2005.13186v1 [cs.SE] 27 May 2020

arxXiv

Beware the evolving ‘intelligent’ web service!
An integration architecture tactic to guard Al-first components

Alex Cummaudo
ca@deakin.edu.au
Applied Artificial Intelligence Inst.
Deakin University
Geelong, Australia

John Grundy
john.grundy@monash.edu
Faculty of Information Technology
Monash University
Clayton, Australia

ABSTRACT

Intelligent services provide the power of Al to developers via simple
RESTful API endpoints, abstracting away many complexities of ma-
chine learning. However, most of these intelligent services—such as
computer vision—continually learn with time. When the internals
within the abstracted ‘black box’ become hidden and evolve, pit-
falls emerge in the robustness of applications that depend on these
evolving services. Without adapting the way developers plan and
construct projects reliant on intelligent services, significant gaps
and risks result in both project planning and development. There-
fore, how can software engineers best mitigate software evolution
risk moving forward, thereby ensuring that their own applications
maintain quality? Our proposal is an architectural tactic designed
to improve intelligent service-dependent software robustness. The
tactic involves creating an application-specific benchmark dataset
baselined against an intelligent service, enabling evolutionary be-
haviour changes to be mitigated. A technical evaluation of our
implementation of this architecture demonstrates how the tactic
can identify 1,054 cases of substantial confidence evolution and
2,461 cases of substantial changes to response label sets using a
dataset consisting of 331 images that evolve when sent to a service.

CCS CONCEPTS

« Information systems — Web services; « Software and its
engineering — Software evolution; - Hardware — Error de-
tection and error correction; « Computer systems organization
— Client-server architectures.

KEYWORDS

intelligent web services, software architecture, software evolution

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

© 2020 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Scott Barnett
scott.barnett@deakin.edu.au
Applied Artificial Intelligence Inst.
Deakin University
Geelong, Australia

Rajesh Vasa
rajesh.vasa@deakin.edu.au
AApplied Artificial Intelligence Inst.
Deakin University
Geelong, Australia

Mohamed Abdelrazek
mohamed.abdelrazek@deakin.edu.au
School of Information Technology
Deakin University
Geelong, Australia

ACM Reference Format:

Alex Cummaudo, Scott Barnett, Rajesh Vasa, John Grundy, and Mohamed
Abdelrazek. 2020. Beware the evolving ‘intelligent’ web service! An integra-
tion architecture tactic to guard Al-first components. In Proceedings of The
28th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE 2020). ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

The introduction of ‘intelligent’ services into the software engi-
neering ecosystem allows developers to leverage the power of Al
without implementing complex ML algorithms, source and label
training data, or orchestrate powerful and large-scale hardware
infrastructure. This is extremely enticing for developers to em-
brace due to the effort, cost and non-trivial expertise required to
implement Al in practice [24, 29].

However, the vendors that offer these services also periodically
update their behaviour (responses). The ideal practice for communi-
cating the evolution of a web service involves updating the version
number and writing release notes. The release notes typically de-
scribe new capabilities, known problems, and requirements for
proper operation [6]. Developers anticipate changes in behaviour
between versioned releases although they expect the behaviour of a
specific version to remain stable over time [31]. However, emerging
evidence indicates that ‘intelligent’ services do not communicate
changes explicitly [10]. Intelligent services evolve in unpredictable
ways, provide no notification to developers and changes are un-
documented [9]. To illustrate this, consider fig. 1, which shows the
evolution of a popular computer vision service with examples of
labels and associated confidence scores with how they changed.
This behaviour change severely negatively affects reliability. Appli-
cations may no longer function correctly if labels are removed or
confidence scores change beyond predefined thresholds.

Unlike traditional web services, the functionality of these intelli-
gent services is dependent on a set of assumptions unique to their
machine learning principles and algorithms. These assumptions are
based on the data used to train machine learning algorithms, the
choice of algorithm, and the choice of data processing steps—most
of which are not documented to service end users. The behaviour

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

‘water’ (.972) — ‘wave’ (.932)

‘tennis’ (.982) — ‘sports’ (.989)

Alex Cummaudo et al.

‘neighbourhood’ (.925) — ‘blue’ (.927)

Figure 1: Prominent computer vision services evolve with time which is not effectively communicated to developers. Each
image was uploaded in November 2018 and March 2019 and the topmost label was captured. Specialisation in labels (Left),
generalisation in labels (Centre) and emphasis change in labels (Right) are all demonstrated from the same service with no
API change and limited release note documentation. Confidence values indicated in parentheses.

of these services evolve over time [11]—typically this implies the
underlying model has been updated or re-trained.

Vendors do not provide any guidance on how best to deal with
this evolution in client applications. For developers to discover the
impact on their applications they need to know the behavioural
deviation and the associated impact on the robustness and reliability
of their system. Currently, there is no guidance on how to deal with
this evolution, nor do developers have an explicit checklist of the
likely errors and changes that they must test for [9].

In this paper, we present a reference architecture to detect the
evolution of such intelligent web services, using a mature subset of
these services that provide computer vision as an exemplar. This
tactic can be used both by intelligent service consumers, to defend
their applications against the evolutionary issues present in intelli-
gent web services, and by service vendors to make their services
more robust. We also present a set of error conditions that occur in
existing computer vision services.

The key contributions of this paper are:

o A set of new service error codes for describing the empiri-
cally observed error conditions in intelligent services.

o A new reference architecture for using intelligent services
with a Proxy Server that returns error codes based on an
application specific benchmark dataset.

o A labelled data set of evolutionary patterns in computer
vision services.

e An evaluation of the new architecture and tactic showing
its efficacy for supporting intelligent web service evolution
from both provider and consumer perspectives.

The rest of this paper is organised thus: section 2 presents a
motivating example that anchors our work; section 3 presents a
landscape analysis on intelligent web services; section 4 presents

an overview of our architecture; section 5 describes the technical
evaluation; section 6 presents a discussion into the implications of
our architecture, its limitations and potential future work; section 7
discusses related work; section 8 provides concluding remarks.

2 MOTIVATING EXAMPLE

We identify the key requirements for managing evolution of in-
telligent services using a motivating example. Consider Pam, a
software engineer tasked with developing a fall detector system for
helping aged care facilities respond to falls promptly. Pam decides
to build the fall detector with an intelligent service for detecting
people as she has no prior experience with machine learning. The
initial system built by Pam consists of a person detector and cus-
tom logic to identify a fall based on rapid shape deformation (i.e., a
vertical ‘person’ changing to a horizontal ‘person’ greater than spec-
ified probability threshold value). Due to the inherent uncertainty
present in an intelligent service and the importance of correctly
identifying falls, Pam informs the aged care facility that they should
manually verify falls before dispatching a nurse to the location. The
aged care facility is happy with this approach but inform Pam that
only a certain percentage of falls can be manually verified based on
the availability of staff. In order to reduce the manual work Pam
sets thresholds for a range of confidence scores where the system
is uncertain. Pam completes the fall detector using a well-known
cloud-based intelligent image classification web service and her
client deploys this new fall detection application.

Three months go by and then the aged care facility contact
Pam saying the percentage of manual inspections is far too high
and could she fix it. Pam is mystified why this is occurring as she
thoroughly tested the application with a large dataset provided by
the aged care facility. On further inspection Pam notices that the

Beware the evolving ‘intelligent’ web service!
An integration architecture tactic to guard Al-first components

problem is caused by some images classifying the person with a
‘child’ label rather than a ‘person’ label. Pam is frustrated and
annoyed at this behaviour as (i) the cloud vendor did not document
or notify her of the change of the intelligent service behaviour,
(ii) she does not know the best practice for dealing with such a
service evolution, and (iii) she cannot predict how the service will
change in the future. This experience also makes Pam wonder what
other types of evolution can occur and how can she minimise these
behavioural changes on her critical care application. Pam then
begins building an ad-hoc solution hoping that what she designs
will be sufficient.

For Pam to build a robust solution she needs to support the
following requirements:

R1. Define a set of error conditions that specify the types of
evolution that occur for an intelligent service.

R2. Provide a notification mechanism for informing client appli-
cations of behavioural changes to ensure the robustness and
reliability of the application.

R3. Monitor the evolution of intelligent services for changes that
affect the application’s behaviour.

R4. Implement a flexible architecture that is adaptable to differ-
ent intelligent services and application contexts to facilitate
reuse.

3 INTELLIGENT SERVICES

We present background information on intelligent services describ-
ing how they differ from traditional web services, the dimensions
of their evolution and the currently limited configuration options
available to users.

3.1 ‘Intelligent’ vs ‘Traditional’ Web Services

Unlike conventional web services, intelligent web services are built
using Al-based components. These components are unlike tradi-
tional software engineering paradigms as they are data-dependent
and do not result in deterministic outcomes. These services make
future predictions on new data based solely against its training
dataset; outcomes are expressed as probabilities that the inference
made matches a label(s) within its training data. Further, these ser-
vices are often marketed as forever evolving and ‘improving’. This
means that their large training datasets may continuously update
the prediction classifiers making the inferences, resulting both in
probabilistic and non-deterministic outcomes [11, 17]. Critically
for software engineers using the services, these non-deterministic
aspects have not been sufficiently documented in the service’s API
documented, which has been shown to confuse developers [9].

A strategy to combat such service changes, which we often ob-
serve in traditional software engineering practices, are for such
services to be versioned upon substantial change. Unfortunately
emerging evidence indicates that prominent cloud vendors provid-
ing these intelligent services do not release new versioned end-
points of the APIs when the internal model changes [11]. For in-
telligent services, it is impossible to invoke requests specific to a
particular version model that was trained at a particular date in
time. This means that developers need to consider how evolution-
ary changes to the intelligent web services they make use of may
impact their solutions in production.

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

Computer Vision Service Evolution per Image

S\

Confidences per Label ~ Vocabulary

JIN L TN

Increase Decrease Stable Labels Ontology

—7 SN

More Labels Fewer Labels Unchanged Emphasis Change Generalisation — Specialisation

Figure 2: The dimensions of evolution identified within com-
puter vision services.

Figure 3: A significant confidence increase (§ = +0.425) from
‘window’ (0.559) to ‘water transportation’ (0.984) goes be-
yond simple decision boundaries.

3.2 Dimensions of Evolution

The various key dimensions of the evolution of intelligent services is
illustrated in fig. 2. There are two primary dimensions of evolution:
changes to the label sets returned per image submitted and changes
to the confidences per label in the set of labels returned per image.
In the former, we identify two key aspects: cardinality changes
and ontology changes. Cardinality changes occur when the service
either introduces or drops a label for the same image at two different
generations. Alternatively, the cardinality may remain stagnant,
although this is not guaranteed. This results in an expectation
mismatch by developers as to what labels can or will be returned
by the service. For instance, the terms ‘black” and ‘black and white’
may be found to be categorised as two separate labels. Secondly, the
ontologies of these labels are non-static, and a label may become
more generalised into a hypernym, specialised into a hyponym, or
the emphasis of the label may change either to a co-hyponym or
another aspect in the image, such as the colour or scene, rather
than the subject of the image [11].

Secondly, we have identified that the confidence values returned
per label are also non-static. While some services may present minor
changes to labels’ confidences resulting from statistical noise, other
labels had significant changes that were beyond basic decision
boundaries. An example is shown in fig. 3. Developer code written
to assume certain ranges/confidence intervals will fail if the service
evolves in this way.

3.3 Limited Configurability

As an example, consider fig. 4, which illustrates an image of a dog
uploaded to a well-known cloud-based computer vision service.

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

Computer
Vision
Service

"localizedObjectAnnotations”: [
“image*: { €
"url": "http://do.gg/staffy.jpeg" W {---

3,

Figure 4: Request and response for an intelligent computer
vision web service with only three configuration parameters:
the image’s url, maxResults and score.

Developers have very few configuration parameters in the upload
payload (url for the image to analyse and maxResults for the num-
ber of objects to detect). The JSON output payload provides the
confidence value of its estimated bounding box and label of the dog
object via its score field (0.792). This value indicates the level of con-
fidence in the label returned, and is dependent on the input to the
underlying ML model used by that service. Developers set thresh-
olds as a decision boundary in this case, a threshold of “greater
than 0.7” could indicate that the image contains a dog where as
any other value the system is uncertain. These decision boundaries
determine if the service’s output is accepted or rejected. However,
these confidence scores change whenever a model is re-trained and
these changes are not communicated or propagated to developers
[11]. Developers can only modify these decision boundaries to im-
prove the performance of the intelligent web service. This is unlike
many machine learning toolkit hyper-parameter optimisation facil-
ities, which can be used to configure the internal parameters of the
algorithm for training a model. In this case, developers using the
intelligent web service have no insight into which hyperparameters
were used when training the model or the algorithm selected, and
cannot tune the trained model. Thus an evaluation procedure must
be followed as a part of using an intelligent service for an applica-
tion to tune their output confidence values and select appropriate
threshold boundaries. While some service providers provide some
guidance to thresholding,! they do not provide domain-specific
tooling. This is because choice of appropriate thresholds is depen-
dent on the data and must consider factors, such as algorithmic
performance, financial cost, and impact of false-positives/negatives.

However, decision boundaries in service client code using simple
If conditions around confidence scores is not a sufficient strat-
egy, as evidence shows intelligent, non-deterministic web services
change sporadically and unknowingly. Most traditional, determin-
istic code bases handle unexpected behaviour of called APIs via
error codes and exception handling. Thus the non-deterministic
components of the client code, such as those using computer vision
services, will also tend to conflict with their traditional determinis-
tic components as the latter do not deal in terms of probabilities but
in using error codes. This makes achieving robust component inte-
gration in client code bases hard. More sophisticated monitoring of
intelligent services in client code is therefore required to map the
non-deterministic service behaviour changes to errors such that
the surrounding infrastructure can support it and reduce interface
boundary problems. While data science literature acknowledges

https://bit.ly/360MgWb last accessed 20 May 2020.

Alex Cummaudo et al.

the need for such an architecture [14] they do not offer any techni-
cal software engineering solutions to mitigate the issues such that
software engineers have a pattern to work against it. To date, there
do not yet exist intelligent web service client code architectures,
tactics or patterns that achieve this goal.

4 OUR APPROACH

To address the requirements from section 2 we have developed a
new Proxy Service? that includes: (i) evaluation of an intelligent
service using an application specific benchmark dataset, (ii) a Proxy
Server to provide client applications with evolution aware errors,
and (iii) a scheduled evolution detection mechanism. The current
approach of using an intelligent API via direct access is shown in
fig. 5 (top). In contrast, an overview of our approach is shown in
fig. 5 (bottom). The following sections describe our approach in
detail.

4.1 Core Components

For the purposes of this paper we assume that the intelligent service
of interest is an image recognition service, but our approach gener-
alises to other intelligent, trained model-based services e.g. NLP,
document recognition, voice, etc. Each image, when uploaded to
the intelligent service returns a response (R) which is a set describ-
ing a label (I) of what is in the image (i) along with its associated
confidence (¢)—thus R; = {(I1,¢1), (I2,¢2), ... (In, cn)}. Most docu-
mentation of these services imply that these confidence values are
all what is needed to handle evolution in their systems. This means
that if a label changes beyond a certain threshold, then the devel-
oper can deal with the issue then (or ignore it). While this approach
may work in some simple application contexts, in many it may
not. Our Proxy Server offers a way to monitor if these changes go
beyond a threshold of tolerance, checking against a domain-specific
dataset over time.

4.1.1 Benchmark Dataset. Monitoring an intelligent service for
behaviour change requires a Benchmark Dataset, a set of n im-
ages. For each image (i) in the Benchmark Dataset (B) there is an
associated label () that represents the true value for that item;
B; = {(i1,), (i2,l2), ... (in,ln)}. This dataset is used to check for
evolution in intelligent services by periodically sending each image
within the dataset to the service’s API, as per the rules encoded
within the Scheduler (see section 4.1.6). By using a dataset specific
to the application domain, developers can detect when evolution
affects their application rather than triggering all non-impactful
changes. This helps achieve our requirement R3. Monitor the evolu-
tion of intelligent services for changes that affect the applicationdAZs
behaviour. Using application-specific datasets also ensures that the
architectural style can be used for different intelligent services as
only the data used needs to change. This design choice encourages
reuse, satisfying requirement R4. Implement a flexible architecture
that is adaptable to different intelligent services and application con-
texts to facilitate reuse. We propose an initial set of guidelines on how
to create and update the benchmark dataset within section 6.3.1.

4.1.2 Facade API. An architectural ‘facade’ is the central compo-
nent to our mitigation strategy for monitoring and detecting for

2 A reference architecture is provided at http://bit.ly/2TIMmDh.

http://bit.ly/2TIMmDh

Beware the evolving ‘intelligent’ web service!
An integration architecture tactic to guard Al-first components

Application Client <

Client HTTP Request

Service " | Intelligent Z]

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

Service

Proxy Server

Client R T vl >

Application Facade API @

HTTP Response (200 OK) or, on

HTTP Response (412 Precondition Failed) @ Service b————————____ >
che: . Intelligent £]
77777777777777777 o~ Scheduler Client HTTP Request _ ‘g
Set Recurrent Trigger or TriggerNow L 1 || |¢———————————- Service
77777777777777777 | Threshold Benchmark HTTP Response (200 OK)
. . Tune Benchmark Rules resho @ Dataset
Application - — — _ _ _ _ _ __ __ ____ _ 3| Tuner
Developers Tune Tolerated B, ks

Behaviour =
Token

Figure 5: Top: Accessing an intelligent service directly. Bottom: Primary components of the Proxy Server approach.

Table 1: Potential reasons for a 412 Precondition Failed response.

Error Code

Error Description

No Key Yet
Service Mismatch

vision services.
Dataset Mismatch
within the Proxy Server.
Success Mismatch

Min Confidence Mismatch
Max Labels Mismatch
Response Length Mismatch

This indicates that the Proxy Server is still initialising its first behaviour token, i.e., ko does not yet exist.
The service encoded within the behaviour token provided to the Proxy Server does not match the service the
Proxy Server is benchmarked against. This makes it possible for one Proxy Server to face multiple computer

The benchmark dataset B encoded within the behaviour token does not match the benchmark dataset encoded

The success of each response within the benchmark dataset must be true for a behaviour token to be used
within a request. This error indicates that k, is, therefore, not successful.

The minimum confidence delta threshold set in k; does not match that of k,-.

The maximum label delta threshold set in k; does not match that of k.

The number of responses within k; does not match that within k.

Label Delta Mismatch

Confidence Delta Mismatch
Expected Labels Mismatch

An image within B has either dropped or gained a number of labels that exceeds the maximum label delta.
Thus, k, exceeds the threshold encoded within k.

One of the labels within an image encoded in k, exceeds the confidence threshold encoded within k;.

One of the expected labels for an image within k; is now missing.

changes in called intelligent services. The facade acts as a guarded
gateway to the intelligent service that defends against two key
issues: (i) potential shifts in model variations that power the cloud
vendor services, and (ii) ensures that a context-specific dataset spe-
cific to the application being developed is validated over time. By
using a facade we can return evolution-aware error codes to the
client application satisfying requirement R1. Define a set of error
conditions that specify the types of evolution that occur for an intel-
ligent service and enabling requirement R3. Monitor the evolution
of intelligent services for changes that affect the applicationdAZs be-
haviour. This works by ensuring every request made by the client
application contains a valid Behaviour Token (see section 4.1.4) and
will reject the request when evolution has been identified by the
Scheduler with an associated error code. The Facade API essentially
‘blocks’ the client application out from accessing the intelligent
service when an invalid state has occurred.

4.1.3 Threshold Tuner. Selecting an appropriate threshold for de-
tecting behavioural change depends on the application context.
Setting the threshold too low increases the likelihood of incor-
rect results, while setting the threshold too high means undesired

Table 2: Rules encoded within a Behaviour Token.

Rule ‘ Description
Max Labels The value of n.
Min Confidence The smallest acceptable value of c.

Max & Labels The minimum number of labels dropped or intro-
duced from the current k; and provided k, to be
considered a violation (i.e |I(ks) A I(ky)]).

Max & Confidence | The minimum confidence change of any label from
the current k; and provided k, to be considered a
violation.

A set of labels that every response must include.

Expected Labels

changes are being detected. Our approach enables developers to con-
figure these parameters through a Threshold Tuner. This improves
robustness as now there is a systematic approach for monitoring
and responding to incorrect thresholds. Configurable thresholds
meet our key requirements R2 and R3.

4.1.4 Behaviour Token. The Behaviour Token stores the current
state of the Proxy Server by encoding specific rules regarding the

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

Alex Cummaudo et al.

Workflow 1: Initialise Benchmark Workflow 2: Valid Request Pre-Evolution Workflow 4: Invalid Request Post-Evolution
=3
:
H
g Upload Benchmark Retain Behaviour Request with Valid Request with Old
) ¢ ¢
[Dataset Token Behaviour Token Use Result . Behaviour Token Handle Exception
Workflow 3: Evolution Detection
I I I
! v PE— v
Tnitialise First Validate Behaviour Schedule Validate Behaviour
Baseline Token as OK Token as INVALID
Z Produce Behaviour Register Result Initialise New Produce New
] Token gis su Baseline Behaviour Token
A Y
Make Service Client Make Service Client
Request Request Make Service Client Produce Exception
Request
é g Y A,
=7 e e) . Analyse Images with
T3 Analyse Images Analyse Images Eoolved Model

Figure 6: State diagram for the four workflows presented.

evolution of the intelligent service. The current token (at time t)
held by the Proxy Server is denoted by k;. These rules are speci-
fied by the developer upon initialisation of this Proxy Server, and
are presented in table 2. When the Proxy Server is first initialised
(i.e., at t = 0), the first Behaviour Token is created based on the
Benchmark Dataset and its configuration parameters (table 2) and
is stored locally (thus ko is created). The Behaviour Token is passed
to the client application to be used in subsequent requests to the
proxy server, where k, represents the Behaviour Token passed
from the client application to the proxy server. Each time the proxy
server receives the Behaviour Token from the client the validity
of the token is validated with a comparison to the Proxy Server’s
current behaviour token (i.e., k; = k¢). An invalid token (i.e., when
kr # k;) indicates that an error caused by evolution has occurred
and the application developer needs to appropriately handle the
exception. Behaviour Tokens are essential for meeting requirement
R3. Monitor the evolution of intelligent services for changes that affect
the applicationdAZs behaviour.

4.1.5 Service Client. If any of the rules above are violated, then the
response of the facade request will vary depending on the parameter
of the behaviour encoded within the behaviour token. This can be
one of:

e Error: Where a HTTP non-200 code is returned by the facade
to the client application, indicating that the client application
must deal with the issue immediately;

e Warning: Where a warning ‘callback’ endpoint is called
with the violated response to be dealt with, but the response
is still returned to the client application;

o Info: Where the violated response is logged in the facade’s
logger for the developer to periodically read and inspect, and
the response is returned to the client application.

We implement this Proxy Server pattern using HTTP conditional
requests. As we treat the Label as a first class citizen, we return
the labels for a specific image (r;) only where the Entity Tag (ETag)
or Last Modified validators pass. The k, is encoded within either
the ETag (i.e., a unique identifier representing t) or as the date
labels (and thus models) were last modified (i.e., using the If-Match

or If-Unmodified-Since conditional headers). We note that the
use of weak ETags should be used, as byte-for-byte equivalence is
not checked but only semantic equivalence within the tolerances
specified. Should t evolve to an invalid state (i.e., k; is no longer
valid against k;) then the behaviour as described above will be
enacted.

These HTTP header fields are used as the ‘backbone’ to help
enforce robustness of the services against evolutionary changes
and context within the problem domain dataset. Responses from
the service are forwarded to the clients when such rules are met,
otherwise alternative behaviour occurs. For example, the most
severe of violated erroneous behaviour is the ‘Error’ behaviour. To
enforce this rule, we advocate for use of the 412 Precondition
Failed HTTP error if a violation occurs, as a If-* conditional
header was violated. An example of this architectural pattern with
the ‘Error’ behaviour is illustrated in fig. 6.

We suggest the 412 Precondition Failed HTTP error be re-
turned in the event that a behaviour token is violated against a new
benchmark. Further details outlining the reasons why a precondi-
tion has failed are encoded within a JSON response sent back to the
consuming application. The following describes the two broad cate-
gories of possible errors returned: robustness precondition failure or
benchmark precondition failure. These are illustrated in a high level
within fig. 7 where leaf nodes are the potential error types that can
be returned. A list of the different error codes are given in table 1,
where errors above the rule are robustness expectations (which
check for basic requirements such as whether the key provided en-
codes the same data as the dataset in the facade) while those below
are benchmark expectations (which identifies evolution cases).

4.1.6 Scheduler. The Scheduler is responsible for triggering the
Evolution Detection Workflow (described in detail below in sec-
tion 4.2). Developers set the schedule to run in the background
at regular intervals (e.g., via a cron-job) or to trigger if violations
occur z times. The Scheduler is the component that enables our
architectural style to identify called intelligent service software
evolution and to notify the client applications that such evolution
has occurred. Client applications can then respond to this evolution

Beware the evolving ‘intelligent’ web service!
An integration architecture tactic to guard Al-first components

412 Precondition Failed

o

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

Validate Validate
Service Validate Validate Validate Expected Labels
‘& Benchmarks Parameters Tolerances Mismatch
Dataset Success Response Length Min Confidence Max Labels Label Delta Confidence Delta
Mismatch Mismatch Mismatch Mismatch Mismatch Mismatch Mismatch

Figure 7: Precondition failure taxonomy; leaf nodes indicate error types returned to users.

in a timely manner rather than wait for the system to fail, as in
our motivating example. The Scheduler is necessary to satisfy our
requirements R2 and R3.

4.2 Usage Example

We explain how developer Pam, from our motivating example,
would use our proposed solution to satisfy the requirements de-
scribed in section 2. Each workflow is presented in fig. 6. Only
Workflow 1 - Initialise Benchmark is executed once, while the rest
are cycled. The description below assumes Pam has implemented
the Proxy.

4.2.1 Workflow 1. Initialise Benchmark. The first task that Pam has
to do is to prepare and initialise the benchmark dataset within the
Proxy Server. To prepare a representative dataset, Pam needs to
follow well established guidelines such as those proposed by Pyle
[25]. Pam also needs to manually assign labels to each image before
uploading the dataset to the Proxy along with the thresholds to
use for detecting behavioural change. The full set of parameters
that Pam has to set are based on the rules shown in table 2. Pam
cannot use the Proxy to notify her of evolution until a Benchmark
Dataset has been provided. The Proxy then sends each image in the
Benchmark Dataset to the intelligent service and stores the results.
From these results, a Behaviour Token is generated which is passed
back to the Client Application. Pam uses this token in all future
requests to the Proxy as the token captures the current state of the
intelligent service.

4.2.2 Workflow 2. Valid Request Pre-Evolution. Workflow 2 repre-
sents the steps followed when the intelligent service is behaving
as expected. Pam makes a request to label an image to the Proxy
using the token that she received when registering the Benchmark
Dataset. The token is validated with the Proxy’s current state token
and then a request to label the image is made to the intelligent
service if no errors have occurred. Results returned by the intel-
ligent service are registered with the Proxy Server. Pam can be
confident that the result returned by our service is in line with her
expectations.

4.2.3 Workflow 3. Evolution Detection. Workflow 3 describes how
the Proxy functions when behavioural change is present in the
called intelligent service. Pam sets a schedule for once a day so

that the Proxy’s Scheduler triggers Workflow 3. First, each image
in the Benchmark Dataset is sent to the intelligent service. Unlike,
Workflow 1, we already have a Behaviour Token that represents the
previous state of the intelligent service. In this case, the model be-
hind the intelligent service has been updated and provides different
results for the Benchmark Dataset. Second, the Proxy updates the
internal Behaviour Token ready for the next request. At this stage
Pam will be notified that the behaviour of the intelligent service
has changed.

4.24 Workflow 4. Invalid Request Post-Evolution. Workflow 4 pro-
vides Pam with an error message when evolution has been detected.
Pam’s client application makes a request to the Proxy Server with
an old Behaviour Token. The Proxy Server then validates the client
token which is invalid as the Behaviour Token has been updated. In
this case, an exception is raised and an appropriate error message
as discussed above is included in the response back to Pam’s client
application. Pam can code her application to handle each error class
in appropriate ways for her domain.

5 EVALUATION

Our evaluation of our novel intelligent service Proxy Server ap-
proach uses a technical evaluation based on the results of an ob-
servational study. We used existing datasets from observational
studies [11, 22] to identify problematic evolution in computer vi-
sion labelling services. This technical evaluation is designed to
show: (i) what the responses are with and without our architecture
present (highlighting errors); (ii) the overall increased robustness
using enhanced responses; and (iii) the technical soundness of the
approach. Thus, we propose the following research question which
we answer in section 5.2: “Can the architecture identify evolutionary
issues of computer vision services via error codes?” Based on our find-
ings we proposed and implemented the Proxy Server using a Ruby
development framework which we have made available online for
experimentation.3 Additional data was collected from the computer
vision service and sent to the Proxy Server to evaluate how the
service handles behavioural change.

Shttp://bit.ly/2TIMmDh last accessed 5 March 2020.

http://bit.ly/2TIMmDh

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

12- §
10- 5
8- o
6- (%2}
2- g
0-w
>12-§ I
210- 7 !
g -2
=) 3
o 6- 5
o 4-2
L 2-8
o ———— T O mn o 1
12- §
10- %
8- 2
6- .8
2-»
O.

~0.30-0.25:0.26-0.15-0.16-0.050.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Confidence +Delta

Figure 8: Histogram of confidence variation

5.1 Data Collection and Preparation

To minimise reviewer bias, we do not identify the name of the
service used, however this service was one of the most adopted
cloud vendors used in enterprise applications in 2018 [27]. The two
existing datasets used [11, 22] consisted of 6,680 images.

We initialised the benchmark (workflow 1) in November 2018,
and sent each image to the service every eight days and captured
the JSON responses through the facade API (workflow 2) until
March 2019. This resulted in 146,960 JSON responses from the
target computer vision service. We then selected the first and last
set of JSON responses (i.e., 13,360 responses) and independently
identified 331 cases of evolution of the original 6,680 images. This
was achieved by analysing the JSON responses for each image taken
in using an evaluation script.*

For each JSON response, evolution (as classified by fig. 2) was
determined either by a vocabulary or confidence per label change
in the first and last responses sent. For the 331 evolving responses,
we calculated the delta of the label’s confidence between the two
timestamps and the delta in the number of labels recorded in the
entire response. Further, for the highest-ranking label (by confi-
dence), we manually classified whether its ontology became more
specific, more generalised or whether there was substantial em-
phasis change. The distribution of confidence differences per these
three groups are shown in fig. 8, with the mean confidence delta
indicated with a vertical dotted line. This highlights that, on aver-
age, labels that change emphasis generally have a greater variation,
such as the example in fig. 3. Further, we grouped each image into
one of four broad categories—food, animals, vehicles, humans—and
assessed the breakdown of ontology variance as provided in table 3.
We provide this dataset as an additional contribution and to permit
replication.’ The parameters set for our initial benchmark were a
delta label value of 3 and delta confidence value of 0.01. Expected
labels for relevant groups were also assigned as mandatory label
sets (e.g., animal images used ‘animal’, ‘fauna’ and ‘organism’;
human images used ‘human’ etc.).

“http://bit.ly/2G7saF] last accessed 2 March 2020.
Shttp://bit.ly/2VQrAUU last accessed 5 March 2020.

Alex Cummaudo et al.

Table 3: Variance in ontologies for the five broad categories

Ontology Change ‘ Food Animal Vehicles Humans Other ‘ Total

Generalisation 8 13 11 8 38 78
Specialisation 5 12 1 1 43 62
Emphasis Change 18 4 10 21 138 191
Total | 31 29 22 30 219 | 331

5.2 Results

Examples of the March 2019 responses contrasting the proxy and
direct service responses in our evaluation are shown in figs. 9 to 11.
(Due to space limitations, the entire JSON response is partially
redacted using ellipses.) These examples identify the label identified
with the highest level of confidence in three examples against the
ground truth label in the benchmark dataset. In total, the Proxy
Server identified 1,334 labels added to the responses and 1,127 labels
dropped, with, on average, a delta of 8 labels added. The topmost
labels added were ‘architecture’ at 32 cases, ‘building’ at 20
cases and ‘ingredient’ at 20 cases; the topmost labels dropped
were ‘tree’ at 21 cases, ‘sky’ at 19 cases and ‘fun’ at 17 cases.
1054 confidence changes were also observed by the Proxy Server,
on average a delta increase of 0.0977.

In fig. 9, we highlight an image of a sheep that was identified
as a ‘sheep’ (at 0.9622) in November 2018 and then a ‘mammal’
in March 2019. This evolution was classified by the Proxy Server
as a confidence change error as the delta in the confidences be-
tween the two timestamps exceeds the parameter set of 0.01—in
this case, ‘sheep’ was downgraded to the third-ranked label at
0.9816, thereby increasing by a value of 0.0194. As shown in the
example, four other labels evolved for this image between the two
time stamps (‘herd’, ‘livestock’, ‘terrestrial animal’ and
‘snout’) with an average increase of 0.1174 found. Such informa-
tion is encoded as a 412 HTTP error returned back to the user by
the Proxy Server, rejecting the request as substantial evolution has
occurred, however the response directly from the service indicates
no error at all (indicating by a 200 HT TP response).

Similarly, fig. 10 shows a violation of the number of acceptable
changes in the number of labels a response should have between
two timestamps. In November 2018, the response includes the labels
‘car’, ‘motor vehicle’, ‘city’ and ‘road’, however these la-
bels are not present in the 2019 response. The response in 2019 intro-
duces ‘transport’, ‘building’, ‘architecture’, and ‘house’.
Therefore, the combined delta is 4 dropped and 4 introduced labels,
exceeding our threshold set of 3.

Lastly, fig. 11 indicates an expected label failure. In this exam-
ple, the label ‘fauna’ was dropped in the 2018 label set, which
was an expected label of all animals we labelled in our dataset.
Additionally, this particular response introduced ‘green iguana’,
‘iguanidae’, and ‘marine iguana’ to its label set. Therefore, not
only was this response in violation of the label delta mismatch, it
was also in violation of the expected labels mismatch error, and
thus is caught twice by the Proxy Server.

5.3 Threats to Validity

Internal Validity. As mentioned, we selected a popular computer
vision service provider to test our proxy server against. However,

http://bit.ly/2VQrAUU

Beware the evolving ‘intelligent’ web service!
An integration architecture tactic to guard Al-first components

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

q% Label: Animal
‘= Nov 2018: ‘sheep’ (0.9622)
Mar 2019: ‘mammal’ (0.9890)

Category: Confidence Change

Intelligent Service Response in March 2019

{ "responses": [{ "label_annotations": [
{ "mid": "/m/@4rky",
"description": "mammal",
"score": 0.9890478253364563,
"topicality": ©.9890478253364563 },
{ "mid": "/m/0@9686",
"description": "vertebrate",
"score": 0.9851104021072388,
"topicality": ©.9851104021072388 },
10 { "mid": "/m/@7bgp",

=R R B S B IR TSR

11 "description": "sheep",
12 "score": 0.9815810322761536,
13 "topicality": 0.9815810322761536 },
14 o131
Proxy Server Response in March 2019
1 { "error_code": 8,
2 "error_type": "CONFIDENCE_DELTA_MISMATCH",
3 "error_data": {
4 "source_key": { ... 3},
5 "source_response": { ... },
6 "violating_key": { ... 3},
7 "violating_response": { ... },
8 "delta_confidence_threshold": 0.01,
9 "delta_confidences_detected": {
10 "sheep": 0.01936030388219212,
11 "herd": ©.15035879611968994,
12 "livestock": ©.13112884759902954,
13 "terrestrial animal": ©.1791478991508484,
14 "snout": ©.10682523250579834
15 1
16 "uri": "http://localhost:4567/demo/data/000000005992.
— Jjpeg",
17 "reason": "Exceeded confidence delta threshold +0.01

< in 5 labels (delta mean=+0.1174)." } }

Figure 9: Example of substantial confidence change due to
evolution

there exist many other computer vision services, and due to lan-
guage barriers of the authors, no non-English speaking service
were selected despite a large number available from Asia. Further,
no user evaluation has been performed on the architectural tactic
so far, and therefore developers may suggest improvements to the
approach we have taken in designing our tactic. We intend to follow
this up with a future study.

External Validity. This paper only evaluates the object detection end-
point of a computer vision-based intelligent service. While this type
of intelligent service is one of the more mature Al-based services
available on the market—and is largely popular with developers
[9]—further evaluations of the our tactic may need to be explored
against other endpoints (i.e., object localisation) or, indeed, other

Vehicle

‘vehicle’ (0.9045)
‘motorcycle’ (0.9534)
Label Set Change

Intelligent Service Response in March 2019

1 { "responses": [{ "label_annotations": [
2 { "mid": "/m/@7yv9",

3 "description": "vehicle",

4 "score": 0.9045347571372986,

5 "topicality": 0.9045347571372986 },
6 { "mid": "/m/@7bsy",

7 "description": "transport",

8 "score": 0.9012271165847778,

9 "topicality": ©0.9012271165847778 },
"mid": "/m/@dx13j",

11 "description": "town",

12 "score": 0.8946694135665894,

13 "topicality": ©.8946694135665894 3},
14 o131

Proxy Server Response in March 2019

,_.
(=1
-~

1 { "error_code": 7,

2 "error_type": "LABEL_DELTA_MISMATCH",

3 "error_data": {

4 "source_key": { ... 3},

5 "source_response": { ... },

6 "violating_key": { ... },

7 "violating_response": { ... },

8 "delta_labels_threshold": 5,

9 "delta_labels_detected": 8,

10 "uri": "http://localhost:4567/demo/data/000000019109.
— Jpg",

11 "new_labels": ["transport", "building",
< architecture", "house" 1,

12 "dropped_labels": ["car", "motor vehicle", "city",
< road" 1],

13 "reason": "Exceeded label count delta threshold +5 (4
< new labels + 4 dropped labels = 8)." } }

Figure 10: Example of substantial changes of a response’s
label set due to evolution

types of services, such as natural language processing, audio tran-
scription, or on time-series data. Future studies may need to explore
this avenue of research.

Construct Validity. The evaluation of our experiment was largely
conducted under clinical conditions, and a real-world case study of
the design and implementation of our proposed tactic would be ben-
eficial to learn about possible side-effects from implementing such
a design (e.g., implications to cost etc.). Therefore, our evaluation
does not consider more practical considerations that a real-world,
production-grade system may need to consider.

6 DISCUSSION

6.1 Implications

6.1.1 For cloud vendors. Cloud vendors that provide intelligent
services may wish to adopt the architectural tactic presented in

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

Label: Fauna

Nov 2018: ‘reptile’ (0.9505)
Mar 2019: ‘iguania’ (0.9836)
Category: Ontology Specialisation

Intelligent Service Response in March 2019

{ "responses": [{ "label_annotations": [

{ "mid": "/m/@8_jw6",

"description": "iguania",

"score": 0.9835183024406433,

"topicality": 0.9835183024406433 3},
{ "mid": "/m/06bt6",

"description": "reptile",

"score": 0.9833670854568481,

"topicality": ©.9833670854568481 },
{ "mid": "/m/@1vq7_",

"description": "iguana",

"score": 0.9796721339225769,

"topicality": ©.9796721339225769 },
1312

Proxy Server Response in March 2019

=R R B S B IR TSR

o m
IR IO TR ey

{ "error_code": 9,
"error_type": "EXPECTED_LABELS_MISMATCH",
"error_data": {
"source_key": { ... 3},
"violating_response": { ... },
"uri": "http://localhost:4567/demo/data/0052. jpg",
"expected_labels": ["fauna" 1,
"labels_detected": ["iguana", "green iguana",
< iguanidae", "lizard", "scaled reptile",
< marine iguana", "terrestrial animal", "
< organism" 17,
9 "labels_missing": ["fauna" 1,
10 "reason": "The expected label(s) ‘fauna' are missing
< in the response." } }

[B N N

"

Figure 11: Example of an expected label missing due to evo-
lution

this paper by providing a proxy, auxiliary service (or similar) to
their existing services, thereby improving the current robustness of
these services. Further, they should consider enabling developers of
this technical domain knowledge by preventing client applications
from using the service without providing a benchmark dataset, such
that the service will return HTTP error codes. These procedures
should be well-documented within the service’s API documentation,
thereby indicating to developers how they can build more robust
applications with their intelligent services. Lastly, cloud vendors
should consider updating the internal machine learning models
less frequently unless substantial improvements are being made.
Many different applications from many different domains are using
these intelligent services so it is unlikely that the model changes
are improving all applications. Versioned endpoints would help
with this issue, although—as we have discussed—context using
benchmark datasets should be provided.

6.1.2 For application developers. Developers need to monitor all
intelligent services for evolution using a benchmark dataset and

Alex Cummaudo et al.

application specific thresholds before diving straight into using
them. It is clear that the evolutionary issues have significant impact
in their client applications [11], and therefore they need to check
the extent this evolution has between versions of an intelligent
service (should versioned APIs be available). Lastly, application
developers should leverage the concept of a proxy server (or other
form of intermediary) when using intelligent services to make their
applications more robust.

6.1.3 For project managers. Project managers need to consider the
cost of evolution changes on their application when using intel-
ligent services, and therefore should schedule tasks for building
maintenance infrastructure to detect evolution. Consider schedul-
ing tasks that evaluates and identifies the frequency of evolution
for the specific intelligent service being used. Our research we have
found some intelligent services that are not versioned but rarely
show behavioural changes due to evolution.

6.2 Limitations

In the situation where a solo developer implements the Proxy Ser-
vice the main limitation is the cost vs response time trade-off. De-
velopers may want to be notified as soon as possible when a be-
havioural change occurs which requires frequent validation of the
Benchmark Dataset. Each time the Benchmark Dataset is validated
each item is sent as a request to the intelligent service. As cloud
vendors charge per request to an intelligent service there are finan-
cial implications for operating the Proxy Service. If the developer
optimises for cost then the application will take longer to respond
to the behavioural change potentially impact end users. Developers
need to consider the impact of cost vs response time when using
the Proxy Service.

Another limitation of our approach is the development effort
required to implement the Proxy Service. Developers need to build
a scheduling component, batch processing pipeline for the Bench-
mark Dataset, and a web service. These components require de-
veloping and testing which impact project schedules and have
maintenance implications. Thus, we advise developers to consider
the overhead of a Proxy Service and way up the benefits with have
incorrect behaviour caused by evolution of intelligent services.

6.3 Future Work

6.3.1 Guidelines to construct and update the Benchmark Dataset.
Our approach assumes that each category of evolution is present in
the Benchmark Dataset prepared by the developer. Further guide-
lines are required to ensure that the developer knows how to vali-
date the data before using the Proxy Service. While the focus of this
paper was to present and validate our architectural tactic, guide-
lines on how to construct and update benchmark datasets for this
tactic will need to be considered in future work. Data science lit-
erature extensively covers dataset preparation (e.g., [20, 25]), and
many example benchmark datasets are readily available [1, 8, 16].
An initial set of guidelines are proposed as follows: data must be
contextualised and appropriately sampled to be representative of
the client application in particular the patterns present in the data,
contain both positive and negative examples (this is/is not a cat);
where to source data from (existing datasets, Google Images/Flickr,
crowdsourced etc.); whether the dataset is synthetically generated

Beware the evolving ‘intelligent’ web service!
An integration architecture tactic to guard Al-first components

to increase sample size; and how large a benchmark dataset size
should be (i.e., larger the better but takes more effort and costs
more). Benchmark datasets can also be used by software engineers
provided the domain and context is appropriate for their specific
application’s context. Software engineers also benefit from our ap-
proach even if these guidelines are not strictly adhered to provided
they use an application-specific dataset (i.e., data collected from the
input source for their application). The main reason for this is that
without our proposed tactic there are limited ways to build robust
software with intelligent services. Future testing and evaluation of
these guidelines should be considered.

6.3.2 Extend the evolution categories to support other intelligent
services. This paper has used computer vision services to assess
our proposed tactic, and therefore further investigation is needed
into the evolution characteristics of other intelligent services. The
evolution challenges with services that provide optimisation algo-
rithms such as route planning are likely to differ from computer
vision services. These characteristics of an application domain have
shown to greatly influence software architecture [2] and further
development of the Proxy Service will need to account for these dif-
ferences. As an example, we have identified many similar issues that
exist for natural language processing (NLP), where topic modelling
produces labels on large bodies of text with associated confidences.
Therefore, the broader concepts of our contribution (e.g., behaviour
token parameters, error codes etc.) can be used to handle issues in
NLP to demonstrate the generalisability of the architecture to other
intelligent services. We plan to apply our tactic to NLP and other
intelligent services in our future work.

6.3.3 Provide tool support for optimising parameters for an applica-
tion context. Appropriately using the Proxy Service requires careful
selection of thresholds, benchmark rules and scheduling. Further
work is required to support the developer in making these deci-
sions so an optimal application specific outcome is achieved. One
approach is to present the trade-offs to the developer and let them
visualise the impact of their decisions.

6.3.4 Improvements for a more rigorous approach. Conducting a
more formal evaluation of our proposed architecture would benefit
the robustness of the solution presented. This could be done in
various ways, for example, using a formal architecture evaluation
method such as ATAM [19] or a similar variant [7]; conducting
user evaluation via brainstorming sessions or interviews with prac-
titioners who may provide suggestions to improve our approach;
determining better strategies to fully-automate the approach and
reduce manual steps; and using real-world industry case studies to
identify other factors such as cost and maintenance issues. All these
are various avenues of research that would ultimately benefit in
a more well-rounded approach to the architectural tactic we have

proposed.

7 RELATED WORK

Robustness of Intelligent Services. While usage of intelligent ser-
vices have been proven to have widespread benefits to the commu-
nity [12, 26], they are still largely understudied in software engineer-
ing literature, particularly around their robustness in production-
grade systems. As an example, advancements in computer vision

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

(largely due to the resurgence of convolutional neural networks
in the late 1990s [21]) have been made available through intelli-
gent services and are given marketed promises from prominent
cloud vendors, e.g. “with Amazon Rekognition, you donaAZt have
to build, maintain or upgrade deep learning pipelines”.® However,
while vendors claim this, the state of the art of computer vision
itself is still susceptible to many robustness flaws, as highlighted
by many recent studies [15, 28, 32]. Further, each service has vastly
different (and incompatible) ontologies which are non-static and
evolve [11, 23], certain services can mislabel images when as little
as 10% noise is introduced [17], and developers have a shallow un-
derstanding of the fundamental ML concepts behind these issues,
which presents a dichotomy of their understanding of the technical
domain when contrasted to more conventional domains such as
mobile application development [9].

Proxy Servers as Fault Detectors. Fault detection is an availability
tactic that encompasses robustness of software [3]. Our architecture
implements the sanity check and condition monitoring techniques
to detect faults [3, 18], by validating the reasonableness of the
response from the intelligent service against the conditions set out
in the rules encoded in the benchmark dataset and behaviour token.
As we do in this study, the proxy server pattern can be used to
both detect and action faults in another service as an intermediary
between a client and a server. For example, addressing accessibility
issues using proxy servers has been widely addressed [4, 5, 30, 33]
and, more recently, they have been used to address in-browser
JavaScript errors [13].

8 CONCLUSIONS

Intelligent web services are gaining traction in the developer com-
munity, and this is shown with an evermore growing adoption
of computer vision services in applications. These services make
integration of Al-based components far more accessible to develop-
ers via simple RESTful APIs that developers are familiar with, and
offer forever-‘improving’ object localisation and detection models
at little cost or effort to developers. However, these services are
dependent on their training datasets and do not return consistent
and deterministic results. To enable robust composition, developers
must deal with the evolving training datasets behind these com-
ponents and consider how these non-deterministic components
impact their deterministic systems.

This paper proposes an integration architectural tactic to deal
with these issues by mapping the evolving and probabilistic nature
of these services to deterministic error codes. We propose a new set
of error codes that deal directly with the erroneous conditions that
has been observed in intelligent services, such as computer vision.
We provide a reference architecture via a proxy server that returns
these errors when they are identified, and evaluate our architecture,
demonstrating its efficacy for supporting intelligent web service
evolution. Further, we provide a labelled dataset of the evolutionary
patterns identified, which was used to evaluate our architecture.

REFERENCES

[1] Oresti Bafios, Miguel Damas, Héctor Pomares, Ignacio Rojas, Maté Attila Toth,
and Oliver Amft. 2012. A Benchmark Dataset to Evaluate Sensor Displacement

Shttps://aws.amazon.com/rekognition/faqs/, accessed 21 November 2019.

https://aws.amazon.com/rekognition/faqs/

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

[10

(11

[12

(13

[14

[15

[16

[17

(18

[19

[20

[21

[22

]

]

]

]

]

]

]

in Activity Recognition. In Proceedings of the 2012 ACM Conference on Ubiquitous
Computing. ACM, Pittsburgh, PA, USA, 1026-1035. https://doi.org/10.1145/
2370216.2370437

Scott Barnett. 2018. Extracting technical domain knowledge to improve software
architecture. Melbourne, Australia: Swinburne University of Technology (2018).
Len Bass, Paul Clements, and Rick Kazman. 2003. Software Architecture in Practice
(2nd ed.). Addison-Wesley. 560 pages.

Jeffrey P. Bigham, Ryan S. Kaminsky, Richard E. Ladner, Oscar M. Danielsson,
and Gordon L. Hempton. 2006. WebInSight: Making web images accessible. In
Proceedings of the 8th International ACM SIGACCESS Conference on Computers
and Accessibility. ACM, Portland, OR, USA, 181-188. https://doi.org/10.1145/
1168987.1169018

Jeffrey P. Bigham, Craig M. Prince, and Richard E. Ladner. 2008. WebAnywhere.
In Proceedings of the 2008 International Cross-Disciplinary Conference on Web Ac-
cessibility. ACM, Beijing, China, 73-82. https://doi.org/10.1145/1368044.1368060
Pierre Bourque and Richard E Fairley (Eds.). 2014. Guide to the Software Engi-
neering Body of Knowledge (3rd ed.). IEEE, Washington, DC, USA. 346 pages.
Eric Bouwers and Arie van Deursen. 2010. A Lightweight Sanity Check for
Implemented Architectures. IEEE Software 27, 4 (jul 2010), 44-50. https://doi.
org/10.1109/MS.2010.60

Wikipedia contributors. 2020. List of datasets for machine-learning research 4AAT
Wikipedia, The Free Encyclopedia. https://bit.ly/3cZgwLb

Alex Cummaudo, Rajesh Vasa, Scott Barnett, John Grundy, and Mohamed Abdel-
razek. 2020. Interpreting Cloud Computer Vision Pain-Points: A Mining Study of
Stack Overflow. In Proceedings of the 42nd International Conference on Software
Engineering. IEEE, Seoul, Republic of Korea.

Alex Cummaudo, Rajesh Vasa, and John Grundy. 2019. What should I document?
A preliminary systematic mapping study into API documentation knowledge. In
Proceedings of the 13th International Symposium on Empirical Software Engineering
and Measurement. IEEE, Porto de Galinhas, Recife, Brazil, 1-6. https://doi.org/
10.1109/ESEM.2019.8870148

Alex Cummaudo, Rajesh Vasa, John Grundy, Mohamed Abdelrazek, and An-
drew Cain. 2019. Losing Confidence in Quality: Unspoken Evolution of Com-
puter Vision Services. In Proceedings of the 35th IEEE International Conference
on Software Maintenance and Evolution. IEEE, Cleveland, OH, USA, 333-342.
https://doi.org/10.1109/ICSME.2019.00051

Henrique da Mota Silveira and Luiz César Martini. 2017. How the New Ap-
proaches on Cloud Computer Vision can Contribute to Growth of Assistive
Technologies to Visually Impaired in the Following Years? Journal of Information
Systems Engineering & Management 2, 2 (2017), 1-3. https://doi.org/10.20897/
jisem.201709

Thomas Durieux, Youssef Hamadi, and Martin Monperrus. 2018. Fully Automated
HTML and Javascript Rewriting for Constructing a Self-Healing Web Proxy. In
Proceedings of the 29th International Symposium on Software Reliability Engineer-
ing. IEEE, Memphis, TN, USA, 1-12. https://doi.org/10.1109/ISSRE.2018.00012
Nada Elgendy and Ahmed Elragal. 2014. Big Data Analytics: A Literature Review
Paper. In Advances in Data Mining. Applications and Theoretical Aspects, Petra
Perner (Ed.). Springer International Publishing, Cham, 214-227.

Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei
Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. 2018. Robust Physical-
World Attacks on Deep Learning Visual Classification. In Proceedings of the 2017
IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
Honolulu, HI, USA, 1625-1634. https://doi.org/10.1109/CVPR.2018.00175
Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, and Jianfeng Gao. 2016.
MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition. In
Proceedings of the 16th European Conference on Computer Vision. Springer, Ams-
terdam, The Netherlands, 87-102. https://doi.org/10.1007/978-3-319-46487-9_6
Hossein Hosseini, Baicen Xiao, and Radha Poovendran. 2017. Google’s cloud
vision API is not robust to noise. In Proceedings of the 16th IEEE International
Conference on Machine Learning and Applications, Vol. 2017-Decem. IEEE, Cancun,
Mexico, 101-105. https://doi.org/10.1109/ICMLA.2017.0-172 arXiv:1704.05051
Joseph Ingeno. 2018. Software Architect’s Handbook: Become a Successful Software
Architect by Implementing Effective Architecture Concepts. Packt Publishing, Ltd.,
Birmingham, England, UK.

Rick Kazman, Mark Klein, and Paul Clements. 2000. ATAM: Method for architecture
evaluation. Technical Report. Software Engineering Institute, Pittsburgh, PA,
USA.

Scott Krig. 2016. Ground Truth Data, Content, Metrics, and Analysis. Springer
International Publishing, Cham, 247-271. https://doi.org/10.1007/978-3-319-
33762-3_7

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278—
2324. https://doi.org/10.1109/5.726791

Tsung Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollar, and C Lawrence Zitnick. 2014. Microsoft COCO: Common
objects in context. In Proceedings of the 13th European Conference on Computer
Vision, David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars (Eds.),

[23

[27

[28

[29

[31

[32

[33

Alex Cummaudo et al.

Vol. 8693 LNCS. Springer, Zurich, Germany, 740-755. https://doi.org/10.1007/978-
3-319-10602-1_48 arXiv:1405.0312

Tomohiro Ohtake, Alex Cummaudo, Mohamed Abdelrazek, Rajesh Vasa, and
John Grundy. 2019. Merging intelligent API responses using a proportional
representation approach. In Proceedings of the 19th International Conference on
Web Engineering. Springer, Daejeon, Republic of Korea, 391-406. https://doi.org/
10.1007/978-3-030-19274-7_28

Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang, and Martin Zinkevich. 2018.
Data lifecycle challenges in production machine learning: A survey. SIGMOD
Record (2018). https://doi.org/10.1145/3299887.3299891

Dorian Pyle. 1994. Data Preparation for Data Mining (1st ed.). Morgan Kaufmann.
560 pages.

Arsénio Reis, Dennis Paulino, Vitor Filipe, and Jodo Barroso. 2018. Using online
artificial vision services to assist the blind - An assessment of Microsoft Cognitive
Services and Google Cloud Vision. Advances in Intelligent Systems and Computing
746, 12 (2018), 174-184. https://doi.org/10.1007/978-3-319-77712-2_17
RightScale Inc. 2016. State of the Cloud Report: DevOps Trends. Technical Report.
1-19 pages.

Amir Rosenfeld, Richard Zemel, and John K Tsotsos. 2018. The Elephant in the
Room. arXiv preprint arXiv:1808.03305 (2018). arXiv:1808.03305 https://arxiv.
org/abs/1808.03305

D Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar
Ebner, Vinay Chaudhary, Michael Young, Jean Francois Crespo, and Dan Denni-
son. 2015. Hidden technical debt in machine learning systems. In Proceedings
of the 29th Conference on Neural Information Processing Systems. Montreal, QC,
Canada, 2503-2511.

H. Takagi and C. Asakawa. 2000. Transcoding proxy for nonvisual Web access. In
Proceedings of the 2000 ACM Conference on Assistive Technologies. ACM, Arlington,
VA, USA, 164-171. https://doi.org/10.1145/354324.354371

Rajesh Vasa. 2010. Growth and Change Dynamics in Open Source Software Systems.
Ph.D. Dissertation. Swinburne University of Technology, Melbourne, Australia.
Bolun Wang, Yuanshun Yao, Bimal Viswanath, Haitao Zheng, and Ben Y Zhao.
2018. With great training comes great vulnerability: Practical attacks against
transfer learning. In Proceedings of the 27th USENIX Security Symposium. USENIX
Association, Baltimore, MD, USA, 1281-1297.

Xiaoyi Zhang, Anne Spencer Ross, Anat Caspi, James Fogarty, and Jacob O
Wobbrock. 2017. Interaction Proxies for Runtime Repair and Enhancement of
Mobile Application Accessibility. In Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems (CHI ’17). ACM, Denver, CO, USA, 6024—
6037. https://doi.org/10.1145/3025453.3025846

https://doi.org/10.1145/2370216.2370437
https://doi.org/10.1145/2370216.2370437
https://doi.org/10.1145/1168987.1169018
https://doi.org/10.1145/1168987.1169018
https://doi.org/10.1145/1368044.1368060
https://doi.org/10.1109/MS.2010.60
https://doi.org/10.1109/MS.2010.60
https://bit.ly/3cZgwLb
https://doi.org/10.1109/ESEM.2019.8870148
https://doi.org/10.1109/ESEM.2019.8870148
https://doi.org/10.1109/ICSME.2019.00051
https://doi.org/10.20897/jisem.201709
https://doi.org/10.20897/jisem.201709
https://doi.org/10.1109/ISSRE.2018.00012
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.1007/978-3-319-46487-9_6
https://doi.org/10.1109/ICMLA.2017.0-172
http://arxiv.org/abs/1704.05051
https://doi.org/10.1007/978-3-319-33762-3_7
https://doi.org/10.1007/978-3-319-33762-3_7
https://doi.org/10.1109/5.726791
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
http://arxiv.org/abs/1405.0312
https://doi.org/10.1007/978-3-030-19274-7_28
https://doi.org/10.1007/978-3-030-19274-7_28
https://doi.org/10.1145/3299887.3299891
https://doi.org/10.1007/978-3-319-77712-2_17
http://arxiv.org/abs/1808.03305
https://arxiv.org/abs/1808.03305
https://arxiv.org/abs/1808.03305
https://doi.org/10.1145/354324.354371
https://doi.org/10.1145/3025453.3025846

	Abstract
	1 Introduction
	2 Motivating Example
	3 Intelligent Services
	3.1 `Intelligent' vs `Traditional' Web Services
	3.2 Dimensions of Evolution
	3.3 Limited Configurability

	4 Our Approach
	4.1 Core Components
	4.2 Usage Example

	5 Evaluation
	5.1 Data Collection and Preparation
	5.2 Results
	5.3 Threats to Validity

	6 Discussion
	6.1 Implications
	6.2 Limitations
	6.3 Future Work

	7 Related Work
	8 Conclusions
	References

