement and 
replication strategy is capable of finding good solutions in 
most cases. 

The remainder of this paper is organised as follows. 
Section II introduces the problem formulation and cost 
model of online social networks. Section III presents the 
detailed graph-partitioning algorithm and the data placement 
and replication strategy used in this paper. Section IV 
demonstrates the simulation results and the evaluation. 
Section V discusses related work. Finally, our work is 
summarised in Section VI. 

II. PROBLEM FORMULATION 
We address the problem of data placement and geo-

replication of online social network services data. We want 
to optimise service provider’s monetary cost in using 
resources of geo-distributed clouds and guaranteeing service 
level agreement such as latency for service users. We do not 
include data transfer cost because data needs to be 
transferred to the users regardless of where they are located, 
i.e. no extra transfer cost is involved. 

Every user has a primary copy located in their primary 
datacentre. It is assumed that all users read their own data 
from their primary datacentre and every friend of them reads 
their data from their nearest datacentre which stores any 
secondary replica of theirs. It is also assumed that every 
write operation goes to the primary datacentre. 

Suppose there are M datacentres and N users, each with 
one data item. The users and their collection of data items 
stored in different datacentres are denoted respectively as: 

1 2{ , ,..., }NU u u u �

1 2{ , ,..., }ND d d d �

Datacentres in the system are denoted as: 

1 2{ , ,..., }MDC dc dc dc �

The solution space is a matrix X of size N×M as follows:  

1 Data of user is stored in datacentre
0 Otherwise{ i j

ijs  
�

A. Cost Model 
Cost used in this paper refers to the cost for storing data 

in different datacentres. Considering N as the number of 
users, and Ri as the number of replicas for user i, the cost is 
the total monetary cost of storing primary copy and replicas 
of all users’ data in different datacentres for a specific 
duration and is calculated as follows: 

 
 

1

($)
N

i
i

Cost StorageCost
 

 ¦
 ����

where 

i i iStorageCost UnitStoragePrice StoredDataSize R u u  

1

M

i ij
j

R S
 

 ¦
 

The UnitStoragePrice is the price for storing one 
Gigabyte of data per month in a datacentre and 
StoredDataSizei is the data size for user i. Thus, the storage 
cost is the cost for storing user’s primary data and replicas 
for one month in different datacentres. 

B. Latency 
Real latencies between users and datacentres are 

measured and used in this paper. Every user reads data from 
the nearest datacentre that has a copy of the data. The final 
latency for every user is the 90 percentile latency between 
them and their data and the latency between all their friends 
and the nearest secondary replicas to them.  

 
 ( )thlatency p latencyi k 
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where  
1, ..., Number of friends for userik f f ii  

 

The targeted maximal average response delay per request 
is set to 100 ms and 150 ms. It means that over 90% of all 
latencies between all connected users in the system is set to 
be less than 100 ms and 150 ms. We can use alternative 
default latency to local datacentre and alternative coefficients 
for remote datacentres. 

C. Problem Formulation 
We aim to minimise the cost while satisfying service 

level agreement which in our case is primarily maximum 
permitted latency. The problem with desirable latency is 
formulated as follows: 
minimise: 

Cost($) 
 
 
 
 



subject to: 
 
 

1

N

i
i

latency DesiredLatency
 

d¦
 

����

This constraint means that the latency for every user and 
all his/her friends to access his/her data must be lower than 
the desirable latency in order to ensure the latency 
requirement for every user. latencyi is the latency for user i 
and all his/her friends to access his/her data. For every user i, 
we have the following constraints. 
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In these constraints, pij and sij indicate existing primary 
and secondary replicas of user i’s data in datacentre j. 
Constraint (4) ensures every user has a single primary replica 
in only one of the datacentres. Constraint (5) ensures that no 
primary and secondary replicas of the same user are co-
located in one datacentre. Finally, constraint (6) specifies the 
minimum number of secondary replicas minRi for every user 
i to ensure the data availability. 

III. OUR APPROACH 
Users’ data are accessed by their connected friends. 

Therefore, every user’s data and all his/her friends’ data can 
be placed in the same datacentres. We present a novel 
vertex-cut graph-partitioning algorithm to group connected 
users to the same partitions. Then, data placement and 
replication are done for the users in every partition by 
placing data items of every partition to the nearest datacentre 
to the user with the most number of friends in the partition. 
As a vertex-cut algorithm in which users can be assigned to 
different partitions is considered, users’ data can be 
replicated in different datacentres depending on the partitions 
they are assigned to. 

A. Graph-Partitioning 
Our graph-partitioning algorithm is summarised in three 

steps. The pseudocode of the proposed graph-partitioning 
algorithm is shown in Algorithm 1. 

1. First, the list of friends for every user is found. In 
our social graph this list is the number of edges 
connected to every vertex. 

2. For a k-partitioning problem, users are sorted based 
on the number of their connections. Then, first k 
users with the most number of connections are 
chosen and these users and all their connections are 
assigned to random partitions. An example for a 2-
partitioning algorithm is shown in Fig. 1. 

Unassigned vertices and edges are shown in blue 
colour and two different partitions are shown in red 
and green colours. Two vertices with the most 
number of connections and all their edges are 
randomly assigned to one of these two partitions. 

 
Figure 1.  Finding users with the most number of friends 

3. For all unassigned users starting from assigned 
user’s neighbours, we assign all their unassigned 
connections to the dominant partition between their 
neighbours. The dominant partition for a vertex is 
the partition of the most of its connected edges. 
Finally, we have all vertices and edges assigned to 
different partitions. For the vertices with edges in 
more than one partition, the vertices are assigned to 
all partitions of the edges. The final partitioned 
graph of Fig. 1 is shown in Fig. 2. There is one 
vertex in this graph with edges assigned to two 
different partitions. Therefore, this vertex is 
assigned to both partitions. Hence, a vertex-cut 
graph-partitioning algorithm to partition the input 
social graph of users and their connection to 
different connected partitions is presented so far. 

 
Figure 2.  The partitioned graph 

In this graph-partitioning algorithm, we might not have a 
balanced partitioned graph after finishing the partitioning 
algorithm. However, as we assume the users are scattered all 
around the world this does not usually occur in our work. 
Moreover, as we are using cloud datacentres with virtually 
unlimited storage capacity, having a balanced partitioned 
graph is not an issue in our work. 

In terms of the time complexity of the proposed graph-
partitioning algorithm, if we consider ConnectionsNum in 
the pseudocode as M and UsersNum as N, finding the friends 
list for every user has the time complexity of O(M). Finding 
k users with the most number of friends takes O(N×log(N)) 



and finding the order of users for assigning partitions to their 
connections takes O(N). Therefore, the total time complexity 
of this algorithm is O(Nlog(N)+M) which is effectively 
O(Nlog(N)) given M is much smaller than N. 

 
Algorithm 1. Graph-Partitioning Pseudo Code 

Input:  
Social graph of users and connection 
Number of connections: ConnectionsNum 
Number of users: UsersNum 
Locations of users: Coordinates 
Number of expected partitions: K 
Output: 
Partitioned social graph: Partitions 
Algorithm: 
// Step 1: Finding the friends list for every user 
for all users i=1 to ConnectionsNum 
  Assign every connection’s users to the 
friendsList of each other and increase the 
friendsNum for both users 
end for 
// Step 2: Finding K users with the most 
number of friends 
Sort the users based on the number of friends 
Choose the first K users as the users with the 
most number of friends 
// Step 3: Finding the order of users for 
assigning partitions to their connections 
NumAssigned = 0; 
while NumAssigned < UsersNum 
   Assign users 1 to K with the most number of 
friends to UsersOrder(1:K) and update 
NumAssigned 
   Assign all their friends starting from 
UsersOrder(1) to UsersOrder(K+1: UsersNum) 
and update NumAssigned 
end while 
for all users i= UsersOrder(1) to UsersOrder(K) 
   Assign all connections related to i to random 
partitions from 1:K 
end for 
for all users i= UsersOrder(K+1) to 
UsersOrder(UsersNum) 
   Assign all connections related to i to the 
partition of its neighbours 
end for  
// Returning the solution 
Return the partitioned social graph 

 

B. Data Placement and Replication Strategy 
As discussed in Section II, the problem we have is data 

placement and geo-replication of online social network 
services data while optimising service provider’s monetary 
cost in using resources of geo-distributed clouds and 

guaranteeing service level agreement such as latency for 
users. Therefore, we need to place the data of partitioned 
users to different datacentre with a minimum cost while 
having the latency requirement fulfilled for most of the users. 
As the number of social network users is large in reality, 
instead of doing the data placement and replication for every 
individual user, data placement and replication are done 
using the partitioned graph in this paper. The strategy is 
summarised in two steps as follows: 

1. Every partition has a primary datacentre which is 
the nearest datacentre to the main user of this 
partition. The main user of the partition is the user 
with the most number of friends. Data items related 
to all users of a partition are placed in the primary 
datacentre of the partition. 

2. All datacentres are sorted based on the distance to 
the main user of the partition and more copies of 
data are replicated in the next nearest datacentres 
until the latency requirement is fulfilled. 

Finally, the data placement is done after these two steps 
and for the users who are located in more than one partition; 
they have replicas related to all partitions. Therefore, the 
number of replicas for different users is the number of 
partitions they are assigned to.  

In terms of the time complexity of the placement and 
replication strategy, the datacentres are sorted for the main 
user of every partition and as there are k partitions and k 
main users in the system, the time complexity for this part is 
klog(M). Latency requirement is checked for all users and if 
it is not guaranteed more replicas are added. The time 
complexity for finding the latency is N and it is repeated 
maximum M times which has the time complexity of 
log(MN) and M is 9 in this paper. Therefore, the total time 
complexity of the whole algorithm for partitioning the users 
O(Nlog(N)) and doing the data placement and replication 
log(N) is O(Nlog(N)). 

IV. SIMULATION RESULTS 
Our new GP-based data placement and replication 

strategy is generic and can be used in any social network 
application fitting our data placement approach and social 
relationships graph. In this section, we demonstrate the 
simulation results and comparison of our benchmark with 
different placement and replication strategies. 

The SNAP (Stanford Network Analysis Project) real 
world Facebook dataset [6] was used to demonstrate how our 
algorithm finds effective data placement and replication with 
the minimised cost while satisfying the latency requirement. 

A. Experiment Dataset and Setting 
SNAP is an undirected Facebook dataset with 4,039 users 

and 88,234 relationships which is used in the experiments. 
This dataset contains a social graph of users IDs and the 
relations between them. Facebook data was collected from 
survey participants using their Facebook app. The 
effectiveness of our strategy comparing with other strategies 
is shown in this Section. 

As we did not have the users’ information such as 
location in the introduced dataset, we generated random 



locations in one of the 9 regions in Virginia, Oregon, 
California, Sao Paulo, Ireland, Sydney, Tokyo, Singapore, 
and Frankfurt. Real Amazon datacentres [2] in the same 
locations and the real latencies between different Amazon 
virtual machines and Amazon datacentres are used in the 
experiments. Latencies are shown in Table 1 and are found 
by placing documents in different Amazon datacentres (DCs) 
and reading them from Amazon virtual machines (VMs). 
The unit storage cost for data storage in all datacentres is 
considered as $0.125 per GB per month. This could be 
refined to use different values per datacentre if needed. 
Based on a research in 2012 [7], 500+ Terabytes of data are 
ingested to Facebook every day which is for almost 550 
million daily active users out of 950 million users in 2012. 
Therefore, on average, every active user stores 900 KB (500 
TB / 550 Million) information daily in a Facebook datacentre 
which is the amount of 27 MB (900×30) monthly. This data 
size increases every month. We generated random sizes of 
data for users following a normal distribution with this 
average size as the mean. 

TABLE I.  LATENCY BETWEEN AMAZON VIRTUAL MACHINES AND 
DATACENTRES 
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Virginia 32 118 127 168 150 320 207 325 116 

California 92 34 39 312 176 206 128 222 184 

Oregon 127 54 68 267 204 211 156 228 213 

Sao Paulo 200 258 274 37 230 517 374 440 290 

Ireland 150 176 204 230 56 583 669 244 39 

Sydney 313 431 232 516 583 35 208 291 454 

Tokyo 231 654 172 766 669 233 31 160 301 

Singapore 412 183 225 472 244 220 115 38 288 

Frankfurt 116 184 213 290 39 454 301 288 37 

B. Evaluation of Different Strategies 
Different strategies to replicate and place the described 

Facebook users’ data in different datacentres which were 
simulated and compared with our strategy are as follows: 

(1) The first strategy is our GP-based strategy proposed. 
(2) The second strategy is a genetic algorithm (GA) 

based algorithm [8] in which one copy of data is 
stored in the nearest datacentre. Genetic algorithm is 
used to find the near optimal number of replicas and 
the near optimal placement for them. Crossover rate 
of 0.8, mutation by mutation rate of 0.1, and 
tournament selection are used in this GA-based 
algorithm. 

(3) Random placement and replication of data in 
different datacentres. The minimum number of 

replicas is 1 because we should have one primary 
copy of data and the maximum is 9 as we have 9 
datacentres.  

(4) Placing one copy of data in a random datacentre. 
(5) Placing two copies of data in two random 

datacentres. 
(6) Placing three copies of data in three random 

datacentres. 
(7) Full replication of every data in all datacentres.  
Datacentres are sorted based on the distance for every 

user in the next 3 strategies. Because longer distance causes 
higher latency, every user prefers to have a copy of data in 
his/her nearest datacentre.  

(8) One copy of data is stored in the most preferred 
datacentre of every user. 

(9) Two copies of data are stored in the two most 
preferred datacentres. 

(10) Three copies of data are stored in the three most 
preferred datacentres. 

Datacentres are sorted based on both distance as list1 and 
number of friends as list2 for every user in the next two 
strategies. Users prefer to have copies of data not only in 
their nearest datacentres but also in the datacentres 
containing most of their friends. 

(11) One copy of data is stored in the most preferred 
datacentre in list1 and one more copy is stored in the 
most preferred datacentre in list2. 

(12) One copy of data is stored in the most preferred 
datacentre in list1 and two more copies are stored in 
the two most preferred datacentres in list2. 

Different settings are assumed to compare the results of 
these strategies. These settings are based on the service level 
agreement on the latency requirement for users and their 
friends to access their data. Latency requirement is defined 
as: “pth percentile latency must be lower than the desirable 
latency” which means that over p percent of the individual 
latencies are less than the desirable latency. As the 
percentage of more than 90% makes much more sense in 
most applications [5], requirements are assumed as 90% of 
the individual latencies are less than 100 ms and 150 ms. 

As shown in Figs. 3 and 4, the most affordable strategy 
that can guarantee the latency requirement of “90% latencies 
lower than 100 ms and 150 ms” is our GP based strategy that 
shows the outstanding performance of our strategy 
comparing with other strategies. Therefore, our GP based 
strategy can find the minimised cost while guaranteeing the 
latency requirement for 90 percentile of users. In particular, 
in Fig. 3, some strategies such as GA, friend 2, random, and 
full replication could guarantee the latency requirement, 
however, with a higher cost than our GP based strategy. 
Furthermore, in Fig. 4, the only strategies except for our GP 
based strategy which are able to guarantee the latency 
requirement are GA and full replication. Comparing to the 
full replication, our strategy has a cost reduction of almost 
50%. Moreover, our strategy finds the solution in the 
magnitude of minutes in terms of running time comparing to 
the GA based strategy in the magnitude of hours. 



 
Figure 3.  Comparison of different strategies with latency requirement of 

90% lower than 150 ms. 

 

Figure 4.  Comparison of different strategies with latency requirement of 
90% lower than 100 ms. 

V. RELATED WORK 
The focus on this paper is cost-effective data placement 

and replication in the cloud. In this section, we compare our 
work with existing literature in three categories: first, 
optimising online social networks services, second, data 
placement and replication in cloud, and third, graph-
partitioning. 

Social locality is used to address the issue of OSN 
(online social network) data placement at one site with 
different servers, in literature. For instance, SPAR [9] 
minimises the total number of slave replicas while 
maintaining social locality for every user; S-CLONE [10] 
maximises the number of users whose social locality can be 
sustained, given a fixed number of replicas per user. For 
OSN across multiple sites, some propose selective 
replication of data across datacentres to reduce the total 
inter-data-centre traffic. some other works propose a 
framework that captures and optimises multiple dimensions 
of the OSN system objectives concurrently [11]. Other works 

do not involve quality of service as our geo-distribution and 
replication case. 

To decrease the network traffic and undesirable long 
delays in large distributed systems such as the Internet, 
replicating some of the objects at multiple sites is considered 
as one possible solution in [12]. The decision of what and 
where to replicate is solved by genetic algorithms (GA). 
Normal GA is considered for static situations and a hybrid 
GA is proposed that takes current replica distribution as 
input and then computes a new one using knowledge about 
the network attributes and the changes occurred. 
Furthermore, problem of co-scheduling job dispatching and 
data replication in wide-area distributed systems in an 
integrated manner is addressed in [13]. Their system contains 
three variables as the order of the jobs, the assignment of the 
jobs to the individual compute nodes, and the assignment of 
the data objects to the local data stores. A genetic algorithm 
is used to find the optimal placement. However, they do not 
consider the social network data placement problem in the 
cloud. 

Some data placement strategies based on genetic 
algorithms are proposed in [14] and [15] to reduce data 
scheduling between cloud datacentres and the distributed 
transaction costs as much as possible. Additionally, the 
problem of placing the components of a SaaS and their 
related data in the cloud is addresses in [16]. However, data 
replication is not considered in these papers. 

The inter-datacentre communication of the online social 
network services is focused in [17]. Moreover, a geo-cloud 
based dynamic replica creation in large global Web sites 
such as Facebook is presented in [18]. Volley [19] addresses 
the automated data placement challenge which deals with 
WAN bandwidth costs and datacentre capacity limitations 
while minimising user-perceived latency. Additionally, the 
cloud storage reconfiguration while respecting application-
defined constraints to adapt to changes in users’ locations or 
request rates is addressed in [20]. However, they do not 
consider the monetary cost for replicating data in their work. 

A mechanism for selectively replicating large databases 
globally while minimising the bandwidth is introduced in 
[21]. However, it replicates all records in all locations either 
as a full copy or as a stub. Using geo-distributed clouds for 
scaling the social media streaming service is used in [22] to 
address the challenges for storing and migrating media data 
for timely response and moderate expense. It works on 
videos and focuses on resource and data migration. The 
primary focus in [23] is to minimise the cost incurred by 
latency-sensitive application providers while satisfying 
consistency and fault-tolerance requirements with taking 
workload properties into account. However, latency 
definition in their work makes it not comparable with our 
work.  

The data placement of the OSN services with considering 
their monetary cost, quality of service, data availability 
requirements, inter-cloud traffic as well as the carbon 
footprint is investigated in [11]. The social locality 
assumption in which they have to keep all friends’ replicas in 
one’s main datacentre makes their work not comparable with 
ours. Multi-objective optimisation including reducing the 



usage of cloud resources, providing good service quality to 
users, and minimising the carbon footprint is addressed in 
[24]. However, they consider latency as an objective instead 
of constraint which makes it not comparable with our work. 

Placing and replicating the data related to social networks 
is an issue that is addressed in the reviewed literature. As 
there are millions of users who are scattered all around the 
world, finding an optimal way to place and replicate the data 
related to them in a cost-effective way while guaranteeing 
service level agreement is still a challenge. Social networks 
data replication in cloud is not addressed by using 
partitioning the graph into different partitions.  

Graph-partitioning methods can be divided to two 
groups: edge-cut and vertex-cut. Edge-cut partitioning is 
dividing vertices of a graph into disjoint partitions of almost 
equal size while a vertex-cut partitioning divides the edges of 
a graph into equal-size partitions. The two endpoint vertices 
of an edge are also placed in the same partition as the edge. 
However, the vertices are not unique across partitions and 
they can be replicated due to the distribution of their edges 
across different partitions. A good vertex-cut partitioning 
algorithms is the one with minimum number of replicas [25].  

A graph-partitioning algorithm to reduce the latency and 
bandwidth in social networks is proposed in [26]. They 
propose a decentralised community detection algorithm to 
partition a distributed structure into a set of computing 
clusters. However, they did not consider the cost. Some of 
the existing algorithms on both edge-cut and vertex-cut 
partitioning are summarised in the following.  

Edge-cut partitioning algorithms can be centralised or 
distributed. Centralised algorithms assume cheap random 
access to the entire graph despite of the distributed 
algorithms which do not need the information about the 
whole graph. METIS [27] and KAFFPA [28] are some 
examples in this category using multi-level graph-
partitioning. GA is used in [29] and [30] in addition to the 
multilevel graph-partitioning, and [31] utilises Tabu search. 

Parallelisation is a technique used in some researches to 
accelerate the partitioning process. PARMETIS [32] and 
KAFFPAE [33] are the parallel version of METIS [27] and 
KAFFPA [28] respectively. Moreover, a parallel graph-
partitioning technique based on parallel GA is proposed in 
[34]. Although these centralised algorithms are fast and able 
to produce good minimum cuts, they require access to the 
entire graph at all times, which is not possible for large scale 
graphs. JA-BE-JA [35], DIDIC [36] and CDC [37] are some 
distributed algorithm for graph-partitioning to eliminate 
global operations.  

While there are numerous solutions for edge-cut 
partitioning, very little attention has been given to the vertex-
cut partitioning. SBV-Cut [38] is one of the few algorithms 
for vertex-cut partitioning employing hierarchical 
partitioning of the graph. PowerGraph [39] is a distributed 
graph processing framework that uses vertex-cuts to equally 
assign edges of a graph to multiple machines in order to 
reduce the communication overhead. GraphX [40] is another 
vertex-cut graph processing system on Spark [41]. Finally, 
DFEP [42] is a distributed vertex-cut partitioning algorithm 

based on a market model, in which the partitions are buyers 
of vertices with their budget. 

VI. CONCLUSION AND FUTURE WORK 
We have proposed a new graph-partitioning algorithm to 

divide a social network graph into different partitions of 
connected friends. The proposed graph-partitioning 
algorithm is used for optimising social media data placement 
and replication in cloud datacentres. Comparing to different 
placement strategies, our proposed algorithm can find the 
most affordable data placement and replication strategy 
while guaranteeing the latency requirement for online social 
network users. Simulation results on the SNAP Facebook 
dataset show the effectiveness of the proposed algorithm.  

Updating of data items is not considered in this work 
which is postponed to the future. In the future, we will also 
adapt the technique as new users come into the system and as 
the popularity and links of users evolve in a real online social 
network. Moreover, selection of the number of partitions will 
be optimised in the future. 
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