
Software Architecture Modelling, Analysis and Implementation with SoftArch

John Grundy
Department of Computer Science, University of Auckland

Private Bag 92019, Auckland, New Zealand
john-g@cs.auckland.ac.nz

Abstract

Good software architecture design is crucial in
successfully realising an OOA specification with an
appropriate OOD model that meets the specification’s
functional and non-functional requirements.
Unfortunately most CASE tools and software architecture
design notations do not adequately support software
architecture modelling and analysis, nor integration with
OOA & D models. We describe SoftArch, an environment
which provides flexible software architecture modelling
using a concept of successive refinement. SoftArch also
provides extensible analysis tools enabling developers to
analyse their architecture model properties. This paper
overviews the motivation for SoftArch, its modelling and
analysis capabilities, and its integration with various
analysis, design and implementation tools.

1. Introduction

Many software modelling notations and tools have
been developed [6, 7, 12, 15], and there has been an
increasing emphasis on software architecture modelling in
addition to OOA & D modelling in CASE tools. Various
approaches have been tried, including those of UML [3],
PARSE [15], JViews and aspects [8, 10], tool abstraction
[7], and Clock [6, 22]. Support tools include Rational
Rose [18], JComposer [10], PARSE-DAT [15], ViTABaL
[7], SAAMTool [12] and Argo/UML [19].

Most of these systems provide partial software
architecture modelling solutions, with only some aspects
of architecture modelling supported e.g. basic structure,
limited dynamic behaviour and event models, dynamic
process creation etc [11, 14]. Few provide adequate
analysis tools to help developers reason about their
models and ensure OOA requirements are met and all
software architecture components are refined to suitable
OOD abstractions [19, 11]. Few support OOD and/or
implementation code generation from architecture-level
abstractions, and few support reuse of previously
developed models and patterns [22, 19]. Almost none

allow new architecture abstractions and analysis tools to
be added, and most have poor or no integration with
OOA, design and implementation tools.

We describe SoftArch, a new, extensible
environment using new approaches to software
architecture modelling, analysis, design generation and
tool integration. SoftArch uses an extensible meta-model
of architecture abstractions. Architects use a flexible,
extensible visual notation based on allowable abstractions
to describe and refine software architecture models,
including links to OOA and design objects and classes as
appropriate. A collection of extensible “analysis agents”
constrain, guide and advise architects as they build and
refine their architecture models. SoftArch has been
integrated with several OOA, design and implementation
tools, as well as a process management environment,
using a variety of tool integration techniques.

The following section presents a motivation for our
work developing SoftArch. We then overview the
environment’s capabilities, and in the following sections
describe its software architecture modelling, refinement
and analysis support. A brief discussion of SoftArch’s
implementation and architecture is presented, and we
conclude with a summary of the contributions of this
work and directions for future research.

2. Motivation

Software architecture development has become an
increasingly important part of the software lifecycle, due
to the increasing complexity of software being
constructed [1, 3, 21]. Software developers need to
carefully describe and reason about the architectures of
complex, distributed information systems, which are often
comprised of a mix of new and reused components. A
good, extensible and maintainable architecture often
makes the difference between successful and failed
projects. Much more time tends to be spent on
architecture development than previously, and many more
options exist for developers [1].

jgru001
Text Box
© 2001 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.




Object-oriented Analysis

Functional & non-functional
specifications

Object-oriented Design

Classes, reused APIs,
file/table specs, code

fragments etc.

Software Architecture

Architecture components,
associations, annotations,

properties

Figure 1. Transformation of OOA model to OOD model via Software Architecture.

We view the role of software architecture as a key
mechanism for supporting developers in successfully
developing an OOD model to describe a system
implementation that satisfies a given OOA specification
(functional and non-functional requirements). Figure 1
illustrates this development process and relationships
between OOA, software architecture, and OOD and
implementation-level software artefacts. In addition, often
existing designs and code must be reverse engineered into
higher-level architectural models, which themselves may
need to be reverse engineered into OOA specifications.
Software architecture models typically need to capture
high-level characteristics of a system, down to OOD-level
system organisation [21, 14, 6].

Most existing software architecture notations and
support tools don’t adequately support architecture
modelling, refinement, analysis and OOA/D linkage [11,
14]. This motivated us to develop the SoftArch
environment. Originally this was to be an extension of our
existing OOA/D/P tool JComposer [10]. However, we
developed SoftArch as an independent tool and integrated
it with not only JComposer, but also a range of other
development tools.

3. Overview of SoftArch

SoftArch provides visual software architecture
modelling support along with an extensible meta-model
and development processes. A collection of extensible
analysis agents guide, advise and/or constrain architects,
and a set of reusable templates allow reuse of a variety of

software architecture refinements. Figure 2 illustrates
these basic SoftArch capabilities.

A key concept is the notion of refinement in
SoftArch of high-level architectural model components
into successively more detailed and lower-level models.
Properties of high-level architectural components
constrain the kinds of refinements and properties at lower
levels of detail. An extensible meta-models of possible
types of architectural components, relationships and
properties constrain possible modelling architectural
entities. Analysis agents, controlled by software architects
and enacted process models, monitor architecture model
changes and advise architects on model correctness and
quality. Analysis agents can act as constraints,
disallowing invalid actions; can act as “context-sensitive
advisors”, giving immediate feedback as an architect
works; or can be run batch-style to analyse properties or
part or all of a model.

 Import/export tools support linkage between
SoftArch and OOA, design and implementation tools.
OOA models allow software architects to capture
functional and non-functional requirements in SoftArch
and ensure software architecture models meet these, or at
least are annotated with this information. OOD models
and some code fragments (implementing socket protocols,
database access, ORB API calls etc.) can be exported
from bottom-level architecture components. Reverse
engineering of OOD models into SoftArch allows
developers to abstract higher-level architectural models
from their code, and to ultimately export OOA
specifications into CASE tools.

Import/export
agent(s)

Software component
meta-model(s)

OOA Specs
(functional &

non-functional)
OOA specification

model
Successively refined
architectural models

OOD-level design
model

OOD
classes

OOD APIs

Code
fragments

CASE Tools/
Programming
Environments

e.g. Rose,
JBuilder etc.CASE Tools

e.g. Rose

Import/export
agent(s)

Software architecture
design process

model(s)

Refinement
templates Analysis agents

High-level
architectural model

Low-level
architectural model

Figure 2. Overview of SoftArch architecture design modelling and analysis approach.



SQL Database

Application
Server

(application)

Rent/return video
 (application)

Find video
(Applet)

(WWW Browser)

Customer

Staff

SQL
statements

Read/write
socket

SQL statements

Customer maintenance
 (application)

Figure 3. Example system for which to design a Software Architecture.

4. Software Architecture Modelling

4.1. Example Application

Figure 3 shows an example application and a
possible (high-level) software architecture for this
system. This is a video store library, with on-line
customer search interface, in addition to corporate
database with in-house forms, reports and batch
processes for staff to use. We use this as an example in
the following illustrations of SoftArch in use.

4.2. Software Architecture Modelling

Initially when developing such a system a software
architect will import an OOA functional and non-
functional specification from a CASE tool, or enter this
information themselves. They then sketch out a high-
level model (or copy and modify a suitable template
model, if one exists from a previous project), ensuring
the general characteristics of this model meets the OOA
specification. They then refine this high-level model,
successively adding more detail, and then generate an
OOD model which will be further refined and
implemented using a CASE tool and programming
environment. This basic process is illustrated by the
process model in Figure 4 (1). If part of a system exists,
the software architect would import its OOD model and
successively abstract software architecture components
from it.

To represent software architecture models SoftArch
uses a concept of architecture components, associations
between components, and annotations on components
and associations. Software architecture component
abstractions include generic architecture entities,
processes, data stores, data management processes (e.g.

database servers), machines and devices, and OOA and
OOD-level classes. Associations include generic
architecture component associations, data usage
associations, event notification/subscription, message
passing, and process synchronisation links. Annotations
include data used, events passed, messages exchanged,
protocol used, caching, replication and concurrency
information, process control information, ports and so on.
Each of these architectural entities can have various
properties specified. Properties include information such
as services, security approaches, data size, transaction
processing speed, data, message and event exchange
details, and so on. Property values may be simple
numbers or enumerated values, strings or value range
constraints. Visual views, along with property value
dialogues, are used by architects to view and modify their
architecture models. A set of meta-model elements
describe available types of components, associations,
annotations and properties.

Figure 4 (2) shows a high-level view of the video
library architecture in SoftArch. The architect has
represented the parts of the system as three “processes” –
“staff client applications”, “customer applets” and
“servers”. The staff applications are connected to the
servers via a LAN association, the customer applets via
an internet association. Two annotations indicate the staff
applications use SQL commands and the applets a
custom protocol to communicate with the servers.

The designer can have components shown in
various ways (e.g. ovals for processes, squares for data
management, cylinders for data storage etc.).
Associations can be shown as lines, “bus”-style icons or
network representations. Annotations include a name and
symbol representing data, messages, events and caching.



(3)

(1)(2)

Figure 4. A high-level architectural model, component specification sheet and modelling process.

Each component has a dialogue used to view and
specify a unique name, component type, appearance
configuration values, property names and values,
associations, annotations and refinement information.
Figure 4 (3) shows an example of such a dialogue. Meta-
model elements available for use by an architecture model
can be viewed using a visual notation and modified to
change the available architectural abstractions.

4.3. Refinement

There are three ways to refine a software
architecture model in SoftArch: enclosing components,
adding sub-views, and specifying explicit refinement
links. Figure 5 illustrates each of these, along with an
example of refinement information in a dialogue.

In diagram (1), the “Staff Client Apps” from Figure
4 has been refined by creating a sub-view for it, All
components in this sub-view are refinements of the
higher-level architecture component which owns the sub-
view. A component may have several sub-views, with
refined components shown in more than one sub-view. In

this example, “Staff Client Apps” is refined to “customer
maintenance”, “video rent/return” and “video
maintenance” processes. An annotation indicates that
SQL commands are exchanged via the LAN with the
servers.

In diagram (2), the “servers” component has been
refined by using it to enclose other components. These
include “http server”, “application server”,
“rdbms_server” and “tables”. Various associations have
been specified both between enclosed components and
between other components of the architecture and
refinements of the “servers” component. All enclosed
components, associations and annotations are refinements
of the “servers” component.

In diagram (3), several architecture components, on
the left hand side, have been refined to OOD-level class
components on the right hand side. This was done by the
use of explicit refinement links being added by the
architect.



(2)

(3)

(1)

Figure 5. Examples of architecture refinement.

In this example, “video query applet” is
implemented by a “VideoQueryApplet.java” class,
“application server” by “VideoQueryServer.java” and
“VideoQueryServerThread.java” classes, and the
connection between client and server implemented using
sockets (“java.net.*” API). OOA-level classes and
services can be refined to software architecture
components in a similar way to indicate the analysis-level
components architecture abstractions are being used to
realise. The dialogue in Figure 5 shows information
stored for each refinement relationship, including unique
name, abstract and refined components, and rationale for
the refinement.

 4.4. Templates

Many refinements are often reused when
developing software architectures. For example, the
“servers” component refined to http server, application
server and RDBMS server as shown in Figure 5 (2) is a
common refinement for simple e-commerce applications
with Java applets. Thus we want to allow software

architects to reuse such refinements on multiple projects,
and package useful refinements for such reuse.

SoftArch allows architects to copy refinement
views to create “templates”, where one or more
components are refined into the components and
associations described by the template. Architects can
then select an appropriate template and have SoftArch
copy this into their project, automating linking of abstract
components to new refined components copied from the
template. Copied components and refinement links can
then be modified if necessary by the architect. Changes to
templates or copied refinements can be propagated back
to one another using version merging support (a similar
mechanism we developed for process model templates is
described in [9]).

5. Software Architecture Analysis

Supporting modelling of software architectures and
refinements is not sufficient to enable software architects
to produce quality, consistent architecture models for
complex systems. Software architecture analysis tools are



also needed, including support for checking such things
as: all components are linked to others, all components
are suitably refined, all components are realised by OOD-
level classes and are ultimately refined from OOA-level
specifications, sensible and consistent associations and
annotations have been used, valid property values have
been set, provided and required services between linked
components are met, and the model adheres to various
“best practice” guidelines.

SoftArch provides an extensible set of analysis
agents. These can be run as constraints, which fire
whenever an architecture model is modified and inform
the user immediately if an invalid action is attempted.
They can be run as design critics, which monitor changes
to the architecture model and report prioritised
exceptions, poor choices, incompleteness or suggest
possible improvements, in a non-intrusive way. The
architect can review these from time to time and correct
their model as they desire. A final approach is to have one
or more agents run in batch mode over part or all of the
architecture model. All exceptions they detect are
presented in a report listing. Some agents may provide
options to automatically correct the architecture model to
correct problems, which the architect can choose to
invoke.

Agents are controlled by an analysis agent manager,
as shown in Figure 6 (1). The architect can turn any agent
on/off, change its priority, and change its detection
mechanism (constraint, critic or analyser). The analysis
agent manager organises agents by categories, and all

agents in a category can be reconfigured at once by
changing the category properties.

Agents running as constraints report detected
exceptions using a dialogue box opened when they are
fired. Agents running as critics or as batch-style analysis
checks use a reporting dialogue, as shown in Figure 6 (2).
This shows a list of prioritised problems with the
architecture model that analysis agents have detected. The
architect reviews the critic report from time to time and
analysis report after they have requested agents generate
one. The architect tell an agent to ignore one or more
components, in which case any exception message is
hidden.

A number of pre-packaged analysis agents are
available for software architects to use by opening
projects containing them (in the same way architects
choose packaged meta-model elements and templates).
Architects can also build their own analysis agents using a
visual event processing language supplied by the
Serendipity-II process management application [9].

An example of such an agent specification is shown
in Figure 6 (3). Such agent specifications are made up of
a guard, which filters architecture model change events.
Each guard ultimately has a guard action which generates
the exception message, recording the exception and a
representation of which is presented to the user. The
analysis agent may also provide one or more “fix
actions”, semi-automating correction of the architecture
model if the architect so requests.

Figure 6. Analysis agent control, reporting and visual specification.



JViews Software Bus

SoftArch

Meta-model
projects

Template
projects

Modelling
project

Serendipity-II

JComposer

Analysis agents Process models
& project plans

OOA & D
component models

Java .java files &
packages

XML import/
export agent

Rational
Rose

Argo/
UML

JDK/
JBuilder

XML-encoded
UML models

Import/export OOA
and OOD comps

Import/export .java classes +
code fragments to/from

OOD comps via JComposer
Import/export OOA/D

comps to/from
Argo/UML via XML

encoding

Agents detect SA comp
changes via JViews
component model

Analysis agents
coordinated by enacted
process models & task

automation agents

JVisualise

Running JViews
(Java) components

Visualisation/
configuration of running

architectures via
JVisualise…

Compiler Java .class files

Java VM

Figure 7. SoftArch architecture.

Serendipity-II process models can be used to
control analysis agents automatically using the event
filtering and actioning tool. The architect can define
“coordination agents” that switch agents on/off, change
their priority or the way they are fired when process
model stages are enacted or finished.

6. Architecture and Implementation

Figure 7 illustrates the architecture of SoftArch.
SoftArch was implemented using the JComposer meta-
CASE tool, which generates classes that specialise our
JViews component-based architecture for multi-view,
multi-user environment construction [10]. SoftArch is
thus a component-based system and able to be integrated
with other component-based tools by JViews facilities.
SoftArch provides multiple views of software architecture
models with a centralised repository and flexible view
consistency mechanism. It provides a variety of
collaborative work facilities, including synchronous and
asynchronous editing of views, version merging and
configuration management. These capabilities are similar
to those of Serendipity-II and JComposer [9].

SoftArch maintains a set of meta-model projects
which define the allowable components, associations,
annotations and property types for a model. A set of
reusable refinement templates (which are SoftArch
models) allow reuse of common architectural refinements.
A modelling project holds the model of the software
architecture currently under development.

Our Serendipity-II process management
environment is used to provide enactable process models
and project plans to guide use of SoftArch. We also use
Serendipity-II’s visual task automation agent language to
allow architects to build new analysis agents for
SoftArch.

Serendipity-II and SoftArch communicate via the
JViews software bus [10]. Analysis agents in Serendipity-
II monitor SoftArch component change events.
Serendipity-II task automation agents can be used to co-
ordinate the use of analysis agents (turning them on/off
etc.), can control the meta-models being used in SoftArch,
and can be used to co-ordinate work by multiple
architects.

We have integrated SoftArch with JComposer, our
component environment supporting OOA, design and
implementation facilities, using the JViews infrastructure
facilities. We have developed import and export
components which import an OOA model from
JComposer into SoftArch, and that can export an OOD
model and code fragments from SoftArch to JComposer.
JComposer generates Java source code files for these
OOD-level components itself, and can reverse engineer
OOD models for import into SoftArch.

We have built prototype import/export tools that use
an XML to encode OOD-level components from
SoftArch for import into Argo/UML, and that can
transform XML-encoded Argo/UML OOA models into
SoftArch. JComposer-generated classes can be used with
the reverse engineering tool of Rational Rose to import



SoftArch designs into Rose. Java classes generated by
Rose can be reverse engineered by JComposer and then
imported into SoftArch to provide a simplistic OOA-level
import facility from Rose to SoftArch. JComposer-
generated classes can be used in programming
environments like JBuilder and JDK to complete system
implementation.

We plan to annotate generated code so that our run-
time component visualisation system, JVisualise [10], can
be used to monitor and control running programs. The
information from JVisualise will allow SoftArch
visualisation tools to provide high-level visualisation of
systems using SoftArch’s architectural abstractions, rather
than implementation-level objects. Ultimately we would
like to extend this approach to allow architects and
developers to use dynamic visualisations of running
systems in SoftArch to modify the system structure with
high-level SoftArch views, with JVisualise translating
high-level manipulations into appropriate
implementation-level modifications.

This includes a wide range of software architecture
styles/patterns [5], technologies to realise system
architectures [20, 17], and existing system architectures to
integrate new systems and components with.

7. Discussion

Most existing CASE tools, such as Rational Rose
[18], Argo/UML [19] and JComposer [10], provide
limited abstractions for designing large system
architectures. In fact, few abstractions besides OOA/D
modelling and simple component and deployment
diagrams are provided by most tools [11]. We have found
these to be inadequate for most system development tasks
from the perspective of software architecture design. In
addition, most CASE tools do not adequately support
refinement of OOA/D models with capture of
architecture-related design rationale and linkage of
components at different levels of abstraction. Few provide
adequate template or reusable model support.

Component engineering tools, such as JComposer
[10], JBuilder [4] and that of Wagner et al [23], provide
little in the way or architecture modelling support, but
focus on design- and implementation-level detail. This is
necessary when developing systems, but not high-level
enough for large system architecture development. Few
support capture of multiple perspectives on architecture
models and different levels of abstraction and refinement
relationships.

Some tools have been developed specifically for
software architecture modelling or had a range of
architecture modelling capabilities added. Examples
include PARSE-DAT [15], ViTABaL [7], Clockworks
[6], SAAMTool [12], JComposer aspects [8] and
Argo/UML [19]. These typically provide limited

architectural modelling support, and many are oriented to
limited kinds of architectural abstractions. For example,
PARSE-DAT focuses on process-oriented views of
architectures, ViTABaL on tool-based abstraction and
SAAMTool on structural composition. ClockWorks
provides some useful, high-level architectural
annotations, but these are limited to caching, concurrency
and ADT replication annotations. SoftArch provides a
wide, extensible range of architectural abstractions and
representations, ranging from static structure and
information exchange to dynamically composable
systems and process synchronisation mechanisms.

Architecture Description Languages, such as
Wright [1] and Rapide [16], typically focus on formal
specification of architectural styles and support reasoning
about the characteristics of such architectural styles. In
contrast, SoftArch aims to support modelling and analysis
of system architectures, with architectural components
and analysis support embedded in the tool meta-models,
templates and analysis agents. We have de-emphasised
formal reasoning in SoftArch, although some analysis
agents perform complex formal reasoning about various
property values between associated components.

Few CASE tools or other environments provide
adequate architecture model analysis and verification
tools, and only provide limited (if any) integration and
reverse engineering support. Examples include PARSE-
DAT, ViTABaL, Architecture Description Languages,
and ClockWorks provide some analysis support, but
limited to specific kinds of domains. Argo/UML provides
design critics which mainly focus on OOA and OOD-
level model evaluation heuristics. Argo’s critics can not
be extended by users using visual language specification
techniques as in SoftArch, and users have more limited
control over them.

SoftArch leverages existing tool facilities, such as
those of JComposer and Serendipity-II, rather than having
OOA/D, code generation and process management
facilities built-in. This is in contrast to tools like
MetaEdit+ [13], Argo/UML [19] and Rational Rose™
[18]. These systems either provide built-in process
management and code generation support or have none.
They also provide rather more limited integration
mechanisms via file formats, leading to less tightly
integrated environments than we have with SoftArch.

8. Summary

Current approaches to software architecture
modelling are not adequate for large system architecture
development. SoftArch provides a new approach to
modelling software architectures with an extensible meta-
model of architecture abstractions, flexible and extensible
visual language modelling tools, reusable refinement
templates and successive refinement of architecture



models. In addition, SoftArch provides user-extensible
and controllable analysis agents, integrated process
modelling and enactment support, and integrated OOA/D
import/export and code generation facilities. These
facilities are provided by the integration of SoftArch with
the Serendipity-II and JComposer tools, rather than
monolithic extensions to SoftArch itself.

We have used SoftArch to model the architectures
of several small-to-medium distributed systems. Results
of developing these systems with the aid of SoftArch have
been very encouraging. We are continuing to extend and
refine the SoftArch meta-model types and modelling tools
as we gain experience with the environment on larger
problems. We are adding new analysis tools as we find a
need for them, and are building up libraries of reusable
refinement templates. We are working on improved tool
integration mechanisms in order to effectively use
SoftArch with a wide range of 3rd party CASE tools and
programming environments.  We are also improving its
code generation capabilities by the use of JComposer. We
are planning to use annotated code to support dynamic
architecture visualisation using SoftArch’s high-level
architectural views, and eventually to support dynamic
architecture manipulation of running systems via high-
level SoftArch abstractions.

Acknowledgements

Support for part of this work from the New Zealand
Public Good Science Fund is gratefully acknowledged.

References

1. Allen, R. and Garlan, D. A formal basis for architectural
connection, ACM Transactions on Software Engineering
and Methodology, July 1997.

2. Bass, L., Clements,  P. and Kazman, R. Software
Architecture in Practice, Addison-Wesley, 1998.

3. Booch, G., Rumbaugh, J. and Jacobson, I. The Unified
Modelling Language User Guide, Addison-Wesley, 1999.

4. Borland Inc, Borland JBuilder™, Borland Inc,
http://www.borland.com/jbuilder/, 1998.

5. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.
Pattern Oriented Software Architecture : A System of
Patterns, Wiley, 1996.

6. Graham, T.C.N., Morton, C.A. and Urnes, T. ClockWorks:
Visual Programming of Component-Based Software
Architectures. Journal of Visual Languages and
Computing, Academic Press, pp. 175-196, July 1996.

7. Grundy, J.C., Hosking, J.G. ViTABaL: A Visual Language
Supporting Design by Tool Abstraction, In Proceedings of
the 1995 IEEE Symposium on Visual Languages,
Darmsdart, Germany, September 1995, IEEE CS Press, pp.
53-60.

8. Grundy, J.C. Supporting aspect-oriented component-based
systems engineering, In Proceedings of 11th International
Conference on Software Engineering and Knowledge

Engineering, Kaiserslautern, Germany, June 16-19 1999,
KSI Press, pp. 388-395.

9. Grundy, J.C., Hosking, J.G., Mugridge, W.B. and
Apperley, M.D. An architecture for decentralised process
modelling and enactment, IEEE Internet Computing, Vol.
2, No. 5, September/October 1998, IEEE CS Press.

10. Grundy, J.C., Mugridge, W.B., Hosking, J.G. Static and
dynamic visualisation of component-based software
architectures, In Proceedings of 10th International
Conference on Software Engineering and Knowledge
Engineering, San Francisco, June 18-20, 1998, KSI Press.

11. Grundy, J.C. and Hosking, J.G. Directions in modelling
large-scale software architectures, In Proceedings of the 2nd

Australasian Workshop on Software Architectures,
Melbourne 23rd Nov 1999, Monash University Press, pp.
25-40.

12. Kazman, R. Tool support for architecture analysis and
design, In Proceedings of the Second International
Workshop on Software Architectures, ACM Press, 94-97.

13. Kelly, S., Lyytinen, K., and Rossi, M., “Meta Edit+: A
Fully configurable Multi-User and Multi-Tool CASE
Environment,” In Proceedings of CAiSE’96, Lecture Notes
in Computer Science 1080, Springer-Verlag, Heraklion,
Crete, Greece, May 1996, pp. 1-21.

14. Leo, J. OO Enterprise Architecture approach using UML,
In Proceedings of the 2nd Australasian Workshop on
Software Architectures, Melbourne 23rd Nov 1999, Monash
University Press, pp. 25-40.

15. Liu, A. Dynamic Distributed Software Architecture Design
with PARSE-DAT, In Proceedings of the 1998
Australasian Workshop on Software Architectures,
Melbourne, Australia, Nov 24, Monash University Press.

16. Luckham, D.C., Augustin, L.M., Kenney, J.J., Veera, J.,
Bryan, D. and Mann, W. Specification and analysis of
system architecture using Rapide, IEEE Transactions on
Software Engineering, vol. 21, no. 4, April 1995, 336-355.

17. Mowbray, T.J., Ruh, W.A. Inside Corba: Distributed
Object Standards and Applications, Addison-Wesley,
1997.

18. Quatrani, T. Visual Modeling With Rational Rose and
Uml, Addison-Wesley, 1998.

19. Robbins, J. Hilbert, D.M. and Redmiles, D.F. Extending
design environments to software architecture design,
Automated Software Engineering, vol. 5, No. 3, July 1998,
261-390.

20. Sessions, R. COM and DCOM: Microsoft’s vision for
distributed objects, John Wiley & Sons 1998.

21. Shaw, M. and Garlan, D. Software Architecture :
Perspectives on an Emerging Discipline, Prentice Hall,
1996.

22. Urnes, T. and Graham, T.C.N. Flexibly Mapping
Synchronous Groupware Architectures to Distributed
Implementations. In Proceedings of Design, Specification
and Verification of Interactive Systems (DSV-IS’99), 1999.

23. Wagner, B., Sluijmers, I., Eichelberg, D., and Ackerman,
P., Black-box Reuse within Frameworks Based on Visual
Programming, In Proeedings of the. 1st Component Users
Conference, Munich, July 1996, SIGS Books, pp. 57-66.




