
DeepSoft: A Vision for a Deep Model of Software

Hoa Khanh Dam
University of Wollongong

Australia
hoa@uow.edu.au

Truyen Tran
Deakin University

Australia
truyen.tran@deakin.edu.au

John Grundy
Deakin University

Australia
j.grundy@deakin.edu.au

Aditya Ghose
University of Wollongong

Australia
aditya@uow.edu.au

ABSTRACT
Although software analytics has experienced rapid growth
as a research area, it has not yet reached its full poten-
tial for wide industrial adoption. Most of the existing work
in software analytics still relies heavily on costly manual
feature engineering processes, and they mainly address the
traditional classification problems, as opposed to predicting
future events. We present a vision for DeepSoft, an end-
to-end generic framework for modeling software and its de-
velopment process to predict future risks and recommend
interventions. DeepSoft, partly inspired by human memory,
is built upon the powerful deep learning-based Long Short
Term Memory architecture that is capable of learning long-
term temporal dependencies that occur in software evolu-
tion. Such deep learned patterns of software can be used to
address a range of challenging problems such as code and
task recommendation and prediction. DeepSoft provides a
new approach for research into modeling of source code, risk
prediction and mitigation, developer modeling, and auto-
matically generating code patches from bug reports.

1. INTRODUCTION
Software analytics has emerged as one of the fastest grow-

ing research areas in software engineering in the recent years.
This emergence coincides with the constantly increasing num-
ber of software products being built and the huge amount
of data generated from the development, maintenance and
usage of software. Software analytics allows us to obtain
insights from this data and build classification models (e.g.
classifying if source code is defective or non-defective [6]) or
risk prediction models (e.g. predicting if a software task will
be delayed [1]). Using current machine learning techniques,
existing work in software analytics builds models for these
problems by manually designing and extracting features rep-
resenting parts of a software system or related development
process (e.g. a source code file or an bug report) and using

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FSE ’16 November 13–19, 2016, Seattle, WA, USA
c© 2016 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

them as predictors. For example, the performance of most of
existing defect prediction models heavily relies on the care-
ful handcrafting of good features (e.g. code complexity and
code churn metrics) which can discriminate between defec-
tive source files and non-defective ones [6].

Coming up with good features is difficult, time-consuming,
and requires domain-specific knowledge, and hence poses a
major challenge. In many situations, handcrafted features
normally do not generalize well: features that work well in
a certain software project may not perform well in other
projects [13]. A one-size-fits-all approach is therefore inad-
equate, necessitating bespoke solutions (in a manner akin
to personalized medicine [11]). Manually designing features
for each single software system is however expensive and is
thus not a sustainable nor a practical solution. In addi-
tion, handcrafted features often rely on expert knowledge,
which is sometimes based on outdated experience and an
underlying bias, thus impeding the discovery of new, useful
features. Hence, we believe that the wide adoption of soft-
ware analytics in industry crucially depends on the ability
to automatically derive (learn) features from raw software
engineering data.

Most existing work in software analytics focuses on em-
ploying the traditional notion of classification (e.g. clas-
sifying defect files). While much work has been done on
recommender systems, such as for APIs, this has mostly
relied on manual feature identification and using classifica-
tion approaches. Limited work has been done to address a
significantly more difficult problem: forecasting future risks
or events (e.g. a delayed release or important functionali-
ties omitted from a release) in software and recommending
appropriate interventions, code patches or other “fixes”. Pre-
dicting future risks is highly challenging due to the inherent
uncertainty, temporal dependencies, and especially the dy-
namic nature of software. This is exactly the area where
software analytics can contribute most, by learning from
potentially large datasets and automatically forming a deep
understanding of the software, the process of building and
maintaining it, and its stakeholders. Such an understanding
along with relevant memory of past experience will facilitate
automated support for risk prediction and interventions.

2. CHALLENGES AND SOLUTION
Today’s software products undergo rapid cycles of devel-

opment, testing, and release. Development includes imple-
menting new functionalities and fixing bugs, all commonly

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

FSE’16, November 13–18, 2016, Seattle, WA, USA
c© 2016 ACM. 978-1-4503-4218-6/16/11...$15.00

http://dx.doi.org/10.1145/2950290.2983985

945

LSTM LSTM LSTM... LSTM LSTM LSTM... LSTM LSTM LSTM......

u0 u1 uk uk+1 uk+2 ul um um+1 un

Pooling
h0 h1 hk hk+1 hk+2 hl hm hm+1 hn

LSTM

Pooling

LSTM

Pooling

LSTM...

r0 r1 rp

Pooling

g0 g1 gp

s

Issue level

Release level

Project level Neural Network

y

h0 hkh1

Figure 1: DeepSoft architecture

referred to as resolving issues. The resolution of an issue
may involve changes to the code in the form of code patches.
A release signifies a milestone where a number of issues are
resolved. This process is similar to the healthcare process
where illnesses are diagnosed and treated, and interventions
are put into place to counter future medical risks [10].

There are four major challenges in providing effective model
of the software process: (i) Handling long-term dependen-
cies in software evolution: future issues and resolutions may
critically depend on historical issues and resolutions. For ex-
ample, the implementation of a functionality may constrain
how other functionalities are implemented in the future. (ii)
Representation of issues and their resolutions: the challenge
here is how features representing the semantics of an issue’s
description, its diagnoses (e.g. the comments and discus-
sions), and its resolution (e.g. code patch) can be automat-
ically learned from raw data. (iii) Episodic and irregular
timing : software is iteratively developed and delivered in
releases, each of which can be seen as an episode. Time
between releases and between the resolution of issues are
largely random. Existing learning systems used in software
analytics failed to address the episodic and irregular timing
of events of interests in software development. (iv) Model-
ing confounding interactions between the progression of is-
sues and resolutions: the phenomenon of bug-introducing
changes, where a change to a software system (either to add
a new functionality, to restructure the code, or to fix an ex-
isting bug) inadvertently injects new bugs, is an example of
confounding interactions.

In this vision paper, we introduce DeepSoft, a generic,
dynamic deep learning framework that addresses the above
challenges. DeepSoft is developed based on Long Short-
Term Memory [2], a recurrent neural network equipped with
memory cells to store experiences. DeepSoft is an end-to-
end prediction model that does not require manual feature
engineering. DeepSoft is capable of reading historical soft-
ware data (e.g. issue reports and source code), memorizing a
long history of past experience, inferring the current“health”
state of a software, predicting future risks, and finally rec-
ommending actionable interventions. In the remainder of
the paper, we will describe the architecture of DeepSoft and
outline a research agenda based on a number of applications
of DeepSoft to various software engineering problems.

3. DEEPSOFT
Software is similar to an evolving organism: what will

happen next to a software system depends heavily on what
has previously been done to it. DeepSoft leverages a deep
recurrent neural network (RNN) to model this temporal evo-
lution. Recurrent networks can be seen as multiple copies
of the same network, each passing information to a succes-
sor and thus allowing information to persist. DeepSoft is
built upon Long Short-Term Memory (LSTM) [2], a special
kind of RNN that is capable of learning long-term dependen-
cies, i.e. remembering information for long periods of time.
LSTMs have demonstrated ground-breaking performance in
many applications such as machine translation, video anal-
ysis, and speed recognition.

We focus here on two significant events1 in the life of a
software application: an issue being resolved (which may re-
sult in code patches) and a version being released. DeepSoft
has several layers (see Figure 1) which model the progres-
sion of a software at three levels: issue, release and project.
The bottom layer consists of a chain of repeating modules of
LSTM units, each of which reads an input ut, representing
an issue being resolved at time t, and the output ht−1 from
the previous unit, to compute the output ht. Thus ht sum-
marizes information from all previous inputs u0, u1, ..., ut−1.
Note that resolving issues can be done interleavedly, and the
issues are ordered with respect to their resolved time.

The input ut represents both the diagnosis of an issue
(denoting as vector xt), its resolution pt, and the elapsed
time ∆t between this issue and the previous one, i.e. ut =
[xt, pt,∆t]. The diagnosis of an issue is typically in the form
of natural language text capturing its description, the dis-
cussion around it (e.g. comments), and optionally some
attributes (e.g. type, priority, etc.). State-of-the-art NLP
techniques such as word2vec [7] and paragraph2vec [3] can
be used to automatically convert those texts into a vector
which represents the actual semantic of the text. Issue reso-
lutions which result in code patches can also be represented
using those NLP techniques since we can view the code as
a collection of statements in a language. In the next sec-
tion, we will discuss in more details how LSTM can also be

1DeepSoft can however be easily extended to model other
temporal events.

946

leveraged to build a deep model for source code.

*

ct

ft

ct-1 *

it

ot*

ht

xt
pt-1
ht-1
∆t

xt

ht-1

pt

xt

ht-1

xt ht-1

Figure 2: The internal structure of an LSTM for
processing a sequence of issues

The most powerful feature of an LSTM unit is the memory
cell (ct in Figure 2) that stores accumulated memory of past
experience. The amount of information flowing through the
memory cell is controlled by three gates (an input gate, a
forget gate, and an output gate), each of which returns a
value between 0 (i.e. complete blockage) and 1 (full passing
through). All these gates are learnable (i.e. they can be
trained with historical data) in which they are trained with
historical data to maximize the predictive performance of
the whole model.

We now walk through how we envision an LSTM unit
would work in DeepSoft. First, an LSTM unit decides how
much information from past experience (i.e. ct−1) should
be removed from the memory cell. This is controlled by
the forget gate f t, which looks at the the previous output
state ht−1, what has been done to resolve the previous is-
sue (pt−1), the elapsed time ∆t, and the current issue xt,
and outputs a number between 0 and 1. A value of 1 indi-
cates that all the past memory is preserved, while a value
of 0 means “completely forget everything”. For example, if
the resolution for the previous issue is marking the issue
as “invalid”, then we may not need to remember this since
no changes were made to the software. On the other hand,
previous resolutions resulted in code patches should be re-
membered since those code changes may inject bugs which
will later lead to new issues. In DeepSoft, the forget gate
is used to model the long-term impacts of issue resolutions.
For example, refactoring the code for resolving a technical
debt may have long-term benefits (e.g. improving the main-
tainability of the software) and thus should be remembered.
In DeepSoft, the elapsed time is also a factor moderating
the forget gate since for example recent changes made to
a software may be more relevant than changes made a few
years ago. For irregular timing, the forget gate is extended
to be a function of irregular time gap between consecutive
time steps. A range of forgetting mechanisms can be im-
plemented here. For example, the simple monotonic decay
approach mimics the natural forgetting when learning a new
concept in human, while the time-parametrization mecha-
nism accounts for more complex dynamics of different issues
over time. The resulting model is sparse in time and efficient
to compute since only observed records are incorporated, re-
gardless of the irregular time spacing.

The next step is updating the memory with new informa-

tion obtained from the current issue xt. In a similar manner
to the forget gate, the input gate it is used to control which
information about the current issue will be stored in the
memory. The gate can also modified to reflect the priority
level of an issue. For example, the input gate may give a
higher value for a major bug issue than for a technical debt
issue. Finally, information stored in the memory cell will be
used to produce an output ht. The output gate ot looks at
the current issue xt and its resolution pt, the previous hid-
den state ht−1, and determine which parts of the memory
should be output. For example, if some of the work done for
the current issue is needed for resolving the next issue then
that relevant part of the work should be output.

A release requires the resolution of a number of issues.
Once the issue dynamics have been modeled using LSTM
(refer to the issue level in Figure 1), the next step is ag-
gregating the issue states to model the release dynamics.
The aggregation operation is known as pooling. The sim-
plest method is mean-pooling where the vector representing
a release (i.e. ri in Figure 1) is the sum of the output vec-
tors of all the issues in the release divided by the number
of issues. More complex pooling methods can be used to
reflect the attention to recency such as giving more weight
to recent issues than old issues. The sequence of releases
r0, r1, ..., rp are also input to another layer of LSTMs which
generates a corresponding sequence of states g0, g1, ..., gp.
These states are aggregated into a single vector s (also us-
ing pooling mechanisms) which represents the state of the
whole project. Vector s is fed into a neural network which
is trained to predict future events.

4. APPLICATIONS
DeepSoft is a compositional architecture in which an out-

put from a module (e.g. an LSTM unit) can be used as input
for the next module (e.g. another LSTM unit). In addition,
DeepSoft provides a holistic vector representation of soft-
ware and its entire evolution. At the issue level (see Figure
1), vector ht captures not just only information about the
current issue but also the knowledge of the previous issues
and what have been done to resolve them. Vector gj repre-
sents information about all the past releases, while vector s
represent the state of the entire project. Those vector rep-
resentations are powerful since they are mathematically and
computationally convenient for machine learning algorithms
to process in building predictive models at different levels:
issues, releases, and projects. Although DeepSoft addresses
only three constructs, these are general enough to accommo-
date most of the types of analysis traditionally considered
within the ambit of software analytics. We therefore envision
many applications of the DeepSoft to software engineering
problems ranging from requirements to maintenance.

4.1 Source code modeling
DeepSoft requires a vector representation of an issue and

its resolution. Since the description of an issue is in natu-
ral language, state-of-the-art deep learning-based NLP tech-
niques [5] such as word2vec, paragraph2vec or Convolutional
Neural Networks (CNNs; used in the ground-breaking Face-
book’s DeepText engine) can be leveraged to automatically
embed an issue description into a vector representation. A
meaningful vector representation for issue resolutions, which
are usually in the form of code patches, requires modeling
of source code. Code elements such as tokens, methods,

947

and classes are embedded into vectors. A code token can
be treated in one of the following ways: (a) as a sequence
of characters, (b) as an atomic unit, or (c) as a member
of a more abstract unit, such as elements in an Abstract
Syntax Trees (AST). For the first two cases, code is treated
in a sequential manner as natural languages, and existing
deep learning-based NLP techniques such as word2vec, para-
graph2vec or CNN can be applied here (see [9] for an exam-
ple). Since LSTM is specifically designed for modeling se-
quences (as seen in DeepSoft), it can also be used to model
code. For case (c), a piece of code could be a graph, which
can be represented either using graph-based LSTM or CNN
(e.g., see [8] for CNN on top of AST). Vector-based embed-
ding enables simple ways for complex inference such as sim-
ilarity search, grouping, analogy reasoning and token pre-
diction. A major challenge remains to capture the complex
interaction between various code composites e.g., methods,
classes, modules, components, inheritances and call graphs.

4.2 Resolution recommendation
Issue resolutions can range from marking an issue as “in-

valid” or “duplicate” to writing a code patch. The deep
learning-based vector representation of issues in DeepSoft
provides an opportunity to revisit some existing well-known
problems such as detecting bug duplicate reports or bug lo-
calization. In addition, it also opens new research opportu-
nities related to the highly challenging problem of automati-
cally generating code patches for resolving an issue, and code
and API recommendation in general. Code generation refers
to the production of a sequence of code tokens given a con-
text vector. Given the recent successes in NLP [5] (machine
translation, question answering, and dialog systems) and vi-
sion [4] (image/video captioning/story telling and more re-
cently, visual question answering), it is expected that the
technologies can be leveraged. In [12] for example, LSTM is
used to generate target language sentences given a context
vector that encodes the source language sentence.

4.3 Release planning
Since DeepSoft models the progression of issues (includ-

ing bugs and new feature request), it can be applied to: (i)
make recommendations about the new functionalities that
should be implemented next; or (ii) predicting how the soft-
ware product quality (e.g. in terms of defects) will evolve
over time. The former leads to a new, data-driven approach
to the well-known next release problem where existing ap-
proaches focus only on using evolutionary optimization tech-
niques. The latter introduces a new approach to the defec-
tion prediction problem which no longer requires manual
feature engineering.

4.4 Predicting effort and risks
Effort and risk prediction can be made at each level in

DeepSoft. Using the deep learning-based vector represen-
tation of an issue, we can build more accurate models for
estimating the effort of resolving it or predicting whether
its resolution will be delayed. Similar risk prediction can be
made at the release and project level. For example, Deep-
Soft can be applied to predict whether new releases will be
delivered in time and meeting the target.

4.5 Developer modeling
Developers’ involvement dictates the path of software evo-

lution, thus representing developers is critical. In DeepSoft,
a developer can be represented as a sequence of issues he or
she has involved with, and can therefore be modelled as an
irregular-time LSTM. This capability suggests many appli-
cations such as developer recommendation in bug triaging,
or developer productivity and team capability estimate.

Acknowledgement
Truyen Tran is partially supported by Telstra-Deakin COE
in Big Data and Machine Learning. Support from ARC
Discovery Grant DP140102185 is gratefully acknowledged
by John Grundy.

5. REFERENCES
[1] M. Choetkiertikul, H. K. Dam, T. Tran, and A. Ghose.

Predicting delays in software projects using networked
classification. In Proceedings of the 30th IEEE/ACM
International Conference on Automated Software
Engineering (ASE), pages 353 – 364, 2015.

[2] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[3] Q. V. Le and T. Mikolov. Distributed representations of
sentences and documents. In Proceedings of the 31th
International Conference on Machine LearningICML,
volume 32 of JMLR Proceedings, pages 1188–1196.
JMLR.org, 2014.

[4] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning.
Nature, 521(7553):436–444, 2015.

[5] C. D. Manning. Computational linguistics and deep
learning. Computational Linguistics, 2016.

[6] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and
A. Bener. Defect prediction from static code features:
Current results, limitations, new approaches. Automated
Software Engg., 17(4):375–407, Dec. 2010.

[7] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and phrases
and their compositionality. In Advances in Neural
Information Processing Systems 26: 27th Annual
Conference on Neural Information Processing Systems
2013., pages 3111–3119, 2013.

[8] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin.
Convolutional neural networks over tree structures for
programming language processing. In Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[9] T. D. Nguyen, A. T. Nguyen, and T. N. Nguyen. Mapping
api elements for code migration with vector
representations. In Proceedings of the 38th International
Conference on Software Engineering Companion, ICSE ’16,
pages 756–758, New York, NY, USA, 2016. ACM.

[10] T. Pham, T. Tran, D. Phung, and S. Venkatesh. Deepcare:
A deep dynamic memory model for predictive medicine. In
Advances in Knowledge Discovery and Data Mining.
Proceeding of the 20th Pacific Asia Conference on
Knowledge Discovery and Data Mining. Lecture Notes in
Computer Science, volume 9652 of PAKDD’16, pages
30–41, New York, NY, USA, 2016. Springer.

[11] N. J. Schork. Personalized medicine: Time for one-person
trials. Nature, 520(7549):609–611, April 2015.

[12] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to
sequence learning with neural networks. In Advances in
Neural Information Processing Systems, pages 3104–3112,
2014.

[13] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and
B. Murphy. Cross-project defect prediction: A large scale
experiment on data vs. domain vs. process. In Proceedings
of the the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering,
ESEC/FSE ’09, pages 91–100, New York, NY, USA, 2009.
ACM.

948

