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ABSTRACT

Increased popularity of ‘intelligent’ web services provides end-

users with machine-learnt functionality at little effort to develop-

ers. However, these services require a decision threshold to be set

which is dependent on problem-specific data. Developers lack a

systematic approach for evaluating intelligent services and existing

evaluation tools are predominantly targeted at data scientists for

pre-development evaluation. This paper presents a workflow and

supporting tool, Threshy, to help software developers select a deci-

sion threshold suited to their problem domain. Unlike existing tools,

Threshy is designed to operate in multiple workflows including

pre-development, pre-release, and support. Threshy is designed for

tuning the confidence scores returned by intelligent web services

and does not deal with hyper-parameter optimisation used in ML

models. Additionally, it considers the financial impacts of false pos-

itives. Threshold configuration files exported by Threshy can be

integrated into client applications and monitoring infrastructure.

Demo: https://bit.ly/2YKeYhE.
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1 INTRODUCTION

Machine learning (ML) algorithm adoption is increasing in modern

software. End users routinely benefit from machine-learnt func-

tionality through personalised recommendations [4], voice-user
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Computer 

Vision 

Service
{

  " i mage" :  {
     " ur l " :  " ht t p: / / do. gg/ st af f y. j peg"
  } ,
  " f eat ur es"  [ {
    " maxResul t s" :  1
  } ]
}

JSON {

  " l ocal i zedObj ect Annot at i ons" :  [
    {
      " boundi ngPol y" :  {  . . .  } ,
      " name" :  " Dog" ,
      " scor e" :  0. 7923307
    }
  ]
}

JSON

" scor e" :  0. 7923307

" ur l " :  " ht t p: / / do. gg/ st af f y. j peg"

" maxResul t s" :  1

Figure 1: Request and response for an intelligent computer

visionweb servicewith only three configuration parameters:

the image’s url, maxResults and score.

interfaces [12], and intelligent digital assistants [3]. The easy acces-

sibility and availability of intelligent web services1 is contributing

to their adoption. These intelligent web services simplify the de-

velopment of ML solutions as they (i) do not require specialised

ML expertise to build and maintain AI-based solutions, (ii) abstract

away infrastructure related issues associated with ML [2, 14], and

(iii) provide web APIs for ease of integration.

However, unlike traditional web services, the functionality of

these intelligent services is dependent on a set of assumptions unique

to ML [6]. These assumptions are based on the data used to train

ML algorithms, the choice of algorithm, and the choice of data pro-

cessing stepsÐmost of which are not documented. For developers,

these assumptions mean that the performance characteristics of an

intelligent service in any particular application problem domain is

not fully knowable. Intelligent services represent this uncertainty

through a confidence value associated with their predictions.

As an example, consider fig. 1, which illustrates an image of a

dog uploaded to a real computer vision service. Developers have

very few configuration parameters in the upload payload (url of

the image to analyse and maxResults the number of objects to

detect). The JSON output payload returns the confidence value via

a score field (0.792), the bounding box and a łdogž label. Develop-

ers can only work with these parameters; unlike hyper-parameter

optimisation available to ML creators, who can configure the in-

ternal parameters of the algorithm while training a model. Given

the structure of the abstractions, developers have no insight into

which hyper-parameters are used or the algorithm selected and

cannot tune the underlying trained model when using an intelligent

service. Thus an evaluation procedure must be followed as a part

of using an intelligent service for an application to work with and

tune the output confidence values for a given input set.

1Such as Azure Computer Vision (https://azure.microsoft.com/en-au/services/
cognitive-services/computer-vision/), Google Cloud Vision (https://cloud.google.com/
vision/), or Amazon Rekognition (https://aws.amazon.com/rekognition/).
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Figure 2: Predictions for 100 emails from two spam clas-

sifiers. Decision thresholds are classifier-dependent: a sin-

gle threshold for both classifiers is not appropriate as ham

emails are clustered at 0.12 (model_1) and at 0.65 (model_2).

Developers must evaluate performance for both thresholds.

A typical evaluation process involves a test data set (curated by

the developers using the intelligent service) that is used to deter-

mine an appropriate threshold. Choice of a decision threshold is a

critical element of the evaluation procedure [9]. This is especially

true for classification problems such as detecting if an image con-

tains cancer. Simple approaches to selecting a threshold are often

insufficient, as highlighted in Google’s ML course: łIt is tempting

to assume that [a] classification threshold should always be 0.5, but

thresholds are problem-dependent, and are therefore values

that you must tune.ž2

As an example consider the predictions from two email spam

classifiers shown in Figure 2. The predicted safe emails, ‘ham’, are

in two separate clusters (a simple threshold set to approx. 0.2 for

model 1 and 0.65 for model 2, indicating that different decision

thresholds may be required depending on the classifier. Also note

that some emails have beenmisclassified; howmany depends on the

choice of decision threshold. An appropriate threshold considers

factors outside algorithmic performance, such as financial cost

and impact of wrong decisions. To select an appropriate decision

threshold, developers using intelligent services need approaches

to reason about and consider trade-offs between competing cost

factors. These include impact, financial costs, and maintenance

implications. Without considering these trade-offs, sub-optimal

decision thresholds will be selected.

The standard approach for tuning thresholds in classification

problems involve making trade-offs between the number of false

positives and false negatives using the receiver operating character-

istic (ROC) curve. However, developers (i) need to realise that this

trade-off between false positives and false negatives is a data depen-

dent optimisation process [15], (ii) often need to develop custom

scripts and follow a trial-and-error based approach to determine a

threshold, (iii) must have appropriate statistical training and exper-

tise, and (iv) be aware that multi-label classification require more

complex optimisation methods when setting label specific costs.

However, current intelligent services do not sufficiently guide or

2See https://bit.ly/36oMgWb.
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i f  ( scor e > 0. 8)  {

  f eed_t he_dog( )
}

i f  ( di st r i but i on > del t a)  {

  not i f y_suppor t _t eam( )

}
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What's my decision boundary?
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When is substantial change notified?

Figure 3: Threshy supports two key aspects for intelligent

web services: threshold selection and monitoring.

support software engineers through the evaluation process, nor do

they make this need clear in the documentation.

In this paper we present Threshy3, a tool to assist developers

in selecting decision thresholds when using intelligent services.

The motivation for developing Threshy arose from our work across

a set of industry projects, and is an implemented example of the

threshold tuner component presented in our complementing ES-

EC/FSE 2020 architecture tactic publication [5]. While Threshy has

been designed to specifically handle pre-trained classification ML

models where the hyperparameters cannot be tuned, the overall

conceptual design serves as inspiration for general model calibra-

tion. Unlike existing tooling (see section 4), Threshy serves as

a means to up-skill and educate software engineers in se-

lecting machine-learnt decision thresholds, for example, on

aspects such as confusion matrices. We re-iterate that the end-

users of Threshy are software engineers and not data scientistsÐ

Threshy is not designed for hyper-parameter tuning of models, but

for threshold tuning to use intelligent web services more robustly

where internal models are not exposed. Threshy provides a visu-

ally interactive interface for developers to fine-tune thresholds and

explore trade-offs of prediction hits/misses. This exposes the need

for optimisation of thresholds, which is dependent on particular

use cases.

Threshy improves developer productivity through automation of

the threshold selection process by leveraging an optimisation algo-

rithm to propose thresholds. Figure 3 illustrates the two key aspects

by which Threshy supports developer’s application domain con-

text. Developers input a representative dataset of their application

data (a benchmark dataset) in addition to cost factors to Threshy.

Threshy’s output helps developers select appropriate thresholds

while considering different cost factors and can be used to monitor

the evolution of an intelligent service. Developers also benefit from

the workflow implemented in Threshy by providing a reproducible

procedure for testing and tuning thresholds for any category of

classification problem (binary, multi-class, and multi-label). The

output, is a configuration file that can be integrated into client

applications ensuring that the thresholds can be updated without

code changes, and continuously monitored in a production setting.

2 MOTIVATING EXAMPLE

As a motivating example consider Nina, a fictitious developer, who

has been employed by Lucy’s Tomato Farm to automate the picking

of tomatoes from their vines (when ripe) using computer vision

3Threshy is available for use at http://bit.ly/a2i2-threshy



Threshy: Supporting safe usage of intelligent web services ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Figure 4: Pipeline of Nina’s harvesting robot. Left: Photo

from harvesting robot’s webcam. Centre: Classification de-

tecting different types of tomatoes. Right: Binary classifica-

tion for ripeness (ripe/unripe) based on (R, G, B values).

and a harvesting robot. Lucy’s Farm grow five types of tomatoes

(roma, cherry, plum, green, and yellow tomatoes). Nina’s robotÐ

using an attached cameraÐwill crawl and take a photo of each vine

to assess it for harvesting. Nina’s automated harvester needs to

sort picked tomatoes into a respective container, and thus several

business rules need to be encoded into the prediction logic to sort

each tomato detected based on its ripeness (ripe or not ripe) and

type of tomato (as above). Nina uses a two-stage pipeline consisting

of a multi-class and a binary classification model. She has decided

to evaluate the viability of cloud based intelligent services and use

them if operationally effective. Figure 4 illustrates the pipeline used:

(1) Classify tomato ‘type’. This stage uses an object localisa-

tion service to detect all tomato-like objects in the frame

and classifies each tomato into one of the following labels:

[‘roma’,‘cherry’,‘plum’,‘green’,‘yellow’,‘unknown’].

(2) Assess tomato ‘ripeness’. This stage uses a crop of the

localised tomatoes from the original frame to assess the

crop’s colour properties (i.e., average colour must have R >

200 and G < 240). This produces a binary classification to

deduce whether the tomato is ripe or not.

Nina only has a minimal appreciation of the evaluation method

to use for off-the-shelf computer vision (classification) services.

She also needs to consider the financial costs of misclassifying

either the tomato type or the ripeness. Missing a few ripe tomatoes

isn’t a significant concern as the robot travels the field twice a

week during harvest season. However, picking an unripe tomato is

expensive as Lucy cannot sell them. Therefore, Nina needs a better

(automated) way to assess the performance of the service and set

optimal thresholds for her picking robot, to maximise profit.

To assist in developing Nina’s pipeline, Lucy sampled a section

of 1000 tomatoes by taking a photo of each tomato, manually la-

belling its type, and assessing whether the vine was ‘ripe’ or

‘not_ripe’. Nina ran the labelled images through an intelligent

service, with each image having a predicted type (multi-class) and

ripeness (binary), with respective confidence values.

Nina combined the predictions, their respective confidence val-

ues, and Lucy’s labelled ground truths into a CSV file which was

then uploaded to Threshy. Nina asked Lucy, the farmer, to assist in

setting relevant costs (from a business perspective) for correct pre-

dictions and false predictions. Threshy then recommended a choice

of decision threshold which Nina then fine tuned while considering

the performance and cost implications.

3 THRESHY

Threshy is a tool to assist software engineers with setting deci-

sion thresholds when integrating machine-learnt components in

a system in collaboration with subject matter experts. Our tool

also serves as a method to inform and educate engineers about

the nuances to consider when using prepackaged ML services. Key

novel features are:

• Automating threshold selection using an optimisation algo-

rithm (NSGA-II [7]), optimising the results for each label.

• Support for user defined, domain-specific weights when op-

timising thresholds, such as financial costs and impact to

society. This allows decision thresholds to be set within a

business context as they differ between applications [8].

• Handles nuances of classification problems such as deal-

ing with multi-objective optimisation, and metric selectionÐ

reducing errors of omission.

• Support key classification problems including binary (e.g.

email is spam or ham), multi-class (e.g. predict the colour

of a car), and multi-label (e.g. assign multiple topics to a

document). Existing tools ignore multi-label classification.

Setting thresholds in Threshy is an eight step process as out-

lined in fig. 5. Software engineers 1 run a benchmark dataset

through the machine-learnt component to create a data file (CSV

format) with true labels and predicted labels along with the pre-

dicted confidence values. The data file is then 2 uploaded for initial

exploration where engineers can 3 experiment with modifying a

single global threshold for the dataset. Developers may choose to

exit at this point (as indicated by dotted arrows in fig. 5). Optionally,

the engineer 4 defines costs for missed predictions followed by

selecting optimisation settings. The optional optimisation step of

Threshy 5 considers the performance and costs when deriving the

thresholds. Finally, the engineer can 6 review and fine tune the

calculated thresholds, associated costs, and 7 download generated

threshold meta-data to be 8 integrated into their application.

Threshy runs a client/server architecture with a thin-client (see

fig. 6). The web-based application consists of an interactive front-

end where developers upload benchmark resultsÐconsisting of

both human annotated labels and machine predictions from the

intelligent serviceÐand use threshold tuners (via sliders) to present

a data summary of the uploaded information. Predicted model

performances and costs are entered manually into the web interface

by the developer. The Threshy back-end runs a data analyser, cost

processor and metrics calculator when relevant changes are made

to the front-end’s tuning sliders.

The data analyser provides a comprehensive overview of confu-

sion matrices compatible for multi-label multi-class classification

problems. When representing the confusion matrix, it is trivial to

represent instances where multi-label multi-classification is not

considered. However, a more challenging case to visualise arises

when you have n labels and m classes as the true/false matches

become too excessive to visualise; n ∗m ∗ 4 fields need to be pre-

sented. We resolve this challenge by summarising the statistics

down to three constructs: (i) number of true positives, (ii) false

positives, and (iii) missed positives. This allows us to optimise

against the true positives and minimise the other two constructs.
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Figure 5: UI workflow for interacting with Threshy to optimise the thresholds for classification problem.

Threshy is a fully self-contained repository of the tool implemen-

tation, scripting and exploratory notebooks, which is available at

https://github.com/a2i2/threshy.

4 RELATED WORK

Optimal machine-learnt decision boundaries depend on identifying

the operating conditions of the problem domain. A systematic study

by Drummond and Holte [8] classifies four operating conditions

to determine a decision threshold: (i) the operating condition is

known and the model trained matches perfectly; (ii) where the

operating conditions are known but change with time, and thus

the model must be adaptable to such changes; (iii) where there is

uncertainty in the knowledge of the operating conditions certain

changes in the operating condition are more likely than others; and

(iv) where there is no knowledge of the operating conditions and the

conditions may change from the model in any possible way. Various

approaches to determine appropriate thresholds exist for all four

of these cases, such as cost-sensitive learning, ROC analysis, and

Brier scores. However, an automated attempt to calibrate decision

threshold boundaries is not considered, and is largely pitched at

a non-software engineering audience. A recent study touches on

this in model management for large-scale adversarial instances

in Google’s advertising system [15], however this is only a single

component within the entire architecture, and is not a tool that

is useful for developers in varying contexts. Threshy provides a

‘plug-and-play’ style calibration method where any context/domain

can have thresholds automatically calibrated and optimised for

engineers. Threshy’s architecture supports a headless mode for use

in monitoring workflows.

Support tools for ML frameworks generally fall into two cate-

gories. The first attempts to illuminate the ‘black box’ by offering

ways in which developers can better understand the internals of

the model to improve its performance. For extensive analyses and

surveys into this area, see [11, 13]. However, a recent emphasis

to probe only inputs and outputs of a model has been explored,

exploring off-the-shelf models without knowledge of its unknowns

(see fig. 2) to reflect the nature of real-world development. Google’s

What-If Tool [16] for Tensorflow provides ameans for data scientists

to visualise, measure and assess model performance and fairness
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Figure 6: Architecture of Threshy.

with various hypothetical scenarios and data features; similarly,

Microsoft’s Gamut tool [10] provides an interface to test hypotheti-

cals on Generalized Additive Models, and a ModelTracker tool [1]

collates summary statistics on sample data to enable visualisation

of model behaviour and access to key performance metrics.

However, these tools are focused toward pre-development model

evaluation and not designed for software engineering workflows.

Nor are they context-aware to the overall software system they are

meant to target. They are also aimed at data scientists and model

builders and do not consider consistent tooling that works across

development, test, and production environments. They also do not

provide synthesised output for using intelligent web services with

predetermined thresholds. . Further, certain tools are tied to specific

ML frameworks (e.g., What-If and Tensorflow). Our work, instead,

attempts to bridge these gaps through a context-aware, structured

workflow with an automated tool targeted to software developers;

our tool is designed for software engineers to calibrate thresholds

and is used for intelligent service APIs in particular.

5 CONCLUSIONS & FUTUREWORK

Primary contributions of this work include Threshy, a tool for

automating threshold selection, and the overall meta-workflow

proposed in Threshy that developers can use as a point of reference

for calibrating thresholds. Threshy only deals with classification

problems and adapting our method to other problem domains is

left as future work. Furthermore, we plan to evaluate Threshy

with practitioners for user-acceptance and add support for code

synthesis for calibrating the API responses.
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