
Supporting information mapping in Health Informatics via integrated message
transformation

Mugridge, W.a, Grundy, J.a, Hosking, J.a Kendall, P.d
a Dept of Computer Science, University of Auckland, Auckland, New Zealand
b Orion Systems Ltd, Mt Eden, Auckland, New Zealand

Abstract

In order to provide an effective overall health information
system, a number of separate systems used by different
providers must typically be integrated. However
supporting the exchange of data between these disparate
health information systems often requires complex data
transformation from one system’s data formats to
another’s. We describe a novel data mapping
specification tool, domain-specific language and mapping
engine that greatly simplifies building such integration
infrastructure. Our system allows health systems
integrators to specify correspondences between
information messages generated by one system to
messages that another system consumes. A special
mapping language is used to express these
correspondences and is run by a mapping engine to effect
data transformation. Input and output messages can be
expressed in XML or EDI formats and a separate message
exchange system is used to communicate between the data
source and data target health information systems. We
describe our mapping system approach, key elements of
its architecture and experiences in commercializing our
basic research to produce a successful new product.

Keywords:

Systems integration, Electronic Data Interchange, XML,
messaging systems

Introduction

Health information systems increasingly need to be
integrated in order to maximize patient information
availability, reduce redundancy and inaccuracies in
information shared between systems and to facilitate
timely action by medical and support staff. For example, a
treatment provider's Information System might describe a

patient, hospital visit information, patient treatment and
treatment costs. A health insurer or funding organisation
requires this information to record the treatments, costs
and reimbursements. However, typically these systems use
different ways of representing similar information, due to
various design choices made during the systems’
construction. Each system typically provides different data
formats to encode their information, and in order to
integrate the systems, one format must be mapped
(translated) into another.

One of the most common ways of supporting system
integration in the health industry is the use of messaging,
where information from one system is packaged into a
stand-alone message and transmitted to another system.
Many health information systems use Electronic Data
Interchange (EDI) messaging (Huemer and Tjoal 1999;
Emmelhainz 1990; McLure and Moynihan, 1995). More
recently, eXtensible Markup Language (XML) documents
and web services (Cheung et al, 2000; Estes 2001) have
been used to represent information, providing more
generalised and easier to implement and extend messaging
technologies than EDI solutions (Liou et al, 2000; Wallin,
1999; Sokolowski, 1999). However, many message-based
systems use different sets of EDI and XML message
formats. In order to support message-based information
exchange between systems using a different message
dialect, message transformation must take place (Spencer,
2000; Morgenthal, 2001; Lincoln et al, 1999). For
example, a health provider must supply an insurer/funder
system with its expected message format, or the funder
must translate the provider message(s) into its own
message-based protocol. Similarly, data sent back to the
provider from the funder must be appropriately converted.
Often these messages are very large and translation
between them requires complex algorithms and code
(Grundy et al, 2001). Current approaches to supporting
message-based system integration require much
programming using conventional implementation

jgrundy

jgrundy
2002 Health Informatics New Zealand Conference, 8-10 August 2002, Auckland, New Zealand.

jgrundy

languages, or utilise proprietary tools or over-general
transformation scripting approaches.

We describe a new approach that uses a domain-
specific data transformation language, visual specification
environment and a data mapping engine to support
complex message-based health information system
integration. We firstly present a motivation for this work,
focusing on patient treatment data exchange. We then
outline our message mapping system and how it allows
health systems integrators to much more easily specify
data transformations between complex EDI and XML
messages. A special purpose data mapping language
implements these transformation specifications and a
mapping engine runs them efficiently and in conjunction
with a message scheduling system. We report on our
experiences developing a commercial message mapping
product, Symphonia Message Mapper™ from basic
research in this problem domain.

Motivation

Consider the problem of integrating multiple health
information systems such as those of a provider (hospital,
GP, pathlab etc) and funding agency (health insurer or
government funding body). Figure 1 illustrates this
problem domain. The provider system needs to
communicate information to the insurer. The provider
extracts data from its database and formats one (or more)
messages that describe the data it wants to exchange with
the insurer. The provider then encodes this message into a
form that can be transmitted to the insurer over a
computer network. The insurer system receives the
message(s) and extracts the data it requires. It may then
update its own database and may send one or more
response messages to the provider (for example, if the
provider issues a request for data from the insurer).

Provider
System

Insurer System

Formulate & send
messages…

Get and
update data Reply

messages
Database

Figure 1. Integration example.

Very often the systems that need to exchange health

information use incompatible formats for this data (Liou et
al, 2000; McLure and Moynihan, 1995; Sokolowski,
1999). This situation arises due to systems being designed

with quite different data exchange requirements; due to
different design decisions by the system developers; or
due to the adoption of competing standards for encoding
information for exchange. Integrating health informatics
systems often means supporting complex data
transformation from one system’s message formats to
another set of formats. This transformation can be very
complex.

Several current approaches exist to handling this
message-based system integration problem. Most EDI and
many XML-based messaging technologies provide a set of
computer program function libraries that programmers use
to encode and decode messages for particular EDI and
XML message protocols (Wallin, 1999; Lincoln et al,
1999). Developers use these functions to read a message
in the source system format, then write program code to
construct a new message in the target system format, and
then use a function to generate the physical target system
message. Programmers thus implement all message
mappings manually which is time consuming, error-prone
and hard to maintain (Grundy et al, 2001). Some message
mapping systems have been developed (Aditel Corp,
2001), but these typically suffer from using a low-level
representation of mappings that can not handle complex
transformations. Some Message-Oriented Middleware
systems provide message integration tools, such as MQ
Integrator™ (IBM Corp, 2001). These provide limited
abstract message translation facilities, very often requiring
low-level programming of translations. XML-based
message encoding and message translators have been
produced (Spencer, 2000; XML.org 2001; Cheung et al,
2000). These include XSLT, Seeburger’s data format and
business logic converter (Seeburger, 2001) and
eBizExchange (OnDisplay Corp, 2001). These systems
typically use XSLT (XML Style Sheet-based Translations)
which suffers from a lack of expressive power and
modularity (especially for complex hierarchical mappings)
and most tools only partially support visual mapping and
XSLT script generation. Some Enterprise Application
Integration products, such as Vitria BusinessWare™
(Vitria Technology Inc, 2001), BizTalk™ (Goulde, 1999)
and the Universal Translation Suite (Data Junction Corp,
2001) provide message translation support for database,
message and XML-encoded data. However most of these
solutions are limited to simple record structures and are
relatively difficult to use.

Health Data Mapping Requirements

To better support complex message-based health
information systems integration, Orion Systems Ltd
wanted to develop a better approach to EDI and XML
message mapping. Orion had developed the Symphonia™

suite of message encoding and decoding function libraries,
and wanted to develop a message mapping system to make
it easier for health systems integrators to implement
translations of messages from one system’s formats to
another’s.

Message mapping is not a simple problem. To
illustrate the nature of the problem, Figure 2 shows two
example messages representing health informatics data
(shown in XML message formats in the IE 5.5 web
browser). The left message encodes patient treatment
information using a “deep” structural hierarchy (Patient-
>Visits->Treatments). The right message encodes (mostly)
the same data, but uses a flatter format. To translate the
messages we need to apply a variety of field-, record-,
segment- and record collection-level translations between
these two representations of the patient treatment data.

To translate the right into the left, we apply mappings
to convert the flat structure into the deeper hierarchical
one. Several fields and collections must be merged or split
e.g. the patient name, dates and address merged. A
number of formulae, some dependent on source message
content, need to be applied e.g. the treatment cost and
treatment units. Some structures in the messages repeat,
such as the list of treatments required, and these may be
organized in quite different ways e.g. a list of Treatments
in the left message is grouped into Primary and Other
treatments in the right message.

This example transformation problem is reasonably
typical of many of the EDI and XML mappings we have

encountered. Most EDI and XML messages are much
larger however, often with hundreds of segments, records
and fields. This means developers need high-level support
for expressing and managing their message mappings. A
message mapping system should ideally:
• Allow developers to extract message format

information from existing system’s meta-data, such as
EDI message encodings and XML Document Type
Definitions.

• Allow developers to visualize message structures,
which are typically predominantly hierarchical in
nature.

• Support the specification of correspondences between
elements in the source message and elements in the
target message. As illustrated, these can be 1 to 1, 1
to many, many to 1 or many to many relationships.

• Allow developers to use expressions and control
constructs specific to this message mapping domain
i.e. provide higher-level constructs such as collection
selection, iteration, filtering, and so on that traditional
computer programming languages don’t support
directly.

• Compile message mapping specifications to a form
that can be very efficiently run to map potentially
thousands of EDI and XML messages a minute for
large health informatics system deployment.

1 to 1 - PatientMessage maps
to PatientVisitMessage

1 to many and many to 1 - fields
copied, split or merged

Many to many - 1st
PhysicianRecord fields to

AttendingDoctor fields; 2nd
record’s to ResponsibleDoctor

Many to many split - “P”
TreatmentRecords to

PrimaryTreatments; rest to
OtherTreatments

Many to 1 - VisitRecord
fields copied

Source message -> Target Message

Figure 2. An example of two health message formats to be mapped between.

• Provide an integrated solution: a development
environment supporting visualization of message
structures and expressions using a domain-specific
programming language tailored to the message
mapping domain and being run by an efficient
message mapping engine.

Overview of Our Approach

We have developed an integrated solution to the message
mapping problem outlined in previous sections. Figure 3
illustrates the key parts of this system. The Symphonia™
message specification tools are used to specify EDI and
XML message formats. These generate Java and C++
code to read and write encodings of such messages for
communication over networks. They also generate
message format meta-data. A visual message mapper tool
reads these format specifications and allows developers to
specify complex message transformations.

Target Health
System e.g. Insurer

Source Health
System(s) e.g.

Hospital

Symphonia™
Architecture

Symphonia™
Message

Specification
Tool

Generated
C++/Java code
to source EDI
messages to

objects

Generated
C++/Java code

to sink objects to
EDI messages

Message control
Engine

Message
Mapping Engine

Symphonia™
Message Mapping
and Visualisation

Tool

Message Control
Specification Tool
(process definition)

Generated mapping
program text &
compiled code

Messaging
Control Data

Message Mapping

Figure 3. Orion Symphonia™ System Architecture.

This tool generates code expressed in a special-
purpose, “domain-specific” computer programming
language. This is an executable form of the message
mapping specifications that is compiled and is run by a
mapping engine. The Symphonia™ message co-ordination
tool allows developers to specify when and how messages
are sourced from one system, given to the mapping engine
for transformation and sent to a target system. Without

such tools very large programs have to be hand-coded to
map complex health system messages.

In the following sections we briefly overview the
visual message mapping tool, our special purpose
mapping language and the operation of our mapping
engine, to illustrate how these support complex message
transformation implementation.

Visual Mapping Tool

The purpose of our visual mapping tool is to provide
an environment for specifying inter-message mappings
using a visual language tailored for this task. Message
structures are visualized using a hierarchical
representation of the source and target messages. A third
hierarchical representation represents the correspondences
between source and target message elements. These
provide the mapping specifications that are run to translate
between messages.

Figure 4 shows some example mapping specifications
for the patient treatment example. Diagram (1) shows a
representation of some of the patient record field
mappings. On the left is the source hierarchical
PatientRecord message structure, and on the right the
target flatter PvisitMessage. Correspondences between
source and target message elements are expressed in the
oval mapping nodes in the center. Nodes labeled <-> are
bi-directional field copying, -> are unidirectional
formulae. Nodes labeled map are mapping functions.
Diagram (2) shows a mapping function called to select
“primary” treatment records from the PatientTreatments
record collection, this function being used by the
highlighted map node in diagram (3). Diagram (4) shows
examples of conditional mappings, where source record
content is used to determine the mapping formulae used.

Domain-Specific Mapping Language

The visual mapping tool generates an executable
message transformation specification expressed in a
special-purpose textual mapping language. We developed
this language to provide high-level constructs to assist the
expression of message mappings that conventional
programming languages are unsuited to. It includes
special-purpose constructs such as declarative collection
iteration, selection and construction.

Figure 5 shows part of the generated mapping code
describing how to translate PatientMessage data to
PVisitMessage data. The message formats are declared as
types at the beginning of the mapping specification. Note
that these types can be encoded using an XML document
or various EDI messages or even comma-separated value
file, Excel™ spreadsheet data or database table data. At

run-time the particular encoding mechanism is associated
with the mapping specification by our message mapping
engine. Mapping constructs include bi-directional copying
(<->), unidirectional formulae (->), conditional and
guarded execution (if and case), and map functions (map).
Map functions can take collections as arguments and
construct and return collections as results, using functional
language execution.

Mapping Engine

Our message mapping engine uses compiled byte
code from the special purpose textual mapping language
to automate the transformation of EDI and XML
messages. Figure 6 illustrates the basic process of message
transformation. A source message from a health
information system is given to the mapper by the
Symphonia™ message controller. This is decoded into a

source message data structure by code generated by the
Symphonia™ message designer (1). The Symphonia™
message controller then requests that the mapping engine
apply the transformation from source to target message
(2). The mapping engine runs the compiled mapping
specification hierarchically, running each mapping
function and then each of its constituent mapping
constructs and functions in turn (3). Note that the source
message records and fields can be read in any order by the
mapping specification, and the target message can
similarly be constructed in any order, its values put into a
target message data structure (4). When the mapping
process is complete, a physical target message is
constructed from target data structure, by generated
encoding classes (5). The controller then passes this
message to the target health information system.

(1)

(2)

(4)

(3)

Figure 4. Some message mapping examples from our visual mapping specification prototype tool.

Implementation and Future Research

We built a proof-of-concept textual mapping language
compiler, mapping engine and visual mapping specification
environment to determine the approach described in this
paper would be feasible. This demonstrated that complex
message mapping specifications could be substantially
visually designed and that our special-purpose mapping
language provided appropriate high-level structural
transformation constructs. We carried out two evaluations
of this prototype: one assessing the performance of the
mapping engine for through-put of message
transformations, the other assessing the usefulness of the
visual specification techniques used (Grundy et al, 2001).

Orion Systems then developed a commercial version of
the message mapping system. This was implemented using
similar interface and architectural approaches as the rest of
the Symphonia™ product suite to ensure good integration
between these products. A number of complex message
transformations have been specified and generated using the
Symphonia Message Mapper™, and the system has been
deployed by several major health systems providers to
facilitate message-based systems integration.

type T_Patient = struct {
 int PK_PatientID;
 T_PatientName PatuentName;
 optional String MedicalRecordNumber;
 optional String MothersMaidenName;
 String DateOfBirth;
 String PSex;
};

type T_PatientName = struct {
 int FK_PatientID;
 String FirstName;
 String LastName;
};

…
type PVisitMessage = struct {
 int ExternalID;
 String InternalID;
 String PName;
 String Sex;
 int DOB;
 String MMaidenName;
};

…

map main(<-PatientMessage pm,
 -> PvisitMessage[] pvs) {
 pvs[0].ExternalID <-> pm.PK_PatientID;
 MapPatientName(pm.PatientName,pvs[0].Pname);
 …
 mapPrimaryVisits(select(i from
 pm.PatientVisitSegment[*] where
 i.VisitRecord.VisitType = "P"),
 pvs[0].PrimaryVisitsSegment);
 …
}
map mapPatientName(<-T_PatientName name,
 -> String pname) {
 pname <- name.LastName+”, “+name.FirstName;
}
map mapPrimaryVisits (<-T_PatientVisit pv, ->PVisit
pvs) {
 …
}

Figure 5. Mapping Language Examples.

Source EDI/EML
Message

Decode into Mapping
Engine Source structure

Source Structure Target Structure

Mapping Engine

Compiled Mapping
Specification

Target EDI/EML
Message

Encode from Mapping
Engine Target structure

Controller
(2)

(1)

(3)

(4)

(5)

(3)

Figure 6. Message mapping engine processing.

A number of extensions to this message mapping
approach and toolset are possible. We are working on a
more concrete visualization metaphor to allow non-
programmers to effectively specify complex message
mappings using form-based representations of source and
target messages and a drag-and-drop, “form copying”
metaphor to specify element correspondences. This aims to
make message mapping specification and generation
feasible for non-programmer system integrators in domains
where volatile message transformation specifications are
needed. The mapping system was designed to support
transformations between transient message objects i.e. non-
persistent data. However, the use of persistent data as
source and/or target “message data”, such as database
tables, is being investigated. Currently this can be supported
using XML query and datagram messages to SQL Server
databases, but this mechanism is cumbersome and the
transformation specifications do not take into account the
persistent nature of the data to be transformed. Further
enhancements to both the visual mapping language and
textual language to allow easier specification of common
mapping constructs, and to provide better visualization of
complex mappings to developers, is being carried out in
response to user feedback.

Summary

Integrating health informatics systems is challenging,
with many systems using different message protocols to
support interoperation. We have developed a new system to
support the specification of complex message
transformations. This incorporates a visual language for
expressing hierarchical structure mappings, a special-
purpose textual programming language to implement these
mappings, and a run-time mapping engine to perform
message transformation. A commercial product has been
developed from this research by Orion Systems Ltd as part
of their Symphonia™ messaging suite.

References

Aditel Corp. ETS for Windows™, www.aditel.be, viewed June
2001.

Cheung, D., Lee, S.D., Lee, T., Song, W., Tan, C.J. Distributed
and scalable XML document processing architecture for E-
commerce systems. In Proceedings of the Second International
Workshop on Advanced Issues of E-Commerce and Web-Based
Information Systems. IEEE CS Press, 2000, pp.152-157.

Data Junction Corp, Universal Translation Suite™ General
Information, www.datajunction.com, viewed May 2001.

Emmelhainz, M.A. Electronic Data Interchange: A Total
Management Guide, Van Nostrand Rein-hold; New York; 1990.

Estes, D. Disciplined XML, EAI Journal, Jan. 2001,
www.eaijournal.com.

Goulde, M.A. Microsoft's BizTalk Framework adds messaging to
XML. E-Business Strategies & Solutions, Sept. 1999, pp.10-14.

Grundy, J.C., Mugridge, W.B., Hosking, J.G., Kendall, P.
Generating EDI Message Translations from Visual
Specifications, In Proceedings of 2001 IEEE International
Conference on Automated Software Engineering, San Diego, CA,
Nov 26-29 2001, IEEE CS Press.

IBM Corp, MQ Series Integrator, www.ibm.com, viewed May
2001.

Liou, D.M., Huang, E.W., Chen, T.T. and Hsiao, S.H. Design
and implementation of a Web-based HL7 validation system.
Proceedings 2000 IEEE EMBS International Conference on
Information Technology Applications in Biomedicine, IEEE CS
Press, 2000, pp.347-352.

Lincoln, T., Spinosa, J., Boyer, S., Alschuler, L. HL7-XML
progress report. In Proceedings of XML Europe '99, Alexandria,
VA, USA, 1999, pp.733-736.

McLure, M.L, Moynihan, J.J. Organizing for EDI (healthcare
industry). Healthcare Financial Management, vol.49, no.1, Jan.

1995, pp.90-93.

Morgenthal, J.P. XML: The New Integration Frontier, EAI
Journal, Feb. 2001, www.eaijournal.com.

OnDisplay Corp, CenterStage eBizXchange,
www.ondisplay.com, viewed May 2001.

Seeburger Corp, SEEBURGER data format and business logic
converter, www.seeburger.de/xml/, viewed May 2001.

Spencer H. XML standards for data interchange. Imaging &
Document Solutions, vol.9, no.9, Sept. 2000, pp.15-17.

Swatman, P.M.C., Swatman, P.A., Fowler, D.C. A model of EDI
integration and strategic business reengineering. Journal of
Strategic Information Systems, vol.3, no.1, March, 1994, pp.41-
60.

Sokolowski, R., Expressing health care objects in XML, In
Proceedings of the 1999 Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises, IEEE CS Press,
1999 pp, 341 -342

Vitria Technolgy Inc, Vitria BusinessWare White Paper,
www.vitria.com, viewed May 2001.

Wallin, G. A new look at EDI healthcare. Health Management
Technology, vol.20, no.5, June 1999.

XML.org, XML and XSLT, www.xml.org, viewed May
2001.

Author details for correspondence

Associate-Professor Rick Mugridge
Department of Computer Science
University of Auckland
Private Bag 92019
Auckland
New Zealand.
rick@cs.auckland.ac.nz
www.cs.auckland.ac.nz/~rick

