
LazyCow: A Lightweight Crowdsourced Testing Tool for Taming
Android Fragmentation

Xiaoyu Sun
Xiaoyu.Sun1@anu.edu.au

Australian National University
Australia, Canberra, ACT

Xiao Chen
Xiao.chen@monash.edu

Monash University
Australia, Clayton, VIC

Yonghui Liu
yonghui.liu@monash.edu

Monash University
Australia, Clayton, VIC

John Grundy
john.grundy@monash.edu

Monash University
Australia, Clayton, VIC

Li Li∗
lilicoding@ieee.org
Beihang University

China, Beijing, Beijing

ABSTRACT
Android fragmentation refers to the increasing variety of Android
devices and operating system versions. Their number make it im-
possible to test an app on every supported device, resulting in many
device compatibility issues and leading to poor user experiences. To
mitigate this, a number of works that automatically detect compati-
bility issues have been proposed. However, current state-of-the-art
techniques can only be used to detect specific types of compatibility
issues (i.e., compatibility issues caused by API signature evolution),
i.e., many other essential categories of compatibility issues are still
unknown. For instance, customised OS versions on real devices
and semantic OS modifications could result in severe compatibility
issues that are difficult to detect statically. In order to address this
research gap and facilitate the prospect of taming Android frag-
mentation through crowdsourced efforts, we propose LazyCow, a
novel, lightweight, crowdsourced testing tool. Our experimental
results involving thousands of test cases on real Android devices
demonstrate that LazyCow is effective at autonomously identifying
and validating API-induced compatibility issues. The source code
of both client side1 and server side 2 are all made publicly available
in our artifact package. A demo video of our tool is available at
https://www.youtube.com/watch?v=_xzWv_mo5xQ.

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories;

KEYWORDS
Crowdsourced Testing, Android Fragmentation

∗Li Li is the corresponding author.
1https://github.com/sunxiaobiu/LazyCow
2https://github.com/sunxiaobiu/RemoteTest

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0327-0/23/12.
https://doi.org/10.1145/3611643.3613098

ACM Reference Format:
Xiaoyu Sun, Xiao Chen, Yonghui Liu, JohnGrundy, and Li Li. 2023. LazyCow:
A Lightweight Crowdsourced Testing Tool for Taming Android Fragmenta-
tion . In Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ES-
EC/FSE ’23), December 3–9, 2023, San Francisco, CA, USA. ACM, New York,
NY, USA, 5 pages. https://doi.org/10.1145/3611643.3613098

1 INTRODUCTION
Android fragmentation has long caused compatibility issues that
may crash applications on users’ Android devices and lead to bad
user experiences [14, 16, 17, 19]. There are many Android OS ver-
sions and smartphone manufacturer-customized ROMs on the mar-
ket. Android app developers struggle to test their applications across
many different types of devices due to this Android fragmenta-
tion [12]. Cai et al. [8] have experimentally shown that Android
device variety is one of the main causes of incompatibility. This
can severely impede the productivity of app developers, who are
required to test their apps on a wide range of devices to ensure
that no compatibility issues will arise. In theory, developers should
gather devices with different specifications, including brands, mod-
els, SDK versions, and software/hardware configurations. However,
it is not feasible for developers to have a complete set of devices
that cover all possible specifications. Moreover, integrating the in-
compatibility testing process into the developers’ daily workflow
can be time-consuming. Hence, there is a pressing need to address
the Android fragmentation through a lightweight, crowdsourced
approach.

Most current state-of-the-art methods detect compatibility issues
through static analysis techniques, as demonstrated in prior works
such as Ham et al.[10], Huang et al.[11], Li et al.[15], Wei et al.[24],
Zhao et al. [28] and Zhang et al.[27]. However, such approaches are
only effective in detecting certain types of compatibility issues[18],
specifically those caused by syntactic changes, leaving other more
complex types of issues uncovered. For example, Sun et al. [23] have
shown that CiD is unable to handle compatibility issues triggered by
semantic changes. Additionally, customization of the Android OS
can introduce compatibility issues that are difficult to be detected
by static analysis techniques. To address this problem, we propose a
lightweight crowdsourced platform to automatically distribute tests
across real-world devices to detect a wider range of compatibility
issues, taking advantage of dynamic testing.

https://www.youtube.com/watch?v=_xzWv_mo5xQ
https://github.com/sunxiaobiu/LazyCow
https://github.com/sunxiaobiu/RemoteTest
https://doi.org/10.1145/3611643.3613098
https://doi.org/10.1145/3611643.3613098


ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Xiaoyu Sun, Xiao Chen, Yonghui Liu, John Grundy, and Li Li

In this work, we demonstrate a novel, lightweight, crowdsourced
testing framework, LazyCow, that automatically distributes and
executes test cases on real-world devices to trigger compatibility
issues dynamically. Unlike traditional approaches that dispatch ex-
ecutable Android apps, LazyCow directly dispatches and executes
test cases on the real-world devices. This approach is "lightweight"
and provides several advantages such as reducing bandwidth, di-
minishing user awareness, allowing flexibility, and guaranteeing
full test case execution. We evaluated LazyCow on thousands of
test cases, successfully detecting 393 APIs with compatibility issues.
Manual validation confirmed a 100% true positive rate, with 109
Signature-based issues and 284 Semantics-based issues that can-
not be noticed by state-of-the-art static methods. Furthermore, we
identified 161 vendor-specific and 47 model-specific compatibility
issues, which are introduced when smartphone vendors customize
the Android system and may result in severe security problems.
To further clarify, the concept of crowdsourced testing is inherited
from the original work [22], which enables the possibility of taming
Android fragmentation through crowdsourced efforts. Compared
to the original research work, we clearly demonstrate the practi-
cal implementations of the crowdsourced testing framework and
showcase its real-world applications for end-users (e.g., test case
allocation and execution).

2 MOTIVATION
Crowdsourced testing has been a hot research topic for many years,
with various studies conducted on its application to Android app
testing [9, 20, 21]. Several industry leaders, including Global App
Testing [5], Digivante [4], test IO [7], and QA Mentor [6], offer
crowdsourced testing services that allow users (e.g., app developers)
to test their mobile apps with thousands of professional testers from
around the world. However, these all need crowd workers, which
can make them time-consuming, prone to errors, and unable to
automatically detect Android compatibility issues without human
intervention. Moreover, users cannot customize test scripts to their
particular needs, leading to undetected compatibility issues.

From the academic perspective, crowdsourced app testing has
also been on the rise, with several studies exploring novel ap-
proaches for achieving better results. For instance, Wu et al.[26]
proposed a method of recording user interactions and replaying
them through crowdsourced testing services to identify bugs. How-
ever, this technique can be time-consuming, given that real user
interactions with apps are involved. Li et al.[13] developed Co-
CoTest, a crowdsourced testing platform that leverages collective
intelligence to recommend bug reports to workers. Unfortunately,
this approach can be ineffective since crowd workers may submit
low-quality reports.

Current crowdsourced testing platforms involve human inter-
vention, resulting in different levels of professionalism, making
them error-prone and time-consuming. In addition, the standard
approach to crowdsourced testing is to test the entire Android app
on crowdsourced devices, which can miss some app code. This
limitation highlights the need for exploring the possibility of dis-
tributing test cases, which are directly executable code snippets, to
real-world Android devices. To fill this research gap, we propose a
novel platform that automatically generates and distributes tests to

real-world devices without human intervention to detect Android
compatibility issues.

3 OUR APPROACH
Our main objective is to provide a lightweight crowdsourced test-
ing platform for automatically executing unit tests on real-world
Android devices. To achieve this, we have designed and developed
a prototype tool called LazyCow, which works on a client-server
model. Figure 1 depicts the architecture of LazyCow, where the
client is installed on multiple Android devices to handle the execu-
tion of test cases. The client determines the number and time of test
cases to be executed and then sends the results back to the server
for further analysis. On the other hand, the server is responsible
for collecting, packaging, and dispatching test cases to the clients,
and analyzing compatibility issues based on the results obtained
from different devices. We provide a detailed explanation of each
component in the following subsections.

Server

(4) Test Case Collection

(5) Device Registration

(6) Test Case Allocation

(7) Test Case 
Packaging & Dispatch

(8) API Compatibility 
Analysis

Client

����Device State Monitor

����Test Cases Hotfix

����Test Case Execution 
& Results Recording

Test Case Database

Compatibility Issues Report

Users

Install LazyCow

Android OS

Figure 1: The working process of our LazyCow approach.

3.1 Client Side
We created a client application for LazyCow that can be installed on
Android devices. The client app continuously monitors the status
of the device to determine the appropriate time to run the test cases
(e.g., when the device is not in use). It then communicates with
the server to download and execute the test cases, and sends back
the execution results for further analysis. Figure 1 shows the three
modules included in the client: (1) Device State Monitor, (2) Test Case
Hotfix, and (3) Test Case Execution & Results Recording.

(1) Device State Monitor. To avoid disrupting the user expe-
rience, LazyCow detects the state of the devices to identify an
appropriate time to execute the test cases. We define a suitable time
as a moment that meets the following three conditions:
i Phone State: To identify whether the user is interacting with the
device, we utilize the methods android.os.PowerManager#
isDeviceIdleMode and android.os.PowerManager#isScreenOn. The
suitable time for running the test cases is defined as the time when
the user is not interacting with the device.

ii Memory Usage: We use android.app.ActivityManager#
getMemoryInfo to obtain the device’s memory usage. A suitable
time is identified if the memory usage is below 25%.

iii Battery State:We utilize android.os.BatteryManager to check the
battery state, examining if it is charging and has enough battery
life (above 60%).
After identifying a suitable time, the client would send a request

to the server to download the test cases for testing.



LazyCow: A Lightweight Crowdsourced Testing Tool for Taming Android Fragmentation ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

(2) Test Cases Hotfix. To dynamically dispatch incremental
tests on Android devices without requiring app reinstallation, we
utilize a hotfix technique that supports updating classes, files, and
resources with minimal impact on the user experience. To achieve
this, we integrate LazyCow with Tinker [3], a hotfix solution that
supports updating classes, libraries, and resources without requir-
ing APK reinstallation when downloading test cases from the server.
This approach minimizes the impact on users when updating in-
cremental test cases. Tinker’s repair principle is based on class
loading and it supports the addition and replacement of classes and
resources. Figure 2 illustrates Tinker’s repair principle, which is
based on the DEX subpackage scheme and the principle of mul-
tiple DEX loading. After comparing the differences between the
new and base APKs, updated classes and resources are merged into
a patch.dex file. The patch.dex file is then combined with the ap-
plied classes.dex, replacing the old DEX file to complete the hotfix
process.

Classes.dex

Base APK

Classes.dex

New APK

patch.dex

Classes.dex

Classes.dex

Base APK

Figure 2: The repair principle of Tinker.

To implement the hotfix process, we adopt the concept of replac-
ing the new DEX with the full amount of instant runs. To achieve
this, we package the test cases in the DEX files of an APK. During
the hotfix process, we calculated the differences between the old
and new test cases and placed them in a patch package. This patch
package was then synthesized and delivered to the device for hotfix.
The incremental test cases in the patch package were placed in
the directory below Tinker. Using Tinker’s Classloader, the new
test cases in the patch package could be loaded based on the hotfix
principle.

(3) Test Cases Execution & Results Recording. After down-
loading the test cases to client devices, LazyCow uses reflection calls
to retrieve and sequentially execute them from the DEX files. The
test cases are written in the format of Java Unit tests, and Lazy-
Cow automatically runs them based on the annotations of each test
method.

The JUnit [1] framework is the most widely used unit testing
framework in Java, with five annotations for test execution call-
backs:@BeforeClass,@Before,@Test,@After, and@AfterClass. Test
methods are annotated by the@Test annotation, and LazyCow also
supports constraining the execution flow of specific methods with
the @Before (or @After) and @BeforeClass (or @AfterClass) annota-
tions. LazyCow first performs static analysis to resolve annotations
from each method and then uses reflection calls to invoke methods
in the sequence of @BeforeClass → @Before → @Test → @After
→ @AfterClass.

After executing the test cases, LazyCow handles any exceptions
that may occur using a try-catch block. It collects execution results
whenever a test case fails or succeeds, along with relevant informa-
tion (e.g., the stack trace information when a test fails), and sends
it back to the server for further analysis.

3.2 Server Side
The test case database on the server is collected from multiple
sources such as the AOSP codebase [2] and GitHub app code repos-
itories. These test cases are then packaged and dispatched to regis-
tered clients in a load-balanced manner. After the clients execute
the test cases, the server gathers the outputs for further analysis to
identify potential compatibility issues. The server-side modules, as
shown in Figure 1, include (4) Test Case Collection, (5) Device Regis-
tration, (6) Test Case Allocation, (7) Test Case Packaging & Dispatch,
and (8) API Compatibility Analysis.

(4) Test Case Collection. The server constantly updates and
manages a test case database for testing on client devices. Three
sources of test cases can be collected, including:
• Test cases that are already included in the Android Open Source
Project (AOSP) codebase [2], authored by Android OS developers.

• Test cases generated by automatic test case generation tools such
as JUnitTestGen [23].

• Users of LazyCow can write customized test cases to fulfill their
specific requirements. For instance, in continuous integration dur-
ing app development, developers may want to verify whether
certain APIs create compatibility issues on specific Android de-
vices.
(5) Device Registration. Upon installation, the LazyCow client

app registers the client device with the server. The registration
process involves collecting device information such as the device’s
manufacturer and model, SDK version, device language, and screen
size, which will be utilized to optimize the distribution of test cases.
It is important to note that the LazyCow app does not collect any
personal private data, such as device IDs, but rather assigns a unique
ID to each device for identification purposes.

Device Pool .
.
.

Cluster 2: Xiaomi; Redmi 8A; 29

Cluster 1: HuaWei; VOG-L09; 28

Cluster N: Samsung; SM-A305YN; 30

…

X number of Test Cases

X/n X/nX/n
1 2

…

X number of Test Cases

X/n X/nX/n
1 2

…

X number of Test Cases

X/n X/nX/n
1 2

n

n

n

Figure 3: Test case allocation with the load-balancing strategy.

(6) Test Case Allocation. We design a test case allocation algo-
rithm to distribute test cases evenly among all registered devices.
This algorithm ensures load-balancing and is illustrated in Figure 3.
Initially, LazyCow groups registered devices into clusters based on
their device information such as manufacturer, model, and Android
SDK version. Then, test cases are distributed evenly to all devices
within each cluster. This approach guarantees that each test case
runs on multiple devices with different specifications and avoids re-
dundant executions on devices with identical specifications, except
for the cases where explicitly specified.



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Xiaoyu Sun, Xiao Chen, Yonghui Liu, John Grundy, and Li Li

(7) Test Case Packaging & Dispatch. After assigning the test
cases to each client, LazyCow packages and dispatches them to
their respective clients. To apply the code changes (i.e., assigned test
cases) to the client without reinstalling the LazyCow app, LazyCow
integrates the hot-swap technique [25]. To achieve this, LazyCow
monitors changes in files (i.e., test cases) and runs a custom Gradle
task that generates .dex files for the modified classes only. Next,
another Gradle command is used to package the newly generated
.dex files into an APK and send it back to the client. The LazyCow
client then reloads these newly assigned test classes and invokes
them using reflection calls.

(8) API Compatibility Analysis. Once the test cases have run
on different Android devices, LazyCow retrieves and stores the exe-
cution results in a database. The results contain information about
the success or failure of each test case on the device, including any
relevant exception information or error messages (e.g., Assertion
error message) if applicable.

The API Compatibility Analysis module then examines the re-
sults across all devices to detect API-related compatibility issues.
An Android API is considered to have compatibility issues if its
execution results are inconsistent across different Android devices.
Specifically, LazyCow identifies a compatibility issue with a given
Android API if any of the following criteria are met: (1) A test
case fails on certain devices but runs successfully on others, or (2)
The test case throws different errors or exceptions on different de-
vice configurations (e.g., NoSuchMethodError on some versions and
SecurityException on others). Based on the comparative analysis
results, LazyCow flags vendor-specific, model-specific, and Android
version-specific compatibility issues for Android APIs. These have
been long-standing challenges that existing approaches, such as
CiD, FicFinder, etc., have not yet addressed specifically for detecting
compatibility issues in Android devices. To further elaborate the
working process of LazyCow, we present the screenshots of test
case allocation and execution process in Figure 4.
4 EVALUATION
4.1 Experimental settings
We investigated the effectiveness of detecting compatibility issues
in Android devices with LazyCow. We used 11 Android smart-
phones from various manufacturers with different Android OS
versions. These devices were obtained from real-world users who
downloaded and installed LazyCow through online advertising. We
recruited 11 participants, contributing 11 Android devices. Also,
we prepare test cases dataset that contains 5,401 test cases (cover-
ing 5,401 unique Android APIs). To examine LazyCow’s efficiency
of dispatching and executing unit tests, we install LazyCow on
all devices and record the number of test cases successfully exe-
cuted and the execution time for each run to evaluate LazyCow’s
performance.

4.2 Results - The effectiveness of LazyCow.
After analyzing and comparing the execution results of test cases,
LazyCow identified 393 Android APIs that may have compatibility
issues. We further discover that among the 393 identified compati-
bility issues, 109 of them belong to signature-based issues and 284
are semantic-based issues. In addition, we find that LazyCow is able
to detect 161 APIs with vendor-specific compatibility issues and 47

(a) The UI Page of Test Case
Allocation.

(b) The UI Page of Test Case
Execution.

Figure 4: The UI Pages of Test Case Allocation and Execution.

model-specific compatibility issues. Our approach has been proven
effective in automatically identifying and confirming compatibility
issues caused by APIs, not only based on their signature but also on
their semantics, surpassing the current state-of-the-art techniques.

4.3 Results - The comparison to existing tools.
Comparisonwith JUnitTestGen. LazyCowoutperforms JUnitTest-
Gen in detecting compatibility issues. The reason for this difference
is that JUnitTestGen only tests emulators that use the original
Android OS, which overlooks many compatibility issues caused
by vendor/model customization. This finding demonstrates that
LazyCow can identify a wider range of compatibility issues than
existing dynamic approaches and is promising in complementing
these approaches.

Comparison with Google CTS. LazyCow outperforms Google
CTS in detecting more compatibility issues. One major reason
for CTS’s failure to detect compatibility issues, particularly those
caused by vendor/model customization, is the lack of sufficient
testing context, such as various parameter values. In contrast, Lazy-
Cow can detect such compatibility issues because it relies on JU-
nitTestGen to mine existing Android API usages and generates
API-focused test cases that retain the execution context in real-
world applications.

5 CONCLUSION
We have introduced LazyCow, a novel, lightweight prototype tool
that uses crowdsourced testing techniques to identify compatibility
issues caused by Android fragmentation. Our experimental results
indicate that: (1) LazyCow is capable of automatically executing test
cases on real-world Android devices; (2) Our approach is effective in
automatically detecting and confirming API-induced compatibility
issues.

ACKNOWLEDGEMENTS
This work was supported by the Australian Research Council (ARC)
under a Laureate Fellowship project FL190100035.



LazyCow: A Lightweight Crowdsourced Testing Tool for Taming Android Fragmentation ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

REFERENCES
[1] 2021. JUnit. https://en.wikipedia.org/wiki/JUnit#:~:text=JUnit%20is%20a%

20unit%20testing,xUnit%20that%20originated%20with%20SUnit.&text=junit%
20and%20junit.

[2] 2021. Source Code of the Android Open Source Project. https://cs.android.com/
android

[3] 2021. Tinker. https://github.com/Tencent/tinker
[4] 2022. Digivante. https://www.digivante.com/crowdsourced-testing-

referral/?utm_campaign=SoftwareTestingHelp%20Referral%20Campaigns&
utm_source=software-testing-help&utm_content=crowdtesting

[5] 2022. Global App Testing. https://go.globalapptesting.com/app-testing-for-
engineering-qa

[6] 2022. QAMentor. https://www.qamentor.com/qa-services/crowdsourced-testing-
services/

[7] 2022. test IO. https://goo.gl/rGQPWF
[8] Haipeng Cai, Ziyi Zhang, Li Li, and Xiaoqin Fu. 2019. A large-scale study of

application incompatibilities in Android. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis. 216–227.

[9] Sebastian Elbaum and Madeline Hardojo. 2004. An empirical study of profiling
strategies for released software and their impact on testing activities. In Proceed-
ings of the 2004 ACM SIGSOFT international symposium on Software testing and
analysis. 65–75.

[10] Hyung Kil Ham and Young Bom Park. 2011. Mobile application compatibility
test system design for android fragmentation. In International Conference on
Advanced Software Engineering and Its Applications. Springer, 314–320.

[11] Huaxun Huang, Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2018. Under-
standing and detecting callback compatibility issues for android applications. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. 532–542.

[12] Pingfan Kong, Li Li, Jun Gao, Kui Liu, Tegawendé F Bissyandé, and Jacques Klein.
2018. Automated Testing of Android Apps: A Systematic Literature Review. IEEE
Transactions on Reliability (2018).

[13] Haoyu Li, Chunrong Fang, Zhibin Wei, and Zhenyu Chen. 2019. CoCoTest:
collaborative crowdsourced testing for Android applications. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis.
390–393.

[14] Li Li, Tegawendé F Bissyandé, Yves Le Traon, and Jacques Klein. 2016. Access-
ing Inaccessible Android APIs: An Empirical Study. In The 32nd International
Conference on Software Maintenance and Evolution (ICSME 2016).

[15] Li Li, Tegawendé F Bissyandé, Haoyu Wang, and Jacques Klein. 2018. Cid:
Automating the detection of api-related compatibility issues in android apps.
In Proceedings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis. 153–163.

[16] Li Li, Jun Gao, Tegawendé F Bissyandé, Lei Ma, Xin Xia, and Jacques Klein. 2020.
CDA: Characterising Deprecated Android APIs. Empirical Software Engineering

(EMSE) (2020).
[17] Pei Liu, Mattia Fazzini, John Grundy, and Li Li. 2022. Do Customized Android

Frameworks Keep Pace with Android?. In The 19th International Conference on
Mining Software Repositories (MSR 2022).

[18] Pei Liu, Li Li, Yichun Yan, Mattia Fazzini, and John Grundy. 2021. Identifying and
characterizing silently-evolved methods in the android API. In 2021 IEEE/ACM
43rd International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP). IEEE, 308–317.

[19] Pei Liu, Yanjie Zhao, Haipeng Cai, Mattia Fazzini, John Grundy, and Li Li. 2022.
Automatically Detecting API-induced Compatibility Issues in Android Apps: A
Comparative Analysis (Replicability Study). In The ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2022).

[20] Atif Memon, Adam Porter, Cemal Yilmaz, Adithya Nagarajan, Douglas Schmidt,
and Balachandran Natarajan. 2004. Skoll: Distributed continuous quality assur-
ance. In Proceedings. 26th International Conference on Software Engineering. IEEE,
459–468.

[21] Alessandro Orso, Donglin Liang, Mary Jean Harrold, and Richard Lipton. 2002.
Gamma system: Continuous evolution of software after deployment. In Proceed-
ings of the 2002 ACM SIGSOFT international symposium on Software testing and
analysis. 65–69.

[22] Xiaoyu Sun, Xiao Chen, Yonghui Liu, John Grundy, and Li Li. 2023. Taming
Android Fragmentation through Lightweight Crowdsourced Testing. IEEE Trans-
actions on Software Engineering (2023).

[23] Xiaoyu Sun, Xiao Chen, Yanjie Zhao, Pei Liu, John Grundy, and Li Li. 2022. Mining
android api usage to generate unit test cases for pinpointing compatibility issues.
In 37th IEEE/ACM International Conference on Automated Software Engineering.
1–13.

[24] Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2016. Taming Android fragmen-
tation: Characterizing and detecting compatibility issues for Android apps. In
Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering. 226–237.

[25] wikipedia. [n. d.]. Hot swapping. https://en.wikipedia.org/wiki/Hot_swapping.
Online; accessed 28 January 2022.

[26] Guoquan Wu, Yuzhong Cao, Wei Chen, Jun Wei, Hua Zhong, and Tao Huang.
2017. AppCheck: a crowdsourced testing service for android applications. In 2017
IEEE International Conference on Web Services (ICWS). IEEE, 253–260.

[27] Tao Zhang, Jerry Gao, Jing Cheng, and Tadahiro Uehara. 2015. Compatibility test-
ing service for mobile applications. In 2015 IEEE Symposium on Service-Oriented
System Engineering. IEEE, 179–186.

[28] Yanjie Zhao, Pei Liu, Xiaoyu Sun, Yue Liu, YONGHUI LIU, John Grundy, and Li
Li. [n. d.]. Autopatch: Learning to Generate Patches for Automatically Fixing
Compatibility Issues in Android Apps. Available at SSRN 4254659 ([n. d.]).

Received 2023-05-11; accepted 2023-07-20

https://en.wikipedia.org/wiki/JUnit#:~:text=JUnit%20is%20a%20unit%20testing,xUnit%20that%20originated%20with%20SUnit.&text=junit%20and%20junit.
https://en.wikipedia.org/wiki/JUnit#:~:text=JUnit%20is%20a%20unit%20testing,xUnit%20that%20originated%20with%20SUnit.&text=junit%20and%20junit.
https://en.wikipedia.org/wiki/JUnit#:~:text=JUnit%20is%20a%20unit%20testing,xUnit%20that%20originated%20with%20SUnit.&text=junit%20and%20junit.
https://cs.android.com/android
https://cs.android.com/android
https://github.com/Tencent/tinker
https://www.digivante.com/crowdsourced-testing-referral/?utm_campaign=SoftwareTestingHelp%20Referral%20Campaigns&utm_source=software-testing-help&utm_content=crowdtesting
https://www.digivante.com/crowdsourced-testing-referral/?utm_campaign=SoftwareTestingHelp%20Referral%20Campaigns&utm_source=software-testing-help&utm_content=crowdtesting
https://www.digivante.com/crowdsourced-testing-referral/?utm_campaign=SoftwareTestingHelp%20Referral%20Campaigns&utm_source=software-testing-help&utm_content=crowdtesting
https://go.globalapptesting.com/app-testing-for-engineering-qa
https://go.globalapptesting.com/app-testing-for-engineering-qa
https://www.qamentor.com/qa-services/crowdsourced-testing-services/
https://www.qamentor.com/qa-services/crowdsourced-testing-services/
https://goo.gl/rGQPWF
https://en.wikipedia.org/wiki/Hot_swapping

	Abstract
	1 Introduction
	2 Motivation
	3 Our Approach
	3.1 Client Side
	3.2 Server Side

	4 Evaluation
	4.1 Experimental settings
	4.2 Results - The effectiveness of LazyCow.
	4.3 Results - The comparison to existing tools.

	5 CONCLUSION
	References

