
In Proceedings of the 34th Hawaii International Conference on System Sciences, Maui, Jan 3-7 2001, IEEE CS Press.

Software Architecture Modelling, Analysis and Implementation with SoftArch

John Grundy

Department of Computer Science, University of Auckland
Private Bag 92019, Auckland, New Zealand

john-g@cs.auckland.ac.nz

Abstract

Good software architecture design is crucial in
successfully realising an OOA specification with an
appropriate OOD model that meets the specification’s
functional and non-functional requirements.
Unfortunately most CASE tools and software
architecture design notations do not adequately support
software architecture modelling and analysis, nor
integration with OOA & D models. We describe
SoftArch, an environment which provides flexible
software architecture modelling using a concept of
successive refinement. SoftArch also provides extensible
analysis tools enabling developers to analyse their
architecture model properties. This paper overviews the
motivation for SoftArch, its modelling and analysis
capabilities, and its integration with various analysis,
design and implementation tools.

1. Introduction

Many software modelling notations and tools have

been developed [6, 7, 12, 15], and there has been an
increasing emphasis on software architecture modelling
in addition to OOA & D modelling in CASE tools.
Various approaches have been tried, including those of
UML [3], PARSE [15], JViews and aspects [8, 10], tool
abstraction [7], and Clock [6, 22]. Support tools include
Rational Rose [18], JComposer [10], PARSE-DAT [15],
ViTABaL [7], SAAMTool [12] and Argo/UML [19].

Most of these systems provide partial software
architecture modelling solutions, with only some aspects
of architecture modelling supported e.g. basic structure,
limited dynamic behaviour and event models, dynamic
process creation etc [11, 14]. Few provide adequate
analysis tools to help developers reason about their
models and ensure OOA requirements are met and all
software architecture components are refined to suitable
OOD abstractions [19, 11]. Few support OOD and/or
implementation code generation from architecture-level
abstractions, and few support reuse of previously

developed models and patterns [22, 19]. Almost none
allow new architecture abstractions and analysis tools to
be added, and most have poor or no integration with
OOA, design and implementation tools.

We describe SoftArch, a new, extensible
environment using new approaches to software
architecture modelling, analysis, design generation and
tool integration. SoftArch uses an extensible meta-
model of architecture abstractions. Architects use a
flexible, extensible visual notation based on allowable
abstractions to describe and refine software architecture
models, including links to OOA and design objects and
classes as appropriate. A collection of extensible
“analysis agents” constrain, guide and advise architects
as they build and refine their architecture models.
SoftArch has been integrated with several OOA, design
and implementation tools, as well as a process
management environment, using a variety of tool
integration techniques.

The following section presents a motivation for our
work developing SoftArch. We then overview the
environment’s capabilities, and in the following sections
describe its software architecture modelling, refinement
and analysis support. A brief discussion of SoftArch’s
implementation and architecture is presented, and we
conclude with a summary of the contributions of this
work and directions for future research.

2. Motivation
Software architecture development has become an

increasingly important part of the software lifecycle, due
to the increasing complexity of software being
constructed [1, 3, 21]. Software developers need to
carefully describe and reason about the architectures of
complex, distributed information systems, which are
often comprised of a mix of new and reused
components. A good, extensible and maintainable
architecture often makes the difference between
successful and failed projects. Much more time tends to
be spent on architecture development than previously,
and many more options exist for developers [1].

jgru001
Text Box
(c) IEEE 2001. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE.

Object-oriented Analysis

Functional & non-functional
specifications

Object-oriented Design

Classes, reused APIs,
file/table specs, code

fragments etc.

Software Architecture

Architecture components,
associations, annotations,

properties

Figure 1. Transformation of OOA model to OOD model via Software Architecture.

This includes a wide range of software architecture
styles/patterns [5], technologies to realise system
architectures [20, 17], and existing system architectures
to integrate new systems and components with.

We view the role of software architecture as a key
mechanism for supporting developers in successfully
developing an OOD model to describe a system
implementation that satisfies a given OOA specification
(functional and non-functional requirements). Figure 1
illustrates this development process and relationships
between OOA, software architecture, and OOD and
implementation-level software artefacts. In addition,
often existing designs and code must be reverse
engineered into higher-level architectural models, which
themselves may need to be reverse engineered into
OOA specifications. Software architecture models
typically need to capture high-level characteristics of a
system, down to OOD-level system organisation [21,
14, 6].

Most existing software architecture notations and
support tools don’t adequately support architecture
modelling, refinement, analysis and OOA/D linkage
[11, 14]. This motivated us to develop the SoftArch
environment. Originally this was to be an extension of
our existing OOA/D/P tool JComposer [10]. However,
we developed SoftArch as an independent tool and
integrated it with not only JComposer, but also a range
of other development tools.

3. Overview of SoftArch
SoftArch provides visual software architecture

modelling support along with an extensible meta-model
and development processes. A collection of extensible
analysis agents guide, advise and/or constrain architects,

and a set of reusable templates allow reuse of a variety
of software architecture refinements. Figure 2 illustrates
these basic SoftArch capabilities.

A key concept is the notion of refinement in
SoftArch of high-level architectural model components
into successively more detailed and lower-level models.
Properties of high-level architectural components
constrain the kinds of refinements and properties at
lower levels of detail. An extensible meta-models of
possible types of architectural components, relationships
and properties constrain possible modelling architectural
entities.

Analysis agents, controlled by software architects
and enacted process models, monitor architecture model
changes and advise architects on model correctness and
quality. Analysis agents can act as constraints,
disallowing invalid actions; can act as “context-sensitive
advisors”, giving immediate feedback as an architect
works; or can be run batch-style to analyse properties or
part or all of a model.

Import/export tools support linkage between
SoftArch and OOA, design and implementation tools.
OOA models allow software architects to capture
functional and non-functional requirements in SoftArch
and ensure software architecture models meet these, or
at least are annotated with this information. OOD
models and some code fragments (implementing socket
protocols, database access, ORB API calls etc.) can be
exported from bottom-level architecture components.
Reverse engineering of OOD models into SoftArch
allows developers to abstract higher-level architectural
models from their code, and to ultimately export OOA
specifications into CASE tools.

�������
�������Import/export

agent(s)

�������
�����������������

����������

�������������
�������������

�������������
Software component

meta-model(s)

OOA Specs
(functional &

non-functional)
OOA specification

model
Successively refined
architectural models

OOD-level design
model

OOD
classes

OOD APIs

Code
fragments

CASE Tools/
Programming
Environments

e.g. Rose,
JBuilder etc.CASE Tools

e.g. Rose

Import/export
agent(s)

����������
����������Software architecture

design process
model(s)

���������
���������Refinement

templates Analysis agents

High-level
architectural model

Low-level
architectural model

Figure 2. Overview of SoftArch architecture design modelling and analysis approach.

4. Software Architecture Modelling

4.1. Example Application
Figure 3 shows an example application and a possible
(high-level) software architecture for this system. This is
a video store library, with on-line customer search
interface, in addition to corporate database with in-
house forms, reports and batch processes for staff to use.
We use this as an example in the following illustrations
of SoftArch in use.

4.2. Software Architecture Modelling

Initially when developing such a system a software

architect will import an OOA functional and non-
functional specification from a CASE tool, or enter this
information themselves. They then sketch out a high-
level model (or copy and modify a suitable template
model, if one exists from a previous project), ensuring
the general characteristics of this model meets the OOA
specification. They then refine this high-level model,
successively adding more detail, and then generate an
OOD model which will be further refined and
implemented using a CASE tool and programming
environment. This basic process is illustrated by the
process model in Figure 4 (1). If part of a system exists,
the software architect would import its OOD model and
successively abstract software architecture components
from it.

To represent software architecture models SoftArch
uses a concept of architecture components, associations
between components, and annotations on components
and associations. Software architecture component
abstractions include generic architecture entities,
processes, data stores, data management processes (e.g.
database servers), machines and devices, and OOA and
OOD-level classes. Associations include generic
architecture component associations, data usage
associations, event notification/subscription, message

passing, and process synchronisation links. Annotations
include data used, events passed, messages exchanged,
protocol used, caching, replication and concurrency
information, process control information, ports and so
on. Each of these architectural entities can have various
properties specified. Properties include information such
as services, security approaches, data size, transaction
processing speed, data, message and event exchange
details, and so on. Property values may be simple
numbers or enumerated values, strings or value range
constraints.

Visual views, along with property value dialogues,
are used by architects to view and modify their
architecture models. A set of meta-model elements
describe available types of components, associations,
annotations and properties.

Figure 4 (2) shows a high-level view of the video
library architecture in SoftArch. The architect has
represented the parts of the system as three “processes”
– “staff client applications”, “customer applets” and
“servers”. The staff applications are connected to the
servers via a LAN association, the customer applets via
an internet association. Two annotations indicate the
staff applications use SQL commands and the applets a
custom protocol to communicate with the servers.

The designer can have components shown in various
ways (e.g. ovals for processes, squares for data
management, cylinders for data storage etc.).
Associations can be shown as lines, “bus”-style icons or
network representations. Annotations include a name
and symbol representing data, messages, events and
caching.

Each component has a dialogue used to view and
specify a unique name, component type, appearance
configuration values, property names and values,
associations, annotations and refinement information.
Figure 4 (3) shows an example of such a dialogue.
Meta-model elements available for use by an
architecture model can be viewed using a visual notation
and modified to change the available architectural
abstractions.

SQL Database

Application
Server

(application)

Rent/return video
 (application)

Find video
(Applet)

(WWW Browser)

Customer

Staff

SQL
statements

Read/write
socket

SQL statements

Customer maintenance
 (application)

Figure 3. Example system for which to design a Software Architecture.

(3)

(1)(2)

Figure 4. A high-level architectural model, component specification sheet and basic modelling
process.

4.3. Refinement
There are three ways to refine a software

architecture model in SoftArch: enclosing components,
adding sub-views, and specifying explicit refinement
links. Figure 5 illustrates each of these, along with an
example of refinement information in a dialogue.

In diagram (1), the “Staff Client Apps” from Figure
4 has been refined by creating a sub-view for it, All
components in this sub-view are refinements of the
higher-level architecture component which owns the
sub-view. A component may have several sub-views,
with refined components shown in more than one sub-
view. In this example, “Staff Client Apps” is refined to
“customer maintenance”, “video rent/return” and “video
maintenance” processes. An annotation indicates that
SQL commands are exchanged via the LAN with the
servers.

In diagram (2), the “servers” component has been
refined by using it to enclose other components. These
include “http server”, “application server”,
“rdbms_server” and “tables”. Various associations have
been specified both between enclosed components and

between other components of the architecture and
refinements of the “servers” component. All enclosed
components, associations and annotations are
refinements of the “servers” component.

In diagram (3), several architecture components, on
the left hand side, have been refined to OOD-level class
components on the right hand side. This was done by
the use of explicit refinement links being added by the
architect. In this example, “video query applet” is
implemented by a “VideoQueryApplet.java” class,
“application server” by “VideoQueryServer.java” and
“VideoQueryServerThread.java” classes, and the
connection between client and server implemented using
sockets (“java.net.*” API). OOA-level classes and
services can be refined to software architecture
components in a similar way to indicate the analysis-
level components architecture abstractions are being
used to realise.

The dialogue in Figure 5 shows information stored
for each refinement relationship, including unique name,
abstract and refined components, and rationale for the
refinement.

(2)
(3)

(1)

Figure 5. Examples of architecture refinement.

4.4. Templates
Many refinements are often reused when developing

software architectures. For example, the “servers”
component refined to http server, application server and
RDBMS server as shown in Figure 5 (2) is a common
refinement for simple e-commerce applications with
Java applets. Thus we want to allow software architects
to reuse such refinements on multiple projects, and
package useful refinements for such reuse.

SoftArch allows architects to copy refinement views
to create “templates”, where one or more components
are refined into the components and associations
described by the template. Architects can then select an
appropriate template and have SoftArch copy this into
their project, automating linking of abstract components
to new refined components copied from the template.
Copied components and refinement links can then be
modified if necessary by the architect. Changes to
templates or copied refinements can be propagated back
to one another using version merging support (a similar
mechanism we developed for process model templates
is described in [9]).

5. Software Architecture Analysis
Supporting modelling of software architectures and

refinements is not sufficient to enable software
architects to produce quality, consistent architecture

models for complex systems. Software architecture
analysis tools are also needed, including support for
checking such things as: all components are linked to
others, all components are suitably refined, all
components are realised by OOD-level classes and are
ultimately refined from OOA-level specifications,
sensible and consistent associations and annotations
have been used, valid property values have been set,
provided and required services between linked
components are met, and the model adheres to various
“best practice” guidelines.

SoftArch provides an extensible set of analysis
agents. These can be run as constraints, which fire
whenever an architecture model is modified and inform
the user immediately if an invalid action is attempted.
They can be run as design critics, which monitor
changes to the architecture model and report prioritised
exceptions, poor choices, incompleteness or suggest
possible improvements, in a non-intrusive way. The
architect can review these from time to time and correct
their model as they desire. A final approach is to have
one or more agents run in batch mode over part or all of
the architecture model. All exceptions they detect are
presented in a report listing. Some agents may provide
options to automatically correct the architecture model
to correct problems, which the architect can choose to
invoke.

Figure 6. Analysis agent control, reporting and visual specification.

Agents are controlled by an analysis agent manager,

as shown in Figure 6 (1). The architect can turn any
agent on/off, change its priority, and change its
detection mechanism (constraint, critic or analyser). The
analysis agent manager organises agents by categories,
and all agents in a category can be reconfigured at once
by changing the category properties.

Agents running as constraints report detected
exceptions using a dialogue box opened when they are
fired. Agents running as critics or as batch-style analysis
checks use a reporting dialogue, as shown in Figure 6
(2). This shows a list of prioritised problems with the
architecture model that analysis agents have detected.
The architect reviews the critic report from time to time
and analysis report after they have requested agents
generate one. The architect tell an agent to ignore one or
more components, in which case any exception message
is hidden.
A number of pre-packaged analysis agents are available
for software architects to use by opening projects
containing them (in the same way architects choose
packaged meta-model elements and templates).
Architects can also build their own analysis agents using
a visual event processing language supplied by the
Serendipity-II process management application [9].

An example of such an agent specification is shown
in Figure 6 (3). Such agent specifications are made up of
a guard, which filters architecture model change events.
Each guard ultimately has a guard action which
generates the exception message, recording the
exception and a representation of which is presented to
the user. The analysis agent may also provide one or

more “fix actions”, semi-automating correction of the
architecture model if the architect so requests.

Serendipity-II process models can be used to control
analysis agents automatically using the event filtering
and actioning tool. The architect can define
“coordination agents” that switch agents on/off, change
their priority or the way they are fired when process
model stages are enacted or finished.

6. Environment Architecture and
Implementation

Figure 7 illustrates the architecture of SoftArch.
SoftArch was implemented using the JComposer meta-
CASE tool, which generates classes that specialise our
JViews component-based architecture for multi-view,
multi-user environment construction [10]. SoftArch is
thus a component-based system and able to be
integrated with other component-based tools by JViews
facilities. SoftArch provides multiple views of software
architecture models with a centralised repository and
flexible view consistency mechanism. It provides a
variety of collaborative work facilities, including
synchronous and asynchronous editing of views, version
merging and configuration management. These
capabilities are similar to those of Serendipity-II and
JComposer [9].

SoftArch maintains a set of meta-model projects
which define the allowable components, associations,
annotations and property types for a model. A set of
reusable refinement templates (which are SoftArch
models) allow reuse of common architectural
refinements. A modelling project holds the model of the
software architecture currently under development.

���������
���������

��������������������������������������
JViews Software Bus

SoftArch

Meta-model
projects

����������
Template
projects

Modelling
project

Serendipity-II

JComposer

�����������
Analysis agents

���������
Process models
& project plans

����������
����������OOA & D

component models

�����������
�����������Java .java files &

packages

XML import/
export agent

������

Rational
Rose

�������
�������

��������������������������
���

���

��
��

���������������
���������������

������
�����������

Argo/
UML

JDK/
JBuilder

��������
��������XML-encoded

UML models

�����
�����
�������

�����
�����

Import/export OOA
and OOD comps

Import/export .java classes +
code fragments to/from

OOD comps via JComposer
Import/export OOA/D

comps to/from
Argo/UML via XML

encoding

Agents detect SA comp
changes via JViews
component model

Analysis agents
coordinated by enacted
process models & task

automation agents

JVisualise

�����������
Running JViews

(Java) components

Visualisation/
configuration of running

architectures via
JVisualise…

Compiler

���������
���������Java .class files

Java VM

������������������
����
���� ��

Figure 7. SoftArch architecture.

Our Serendipity-II process management
environment is used to provide enactable process
models and project plans to guide use of SoftArch. We
also use Serendipity-II’s visual task automation agent
language to allow architects to build new analysis agents
for SoftArch. Serendipity-II and SoftArch communicate
via the JViews software bus [10]. Analysis agents in
Serendipity-II monitor SoftArch component change
events. Serendipity-II task automation agents can be
used to co-ordinate the use of analysis agents (turning
them on/off etc.), can control the meta-models being
used in SoftArch, and can be used to co-ordinate work
by multiple architects.

We have integrated SoftArch with JComposer, our
component environment supporting OOA, design and
implementation facilities, using the JViews
infrastructure facilities. We have developed import and
export components which import an OOA model from
JComposer into SoftArch, and that can export an OOD
model and code fragments from SoftArch to JComposer.
JComposer generates Java source code files for these
OOD-level components itself, and can reverse engineer
OOD models for import into SoftArch.

We have built prototype import/export tools that use
an XML to encode OOD-level components from
SoftArch for import into Argo/UML, and that can
transform XML-encoded Argo/UML OOA models into
SoftArch. JComposer-generated classes can be used
with the reverse engineering tool of Rational Rose to
import SoftArch designs into Rose. Java classes
generated by Rose can be reverse engineered by
JComposer and then imported into SoftArch to provide
a simplistic OOA-level import facility from Rose to
SoftArch. JComposer-generated classes can be used in
programming environments like JBuilder and JDK to
complete system implementation.

We plan to annotate generated code so that our run-
time component visualisation system, JVisualise [10],
can be used to monitor and control running programs.
The information from JVisualise will allow SoftArch
visualisation tools to provide high-level visualisation of
systems using SoftArch’s architectural abstractions,
rather than implementation-level objects. Ultimately we
would like to extend this approach to allow architects
and developers to use dynamic visualisations of running
systems in SoftArch to modify the system structure with
high-level SoftArch views, with JVisualise translating
high-level manipulations into appropriate
implementation-level modifications.

7. Discussion
Most existing CASE tools, such as Rational Rose

[18], Argo/UML [19] and JComposer [10], provide
limited abstractions for designing large system
architectures. In fact, few abstractions besides OOA/D
modelling and simple component and deployment
diagrams are provided by most tools [11]. We have
found these to be inadequate for most system
development tasks from the perspective of software
architecture design. In addition, most CASE tools do not
adequately support refinement of OOA/D models with
capture of architecture-related design rationale and
linkage of components at different levels of abstraction.
Few provide adequate template or reusable model
support.

Component engineering tools, such as JComposer
[10], JBuilder [4] and that of Wagner et al [23], provide
little in the way or architecture modelling support, but
focus on design- and implementation-level detail. This
is necessary when developing systems, but not high-
level enough for large system architecture development.
Few support capture of multiple perspectives on

architecture models and different levels of abstraction
and refinement relationships.

Some tools have been developed specifically for
software architecture modelling or had a range of
architecture modelling capabilities added. Examples
include PARSE-DAT [15], ViTABaL [7], Clockworks
[6], SAAMTool [12], JComposer aspects [8] and
Argo/UML [19]. These typically provide limited
architectural modelling support, and many are oriented
to limited kinds of architectural abstractions. For
example, PARSE-DAT focuses on process-oriented
views of architectures, ViTABaL on tool-based
abstraction and SAAMTool on structural composition.
ClockWorks provides some useful, high-level
architectural annotations, but these are limited to
caching, concurrency and ADT replication annotations.
SoftArch provides a wide, extensible range of
architectural abstractions and representations, ranging
from static structure and information exchange to
dynamically composable systems and process
synchronisation mechanisms.

Architecture Description Languages, such as Wright
[1] and Rapide [16], typically focus on formal
specification of architectural styles and support
reasoning about the characteristics of such architectural
styles. In contrast, SoftArch aims to support modelling
and analysis of system architectures, with architectural
components and analysis support embedded in the tool
meta-models, templates and analysis agents. We have
de-emphasised formal reasoning in SoftArch, although
some analysis agents perform complex formal reasoning
about various property values between associated
components.

Few CASE tools or other environments provide
adequate architecture model analysis and verification
tools, and only provide limited (if any) integration and
reverse engineering support. Examples include PARSE-
DAT, ViTABaL, Architecture Description Languages,
and ClockWorks provide some analysis support, but
limited to specific kinds of domains. Argo/UML
provides design critics which mainly focus on OOA and
OOD-level model evaluation heuristics. Argo’s critics
can not be extended by users using visual language
specification techniques as in SoftArch, and users have
more limited control over them.

SoftArch leverages existing tool facilities, such as
those of JComposer and Serendipity-II, rather than
having OOA/D, code generation and process
management facilities built-in. This is in contrast to
tools like MetaEdit+ [13], Argo/UML [19] and Rational
Rose™ [18]. These systems either provide built-in
process management and code generation support or
have none. They also provide rather more limited
integration mechanisms via file formats, leading to less
tightly integrated environments than we have with
SoftArch.

8. Summary
Current approaches to software architecture

modelling are not adequate for large system architecture
development. SoftArch provides a new approach to
modelling software architectures with an extensible
meta-model of architecture abstractions, flexible and
extensible visual language modelling tools, reusable
refinement templates and successive refinement of
architecture models. In addition, SoftArch provides
user-extensible and controllable analysis agents,
integrated process modelling and enactment support,
and integrated OOA/D import/export and code
generation facilities. These facilities are provided by the
integration of SoftArch with the Serendipity-II and
JComposer tools, rather than monolithic extensions to
SoftArch itself.

We have used SoftArch to model the architectures of
several small-to-medium distributed systems. Results of
developing these systems with the aid of SoftArch have
been very encouraging. We are continuing to extend and
refine the SoftArch meta-model types and modelling
tools as we gain experience with the environment on
larger problems. We are adding new analysis tools as we
find a need for them, and are building up libraries of
reusable refinement templates. We are working on
improved tool integration mechanisms in order to
effectively use SoftArch with a wide range of 3rd party
CASE tools and programming environments. We are
also improving its code generation capabilities by the
use of JComposer. We are planning to use annotated
code to support dynamic architecture visualisation using
SoftArch’s high-level architectural views, and
eventually to support dynamic architecture manipulation
of running systems via high-level SoftArch abstractions.

References

1. Allen, R. and Garlan, D. A formal basis for architectural
connection, ACM Transactions on Software Engineering
and Methodology, July 1997.

2. Bass, L., Clements, P. and Kazman, R. Software
Architecture in Practice, Addison-Wesley, 1998.

3. Booch, G., Rumbaugh, J. and Jacobson, I. The Unified
Modelling Language User Guide, Addison-Wesley, 1999.

4. Borland Inc, Borland JBuilder™, Borland Inc,
http://www.borland.com/jbuilder/, 1998.

5. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.
Pattern Oriented Software Architecture : A System of
Patterns, Wiley, 1996.

6. Graham, T.C.N., Morton, C.A. and Urnes, T.
ClockWorks: Visual Programming of Component-Based
Software Architectures. Journal of Visual Languages and
Computing, Academic Press, pp. 175-196, July 1996.

7. Grundy, J.C., Hosking, J.G. ViTABaL: A Visual
Language Supporting Design by Tool Abstraction, In
Proceedings of the 1995 IEEE Symposium on Visual
Languages, Darmsdart, Germany, September 1995, IEEE
CS Press, pp. 53-60.

8. Grundy, J.C. Supporting aspect-oriented component-
based systems engineering, In Proceedings of 11th
International Conference on Software Engineering and

Knowledge Engineering, Kaiserslautern, Germany, June
16-19 1999, KSI Press, pp. 388-395.

9. Grundy, J.C., Hosking, J.G., Mugridge, W.B. and
Apperley, M.D. An architecture for decentralised process
modelling and enactment, IEEE Internet Computing, Vol.
2, No. 5, September/October 1998, IEEE CS Press.

10. Grundy, J.C., Mugridge, W.B., Hosking, J.G. Static and
dynamic visualisation of component-based software
architectures, In Proceedings of 10th International
Conference on Software Engineering and Knowledge
Engineering, San Francisco, June 18-20, 1998, KSI Press.

11. Grundy, J.C. and Hosking, J.G. Directions in modelling
large-scale software architectures, In Proceedings of the
2nd Australasian Workshop on Software Architectures,
Melbourne 23rd Nov 1999, Monash University Press, pp.
25-40.

12. Kazman, R. Tool support for architecture analysis and
design, In Proceedings of the Second International
Workshop on Software Architectures, ACM Press, 94-97.

13. Kelly, S., Lyytinen, K., and Rossi, M., “Meta Edit+: A
Fully configurable Multi-User and Multi-Tool CASE
Environment,” In Proceedings of CAiSE'96, Lecture
Notes in Computer Science 1080, Springer-Verlag,
Heraklion, Crete, Greece, May 1996, pp. 1-21.

14. Leo, J. OO Enterprise Architecture approach using UML,
In Proceedings of the 2nd Australasian Workshop on
Software Architectures, Melbourne 23rd Nov 1999,
Monash University Press, pp. 25-40.

15. Liu, A. Dynamic Distributed Software Architecture
Design with PARSE-DAT, In Proceedings of the 1998
Australasian Workshop on Software Architectures,
Melbourne, Australia, Nov 24, Monash University Press.

16. Luckham, D.C., Augustin, L.M., Kenney, J.J., Veera, J.,
Bryan, D. and Mann, W. Specification and analysis of
system architecture using Rapide, IEEE Transactions on
Software Engineering, vol. 21, no. 4, April 1995, 336-
355.

17. Mowbray, T.J., Ruh, W.A. Inside Corba: Distributed
Object Standards and Applications, Addison-Wesley,
1997.

18. Quatrani, T. Visual Modeling With Rational Rose and
Uml, Addison-Wesley, 1998.

19. Robbins, J. Hilbert, D.M. and Redmiles, D.F. Extending
design environments to software architecture design,
Automated Software Engineering, vol. 5, No. 3, July
1998, 261-390.

20. Sessions, R. COM and DCOM: Microsoft's vision for
distributed objects, John Wiley & Sons 1998.

21. Shaw, M. and Garlan, D. Software Architecture :
Perspectives on an Emerging Discipline, Prentice Hall,
1996.

22. Urnes, T. and Graham, T.C.N. Flexibly Mapping
Synchronous Groupware Architectures to Distributed
Implementations. In Proceedings of Design, Specification
and Verification of Interactive Systems (DSV-IS'99),
1999.

23. Wagner, B., Sluijmers, I., Eichelberg, D., and Ackerman,
P., Black-box Reuse within Frameworks Based on Visual
Programming, In Proeedings of the. 1st Component
Users Conference, Munich, July 1996, SIGS Books, pp.
57-66.

