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ABSTRACT
Smart buildings can reveal highly sensitive insights about their
inhabitants and expose them to new privacy threats and vulnerabil-
ities. Yet, convenience overrides privacy concerns and most people
remain ignorant about this issue. We propose a novel Informed
Consent Management Engine (ICME) that aims to: (a) increase users’
awareness about privacy issues and data collection practices in
their smart building environments, (b) provide fine-grained visibil-
ity into privacy conformance and infringement by these devices,
(c) recommend and visualise corrective user actions through “digi-
tal nudging", and (d) support the monitoring and management of
personal data disclosure in a shared space. We present a reference
architecture for ICME that can be used by software engineers to im-
plement diverse end-user consent management solutions for smart
buildings. We also provide a proof-of-concept prototype to demon-
strate how the ICME approach works in a shared smart workplace.
Demo: https://youtu.be/5y6CdyWAdgY

CCS CONCEPTS
• Security and privacy → Privacy protections; Human and
societal aspects of security and privacy; • Social and profes-
sional topics→ Privacy policies.
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1 INTRODUCTION
A smart building relies upon human-centric processes to automat-
ically control the building’s operations, including access, HVAC,
lighting, security and energy management, with intelligence and
communication capabilities facilitating operations [5][15]. IoT is
the principal empowering technology that transforms ordinary
buildings into "smart" buildings manipulating hundred to millions
of sensing and actuating devices to offer a self-sustaining ecosystem.
IoT devices installed in smart buildings are capable of capturing a
huge amount of data, including data directly related to an individual
inhabitant. The primary intent of capturing user behaviour, occu-
pation, or choices is to promptly cater to end-user needs without
the need for interference or identification of its users. However,
such data collection and usage can possibly infringe the privacy of
the inhabitants, and smart building sensors can permeate various
private aspects of individuals’ lives without their prior consent [9].
To improve the privacy of smart building occupants, it is essential
to clearly define (a) how personally identifiable information (PII) is
collected, used, shared and disclosed, (b) how permission is sought
and granted for the accumulated data to be shared and disclosed
to third-parties, and (c) the liabilities related to any breaches of
private information [16].

With the initiation of GDPR law [6], and other similar regu-
lations (e.g., California Consumer Privacy Act - CCPA, Personal
Information Protection and Electronic Documents Act - PIPEDA),
people are becoming more aware of their privacy rights [2] [12].
Yet, despite the increased awareness, users rarely make active ef-
forts to protect their personal information as their privacy-related
behaviours are influenced by the increased functionality and con-
venience offered by IoT devices [3]. This discrepancy between the
consumers’ stated concerns and their actual behaviour is referred
to as the privacy paradox [14]. To address this problem, we have
previously proposed a model for managing informed consent in
smart spaces [11]. As shown in Fig. 1, privacy conformance check-
ing is done by intercepting the device API calls and checking the
list of permissions requested by a device (and granted by a user)
against the device privacy policies. When an end-user triggers an
action, the consent model checks the permissions granted by the
user and the event’s payload data against the device’s privacy policy

1545

https://orcid.org/0000-0002-0277-104X
https://orcid.org/0000-0003-4928-7076
https://orcid.org/0000-0002-6138-7742
https://orcid.org/0000-0002-9245-2703
https://youtu.be/5y6CdyWAdgY
https://doi.org/10.1145/3468264.3473118
https://doi.org/10.1145/3468264.3473118
https://doi.org/10.1145/3468264.3473118


ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Chehara Pathmabandu, John Grundy, Mohan Baruwal Chhetri and Zubair Baig

Figure 1: Informed consent model

statements. If the consent engine detects a policy infringement, the
end-user is made aware of it through a nudge. Following the nudge,
the user can decide if they want to take appropriate actions against
the infringement, such as not using the device, refusing permission
for data capture, or leaving the smart space.

In this paper, we present a reference architecture for our in-
formed consent management engine (ICME), which can be used by
software engineers to implement consent management solutions
for smart buildings. We also provide a proof-of-concept prototype
to demonstrate how it works in a shared smart workplace.

2 APPROACH
A smart building can house many organizations that are spread
across multiple floors and occupymany individual and shared rooms
that can be grouped into different zones. Each of these “smart spaces”
are instrumented with different types of devices that are shared and
used by multiple users with different levels of accessibility, author-
ity, and privacy preferences. The nudging mechanism used and the
nudging content presented to the inhabitants of these smart spaces
may differ significantly depending upon their level of accessibility
and authority. A central concern in managing such system of sys-
tems is the complex relationship between the smart spaces, shared
devices, and their users. Below, we outline the five key phases
through which ICME manages the privacy of the inhabitants in
such shared smart spaces.
Phase 1: Extract privacy policies by applying textual patterns.
For each device installed in the shared smart space, its privacy poli-
cies are extracted based on a pre-defined textual pattern, converted
into an appropriate machine-readable format (e.g. JSON [1], XML),
and stored in the privacy policy document database (PDD). As shown
in Fig. 2, each privacy policy statement has the following elements:
Actor, Action, Object(s), Purpose(s) [10], e.g. the service provider
collects end-user usage frequency for service provisioning/analytics.
A key-value data format is suitable for handling unstructured, dy-
namic schema in creating documents, and each privacy policy is
represented as an object of objects, which is more expressive and
powerful than a traditional row/column model.
Phase 2: Maintain a list of risky permissions for smart de-
vices.

Figure 2: Example privacy policy statement

A PII bank is created to maintain a list of sensitive and non-sensitive
user information that may be collected and transferred when users
interact with devices in the shared smart space. Each PII type is
linked to a risk level based on its sensitivity, e.g. a user’s precise
location is highly sensitive compared to an approximate location.
Each time a new device is installed in the shared smart space, all
permissions (mandatory and optional) defined by the device’s man-
ufacturer are checked to gain more visibility into the personal
data that the vendor can collect about the device user at both the
software and hardware level. Following this, possible dangerous
permissions that have the risk of revealing sensitive information
about the users and could be used for profiling, tracking, advertising
and identification [4] are identified, labelled and listed. Each policy
statement extracted in Phase 1 includes one or more such PII types
under the object element.
Phase 3: Check for privacy breaches or potential risks when
users interact with devices.
Every time a user interacts with a smart device, the payload data
for the user executed action is captured and pre-processed into a
lightweight data-interchange format that is machine-readable. The
payload is then assessed against the privacy policy statements for
that device stored in the PDD. More specifically, the PII types under
the object element of the privacy policy are compared against the
parameters collected in the payload. Two types of incidents are
flagged – direct breach of the privacy policy and potential disclosure
of high-risk PII (even if no direct infringement is identified).
Phase 4: Track and log events associated with privacy
breaches or potential risks.
Once the payload has been assessed against the device privacy
policy statements, the user-triggered action (event, action, time,
current status) is tracked and logged for all incidents that are flagged
in Phase 3. These incidents and past incidents are analysed to nudge
the users to change their behaviour.
Phase 5: Recommend corrective actions using nudges.
Corrective actions are recommended to the user via nudges to con-
trol and mitigate privacy issues that have occurred and/or may
transpire in future. Nudging is a promising approach at influenc-
ing people’s judgment, choice or behaviour in a range of domains,
including cybersecurity, in a desirable way [7]. In our approach, a
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Figure 3: Reference architecture (showing data flows)

nudge consists of three elements: (1) a summary of the risky actions,
(2) redirect instructions to configure privacy settings, and (3) an
option to decline and allow data to be shared. The nudging tech-
nique is used for positive reinforcement, highlighting what privacy
settings should be practised by the smart building inhabitants to se-
cure and protect their PII. In designing the nudge content, we have
considered the concepts of protection motivation theory (PMT)
[17][8], herd behaviour [18], social norms [13], privacy paradox
[19] and privacy calculus theories [13] to enhance user awareness,
share good practices, and to motivate users to review and possibly
adjust their privacy settings.

3 REFERENCE ARCHITECTURE
Fig. 3 presents the reference architecture for our proposed approach
and shows the data flow between the different components. The pri-
vacy policies for each IoT device in the shared smart space (Phase
1), the list of pre-defined permissions (Phase 2), the events asso-
ciated with privacy breaches or potential risks (Phase 4), and the
nudge details (Phase 5) are stored in the database (5). A user can
interact with the IoT Device (10) in three different ways; via a mo-
bile application (1), via the IoT dashboard (2) and by using a voice
assistant (8). These act as consumers of the ICME API deployed
on the ICM Cloud-API server (4). If we consider the scenario of
the user interacting with an IoT device via her mobile application,
then the following data flow occurs. The user request from the
application (1) is forwarded to the ICM Cloud-API server (4) via the
API Gateway (3) by making Rest API calls. On the ICM Cloud-API
server, each variable of the request payload is assessed against the
privacy policies in the PDD (5) (Phase 3). Simultaneously, the API
publishes the request payload to a dedicated topic on the Message
Broker (6), which routes it to the appropriate IoT device subscribed
to the same topic (10) after identifying the end-point. In the event
of a privacy breach or a potential disclosure of high-risk PII, the
event is logged in the database (Phase 4). Following this, the ICM
API server also sends a nudge recommending corrective actions
to the mobile application using the Push Notification Service (11)
(Phase 5). Finally, the device’s current status is reflected on the IoT
dashboard (2) by forwarding the message via a hardware and API
writing tool (7).

Figure 4: Implemented solution overview

Figure 5: Data flow definition for smart lights in theHuman-
iSE Lab.

4 IMPLEMENTATION
Fig. 4 shows one specific implementation of the reference architec-
ture shown in Fig. 3. We used Node-RED1 to implement the IoT
Dashboard (2) and for wiring together the hardware and the ICM
APIs (7). Similarly, we used the AWS API Gateway2 (3) to act as the
“front door” for our ICM Cloud API Server, which was deployed
on Amazon EC2 (4). The privacy policy database was implemented
using MongoDB Atlas3 (5). We used MQTT4 as the Message Broker
(6). For the purposes of the prototype demonstration, we created
"mock-up" interfaces for the different IoT devices, including Smart
Door Lock, Smart TV and Smart Light Switch, by writing "device"
interfaces that mimic their behaviours (10). For the push notification
service (11) we used Firebase5. Finally, we developed a prototype
mobile application for displaying the nudges received by the user.
The code for ICME is available on Github6.
1https://nodered.org/
2https://aws.amazon.com/api-gateway/
3https://www.mongodb.com/cloud/atlas2
4https://mqtt.org/
5https://firebase.google.com/
6https://github.com/chehara/ICM_repo
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Figure 6: Node-Red Dashboard for the HumaniSe Lab (with
floor map integration)

4.1 Designing Data Flows for the Smart Office
Space

For our prototype implementation, we have simulated the setup
of the HumaniSE lab7. As shown in Fig. 6, the lab includes private
rooms, meeting rooms, open plan working spaces and shared areas.
For the purpose of demonstration, we have configured the lab with
seven smart light interfaces, four smart door lock interfaces, two
smart TV interfaces, and five smart temperature sensor interfaces.
We used Node-RED to implement smart space automation oper-
ations by wiring together these different devices, the ICM APIs
and the Nudge Notification Service. Node-RED is a programming
tool that allows wiring together hardware devices, APIs and online
services and supports the remote management of IoT devices in a
shared space. Node-RED is specifically designed to be used with
MQTT. To provide remote access and control, we have implemented
an MQTT client and server network node to communicate with an
’MQTT broker node’. We have also used many JavaScript ’nodes’
to process the messages received by the nodes and to create vir-
tual wires between flows to make them reusable. Fig. 5 shows the
data flow definition for the smart lights in the HumaniSE Lab. It
also shows multiple tabs for the data flows for the smart TVs and
the smart door locks. We can define such data flows for any type
of smart space setup, including hierarchical ones as discussed in
Section 2.

4.2 Dashboard to Interact with the Smart Space
We have used Node-RED to implement the dashboard, which pro-
vides users with a real-time view of the different IoT devices in the
shared space. Fig. 6 shows the dashboard for the HumaniSE lab
with the floor map integration. Depending upon the assigned au-
thority level, users will have access and control to different devices
in the lab via the dashboard. The privacy nudges are also sent and
displayed on the dashboard in addition to being sent to the user’s
mobile application.

7https://www.monash.edu/it/humanise-lab/home

Figure 7: Nudge visualisation and device control via mobile
app

4.3 Mobile App to Interact with the Smart
Space and for Nudge Visualisation

In addition to the Node-RED dashboard, we have also developed a
prototype mobile application that can be used to interact with the
devices and to visualise and respond to digital nudges about privacy
threats and settings (refer to Fig. 7). The app displays all recent
nudges received by the user. Different types of nudges are delivered
to the user based on how many times the user has declined the
recommended corrective actions for the same privacy infringement
or potential risk. This encourages the use of empirically validated
techniques rather than relying on traditional measures that might
not achieve the desired behaviour change. We have considered nine
different nudge types in our prototype implementation. The follow-
ing example details how the same information can be presented
differently depending upon the selected nudge type.

Type 4: Awareness and threat appraisal – "Your <PII Type>
has been shared <n> times during the last <x> days. If you do not
disable your <PII Type> sharing privacy settings, your personal data
could be compromised, and you can be tracked or profiled".

Type 5: Awareness and herd behaviour – "Your <PII Type>
has been shared <n> times during the last <x> days. <Percentage> of
your colleagues do not share <PII Type> with others."

Users can control the smart devices they have access to via the
mobile app, similar to the dashboard. Once a user decides to change
the privacy settings, the system will automatically update their
preferences. Finally, all generated nudges with the user action are
recorded in the database to measure the nudge effectiveness against
user behaviour change in the future.

5 CONCLUSION
We presented ICME, an informed consent management engine for
shared smart spaces. We introduced a reference architecture for
ICME followed by concrete implementation. We then demonstrated
its practical feasibility and how it works by simulating a smart
shared workplace. Our proposed ICME approach can be used by
software developers to implement diverse end-user consent man-
agement solutions for a variety of shared smart spaces.

ACKNOWLEDGEMENTS
Pathmabandu is supported by a CSIRO Data61 PhD scholarship.
Grundy is supported by ARC Laureate Fellowship FL190100035.

1548

https://www.monash.edu/it/humanise-lab/home


ICME: An Informed Consent Management Engine for Conformance in Smart Building Environments ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

REFERENCES
[1] 2001. JSON. https://www.json.org/json-en.html.
[2] 2020. California Consumer Privacy Act (CCPA) | State of California - Department

of Justice - Office of the Attorney General. https://oag.ca.gov/privacy/ccpa.
[3] Noura Aleisa, Karen Renaud, and Ivano Bongiovanni. 2020. The privacy para-

dox applies to IoT devices too: A Saudi Arabian study. Computers and Se-
curity 96 (2020), 101897. http://www.sciencedirect.com/science/article/pii/
S0167404820301711

[4] E. Alepis and C. Patsakis. 2017. Monkey Says, Monkey Does: Security and Privacy
on Voice Assistants. IEEE Access 5 (2017), 17841–17851.

[5] Alex H Buckman, Martin Mayfield, and Stephen BM Beck. 2014. What is a smart
building? Smart and Sustainable Built Environment (2014).

[6] GDPR. 2018. General Data Protection Regulation (GDPR) – Official Legal Text.
https://gdpr-info.eu/.

[7] Pelle Guldborg Hansen. 2016. The Definition of Nudge and Libertarian Pater-
nalism: Does the Hand Fit the Glove? European Journal of Risk Regulation 7, 1
(2016), 155–174. https://doi.org/10.1017/S1867299X00005468

[8] Daniel Kahneman. 2012. Thinking, fast and slow.
[9] Milan Markovic, Waqar Asif, David Corsar, Naomi Jacobs, Peter Edwards, Mut-

tukrishnan Rajarajan, and Caitlin Cottrill. 2018. Towards automated privacy risk
assessments in IoT systems. 15–18.

[10] Nazila Mohammadi, Jens Leicht, Ludger Goeke, andMaritta Heisel. 2020. Assisted
Generation of Privacy Policies using Textual Patterns. 347–358.

[11] Chehara Pathmabandu, John Grundy, Mohan Baruwal Chhetri, and Zubair Baig.
2020. An Informed Consent Model for Managing the Privacy Paradox in Smart
Buildings (ASE ’20). Association for Computing Machinery, New York, NY, USA,
19–26. https://doi.org/10.1145/3417113.3422180

[12] PIPEDA. 2019. The Personal Information Protection and Electronic
Documents Act (PIPEDA) - Office of the Privacy Commissioner of
Canada. https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-
personal-information-protection-and-electronic-documents-act-pipeda/.

[13] Maija Elina Poikela. 2020. Theoretical Background to Location Privacy. Springer
International Publishing, Cham, 13–32.

[14] Karen Renaud, Ivano Bongiovanni, and Noura Aleisa. [n.d.]. The pri-
vacy paradox: we claim we care about our data, so why don’t our actions
match? https://theconversation.com/the-privacy-paradox-we-claim-we-care-
about-our-data-so-why-dont-our-actions-match-143354.

[15] Nico Saputro, Ali Yurekli, Kemal Akkaya, and Selcuk Uluagac. 2016. Privacy
Preservation for IoT Used in Smart Buildings. 129–160. https://doi.org/10.1201/
b19516-10

[16] Amit Kumar Tyagi, G. Rekha, and N. Sreenath. 2020. Beyond the Hype: Internet
of Things Concepts, Security and Privacy Concerns. In Advances in Decision Sci-
ences, Image Processing, Security and Computer Vision, Suresh Chandra Satapathy,
K. Srujan Raju, K. Shyamala, D. Rama Krishna, and Margarita N. Favorskaya
(Eds.). Springer International Publishing, Cham, 393–407.

[17] René van Bavel and Nuria RodrÃguez-Priego. 2016. Nudging Online Security
Behaviour with Warning Messages: Results from an Online Experiment.

[18] Ali Vedadi and Merrill Warkentin. 2020. "Can Secure Behaviors Be Contagious? A
Two-Stage Investigation of the Influence of Herd Behavior on Security Decisions
". Journal of the Association for Information Systems (01 2020), 428–459. https:
//doi.org/10.17705/1jais.00607

[19] M. Williams, J. R. C. Nurse, and S. Creese. 2016. The Perfect Storm: The Privacy
Paradox and the Internet-of-Things. In 2016 11th International Conference on
Availability, Reliability and Security (ARES). 644–652. https://doi.org/10.1109/
ARES.2016.25

1549

https://www.json.org/json-en.html
https://oag.ca.gov/privacy/ccpa
http://www.sciencedirect.com/science/article/pii/S0167404820301711
http://www.sciencedirect.com/science/article/pii/S0167404820301711
https://gdpr-info.eu/
https://doi.org/10.1017/S1867299X00005468
https://doi.org/10.1145/3417113.3422180
https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/
https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/
https://theconversation.com/the-privacy-paradox-we-claim-we-care-about-our-data-so-why-dont-our-actions-match-143354
https://theconversation.com/the-privacy-paradox-we-claim-we-care-about-our-data-so-why-dont-our-actions-match-143354
https://doi.org/10.1201/b19516-10
https://doi.org/10.1201/b19516-10
https://doi.org/10.17705/1jais.00607
https://doi.org/10.17705/1jais.00607
https://doi.org/10.1109/ARES.2016.25
https://doi.org/10.1109/ARES.2016.25

	Abstract
	1 Introduction
	2 Approach
	3 Reference Architecture 
	4 Implementation
	4.1 Designing Data Flows for the Smart Office Space
	4.2 Dashboard to Interact with the Smart Space
	4.3 Mobile App to Interact with the Smart Space and for Nudge Visualisation

	5 Conclusion
	References

