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ABSTRACT 
Goal and use case modeling has been recognized as a key 
approach for understanding and analyzing requirements. However, 
in practice, goals and use cases are often buried among other 
content in requirements specifications documents and written in 
unstructured styles. It is thus a time-consuming and error-prone 
process to identify such goals and use cases. In addition, having 
them embedded in natural language documents greatly limits the 
possibility of formally analyzing the requirements for problems. 
To address these issues, we have developed a novel rule-based 
approach to automatically extract goal and use case models from 
natural language requirements documents. Our approach is able to 
automatically categorize goals and ensure they are properly 
specified. We also provide automated semantic parameterization 
of artifact textual specifications to promote further analysis on the 
extracted goal-use case models. Our approach achieves 85% 
precision and 82% recall rates on average for model extraction 
and 88% accuracy for the automated parameterization. 

Categories and Subject Descriptors 
D.2.1 [Software Engineering]: Requirement/Specifications – 
languages, methodologies, tools. 

General Terms 
Algorithms, Languages.  

Keywords 
Goal-Use Case modeling, extraction, semantic parameterization. 

1. INTRODUCTION 
Requirements Engineering (RE) is an iterative process of eliciting, 
structuring, specifying, analyzing, and managing requirements of 
a software system [28]. The functionality and constraints of a 
target system identified in each RE iteration are usually captured 
in a textual software requirements specification document (SRS). 
Goal-Use case integration modeling (GUIM) [17, 29] has been 
recognized as a key approach for understanding, organizing, 
justifying and analyzing requirements, and facilitating early 
system designs [17]. GUIM helps capturing the underlining 
rationale and motivation of the system being developed while 
aligning the business objectives with the functionalities and 
constraints of system components. The details of system-user 
interactions (use cases) are also modeled and linked to system 

goals. Such a combination enables GUIM to provide a 
comprehensive view of the system [1].  

However, extracting and modeling goals and use cases from SRSs 
are not trivial tasks. Domain experts often find it difficult to 
formulate and express goals at the required abstraction levels [26]. 
In textual requirements documents, goals are normally buried 
among other (non-goal) sentences and written in unstructured 
styles. Furthermore, frequently use cases descriptions are not clear 
in requirements documents. Multiple use case steps may be 
combined as one (i.e., by conjunctions). Moreover, data or non-
functional constraints are often mixed up with use case steps, 
making it hard to locate the information they need. Due to such 
complexities, manual goals and use cases modeling can be a 
tedious, time-consuming and error-prone process, especially for 
inexperienced requirements engineers and large requirements 
documents. In addition, having goals and use cases embedded in 
natural language documents greatly limit the capability of the 
automatic requirements analysis for quality problems. In fact, such 
automated analysis support requires requirements to be expressed 
in formal specifications [30] or semantically parameterized [21, 
22] so that their contents can be processed by computers.  

For these reasons, we propose a novel approach with tool support 
named Goal-Use case model Extraction Supporting Tool 
(GUEST) to automatically extract goal and use case models from 
requirements specification documents. GUEST is part of our Goal 
and Use case Integration Framework (GUI-F) that supports the 
elicitation and analysis of goal-use case integration models. Our 
technique is based on a set of extendable extraction rules that help 
identify goals, use cases and their relationships from texts. 
Moreover, relying on our goal-use case integration meta-model 
that provides classification and specification rules of goals based 
on their levels of abstraction and quality attributes, GUEST is able 
to automatically categorize goals and ensure they are properly 
specified. Furthermore, GUEST provides automated semantic 
parameterization of textual artifact specifications to enable the 
automatic analysis of extracted goal-use case models in our GUI-F 
framework. This paper makes the following key contributions: 

(1) A rule-based approach to automatically extract goal-use case 
models from software requirements specifications. The 
extraction carries out the identification of goals, use cases 
(including use case steps, pre/post conditions, data or non-
functional constraints) and their relationships from texts, 
categorization of goals, and the guaranty of proper artifact 
specifications in extracted goal-use case models. 

(2) A technique to automate the semantic parameterization of 
textual artifact specifications to allow model analysis. 

(3) Validating our approach with various requirements from 
both literature and industry. We achieved the precision and 
recall rates of 85% and 82% (on average) respectively for 
goal-use case model extraction and 88% accuracy rate for 
the automated semantic parameterization of textual artifacts.
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(S1)This software system will be a Web Publishing 
System for a local editor of a regional historical 
society. (S2)This system will be designed to 
maximize the editor’s work productivity by providing 
tools to assist in automating the article review and 
publishing process, which would otherwise have to 
be performed manually. (S3)By maximizing the 
editor’s work efficiency and productivity the system 
will meet the their needs while remaining easy to 
understand and use. (S4)More specifically, this 
system is designed to allow an editor to manage and 
communicate with a group of reviewers and authors 
to publish articles to a public website.
...
Use case:  Manage Reviewer
Brief Description
The editor enters a new reviewer or update 
information of the current reviewer.
Initial Step-By-Step Description
Before this use case can be initiated, the editor has 
already accessed the main page of the Article 
Manager.
1. The editor selects to manage a reviewer.
2. The system presents manage options. Manage 
options include "add reviewer" or "update reviewer".
3. The editor selects an manage option.
4. If the editor is updating a reviewer, the system 
presents the information of the reviewer; else the 
system presents a list of reviewers and presents 
information of a reviewer after the editor selects that 
reviewer.
5. The editor fills in the information and submits the 
form.

6. The system verifies the information and returns 
the editor to the Article Manager main page.
After this use case is successfully finished, the 
reviewer's information is stored

BG2: Maximise the 
editor's work productivity

FFG4: Editors shall be 
able to manage a group of 
reviewers

FFG1: Assist in automating 
the article review process

FFG2: Assist in automating 
the article publishing process

BG1: Meet the editor's 
needs

BG3: Maximise the 
editor's work efficiency NPG1: The system shall 

be easy to understand
NPG2: The system shall 
be easy to use

FFG5: Editors shall be able 
to manage a group of authors

FFG7: Editors shall be able to 
communicate with a group of 
reviewers

FFG6: Editors shall be able to 
communicate with a group of authors

FFG3: Editors shall be able to 
publish articles to a publish website

Use Case UC1: Manage Reviewer                        Actor: Editor
Pre-condition: The editor has already accessed the main page of the Article Manager
Post-condition: The reviewer's information is stored
Steps:
1. The editor selects to manage a reviewer
2. The system present manage options
3. The editor selects a manage option
4. If the editor is updating a reviewer, the system presents the information of the reviewer
5. The editor fills in the information
6. The editor submits the form
7. The system verifies the information
8. The system returns the editors to the Article Manager main page
Extension Ext1:
        Condition: The editor is not updating a reviewer
        Starting Step: 4
        Extension Steps:
        4.1. The system presents a list of reviewers
        4.2. The editor selects a reviewer
        4.3. The system presents information of the selected reviewer
        Resuming Step: 5
        

FSG1: Editors shall be able to 
add new reviewers

FSG2: Editors shall be able to 
update reviewers' information

Business Level

Product Level

Feature Level

Service Level

(b)

(a)

DC1: Manage options include 
"add reviewer" or "update 
reviewer"

Operationalize link
Refine link

Constrain link

 
Figure 1: Example of Goal-Use Case Model Extraction From Text

2. MOTIVATION 
Figure 1 presents an example of a goal-use case model extracted 
from textual requirements. Figure 1 (a) shows some parts taken 
from a requirements document. Figure 1 (b) presents a desired 
goal-use case model to be extracted from the requirements. BG1, 
BG2, etc. are business goals. FFG1, FFG2, etc. are functional 
feature goals. FSG1, FSG2, etc. are functional service goals. 

2.1 Identification of Artifacts from Text 
Identifying artifacts from text is a key challenge because: (1) Not 
all sentences and not all parts of a sentence in a requirement 
document contain goal or use case descriptions, (2) Multiple goals 
or use case steps maybe mixed up in a single sentence, (3) Use 
case steps are often combined with constraints and (4) Alternative 
paths are often combined as a single step. Thus, automatically 
filtering important information from text is needed. So is the 
automatic separation of different artifacts mixed up together. 

Example 1: Sentence (S1) does not contain a goal description, it is 
rather an introduction to the system. Thus, it should be ignored. 
Example 2: In sentence (S2), the part “which would otherwise 
have to be performed manually” has no significance regarding the 
objective, functionality or quality of the system. Similarly, “This 
system will be designed to” is unimportant. In addition, S2 
contains multiple phrases that can be extracted to goals BG1, 
FFG1 and FFG2 in Figure 1 (b). Note that the phrase “assist in 
automating the article review and publishing process” is split into 
two goals FFG1 and FFG2 as conjunctions (i.e., and) are 
discouraged in textual requirements to avoid ambiguity [14]. 
Example 3: Step 2 of the use case (Figure 1(a)) contains a use 
case step in the first part and a data constraint (about manage 
options) in the second part. They need to be distinguished to 
guarantee a correct extraction of use cases. Additionally, step 
number 5 is a combination of two separated steps (“The editor 
fills in the information” and “The editor submits the form”). 
Example 4: Step 4 of the use case (Figure 1(a)) combines a use 
case step with an extension specification. It should be extracted 
into the extension Ext1 in Figure 1 (b). 

2.2 Identification of Artifact Relationships  
A goal-use case model requires the relationships between the 
artifacts to be specified. These relationships are often implicitly 
mentioned in requirements specifications. 
Example 5: In sentence (S2), the structure “by providing…” 
implies a refinement relationship between “providing tools to 
assist in automating the article review and publishing process” 
and “maximize the editor’s work productivity”. It is then extracted 
as showed between BG1, FFG1 and FFG2 in Figure 1(b). 

2.3 Classification of Goals 
In goal modeling, goals need to be classified to functional or non-
functional. Moreover, they need to be classified based on how 
abstract or concrete they are. Both such classifications are 
important to understanding and analyze goal models. 

Example 6: The goal BG1 “Meet the editor’s needs” should be 
classified as a business goal and placed on the business level since 
it describes a business objective, not a functionality or quality. 

Example 7: The goal NPG1 “The system shall be easy to 
understand” should be classified as a non-functional goal since it 
describes a usability quality that the system must meet. Moreover, 
NPG1 should be placed on the product level since it is concerned 
about the system as a whole, rather than a specific feature. 

2.4 Ensure artifacts are properly specified 
When identifying artifacts, relevant text in the requirements 
document is located. However, they are often fragments of the 
sentences they are in and thus in many cases, cannot be used as 
descriptions for stand-alone artifacts. Therefore, we need to ensure 
those artifacts are rewritten in a sensible way after being extracted. 

Example 9: In sentence (S3), it is identified that “remaining easy 
to understand” contains a goal description. However, this phrase 
by itself is not a meaningful goal description. The context of the 
whole sentence needs to be considered to obtain a proper 
specification. As showed in Figure 1(b), this phrase is rewritten as 
“The system shall be easy to understand” to specify NPG1. 
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Figure 2: The Structure of a Specification 

 
Figure 3: Artifact Layer 

Example 10: In sentence (S3), “meet their needs” is identified as 
a potential goal description. The context of the sentence is needed 
to recognize which noun phrase the possessive adjective “their” 
refers to. A replacement of “their” by “the editor” is necessary 
for a proper goal specification (BG1). This process is referred to 
as coreference resolution in the natural language processing field. 

3. REQUIREMENTS MODEL 
In this section, we discuss Functional Grammar and present our 
goal-use case integration meta-model on which artifact 
classifications and specifications are based. 

3.1 Functional Grammar 
Functional Grammar (FG) is a grammatical theory concerning the 
organization of natural languages [9]. In FG, a sentence contains 
different components with unique semantic roles called semantic 
functions. In our work, FG is the underlining theory to 
parameterize artifact specifications (i.e., goals, use case steps). 
This provides a standard way to interpret the semantic role of each 
group of words in a specification and thus offers a means to 
interpret and analyze specifications. Figure 2 presents the 
structure of a specification. A specification consists of four 
predicates. For instance, nuclear predicate contains elements 
describing which action is conducted (verb), on what target 
(object), etc. Core predicate provides details about the beneficiary 
or how an activity is performed (manner). Each semantic function 
is described by a term. For instance, nominal terms are used to 
describe entities while verbal terms describe activities. 

Example 11: The specification of goal FFG1 (in Figure 1(b)) is 
parameterized as Verb(Maximize) + Object(NomTerm(Head(Work 
Productivity) + Possessor(Editor))). 
Example 12: The use case UC1’s step 4 is parameterized as 
Agent(System) + Verb(Present) + Object(NomTerm(Head(Inform 
-ation) + Possessor(Reviewer))) + Condition(Agent(Reviewer) + 
Verb(Update) + Object(Reviewer)). 

3.2 Goal-Use Case Integration Meta-model 
Our meta-model contains two layers, the artifact layer provides 
the classification of artifacts while the specification layer provides 
specification rule for each artifact class. 
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Figure 4: Specification Rule for Business Goals 
3.2.1 The Artifact Layer 
Figure 3 depicts the key components of artifact layer that defines 
the artifact classes across levels of abstractions. For instance, 
business goals describe the business objectives of the software 
system (e.g., “Maximize the editor’s productivity”). Functional 
feature goals list features the system should support in order to 
achieve business goals while offering no details as to what 
functions are needed to support a feature (e.g., “Assist in 
automating the article publishing process”). Functional service 
goals provide the details of how a feature is achieved and thus 
contains the description of what function a user can perform (e.g., 
“Editors shall be able to add new reviewers”). Non-functional 
product goals are concerned with quality attributes of the product 
as a whole (e.g., “System shall be easy to use”). Non-functional 
service goals specify quality constraints of associated service 
(e.g., “Editors shall be able to add new reviewers easily). 
Constraints (i.e., data constraint) and various relationships 
between the artifacts (i.e., require, refine…) are also defined. 

3.2.2 The Specification Layer 
This layer imposes rules on how each artifact should be specified. 
It provides guidelines for writing artifacts as to which semantic 
functions should and should not be used for a certain artifact. For 
example, since business goals are usually high-level strategic 
statements, condition or duration should not be specified while 
other parameters (i.e., beneficiary) are permitted. Figure 4 shows 
the specification rule for business goal’s specifications. 
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Figure 5: Process for Goal-Use Case Model Extraction 

 
Figure 6: Example of Section Indicator List 

 
Figure 7: Example of Parse Tree 

 
Figure 8: Example of Dependencies 

4. OUR APPROACH 
Figure 5 presents an overview of our extraction approach 
(supported by tool GUEST) in the context of our Goal-Use Case 
Integration Framework (GUI-F). The extraction consists of six 
main steps. First, the requirements document is preprocessed to 
find the sections that contain goal and use case specifications. In 
addition, the text in these sections is analyzed to remove 
unnecessary information such as pictures, brackets, and multiple 
whitespaces. Secondly, a linguistic analysis is done on the text to 
resolve coreference, and obtain part-of-speech (POS) and typed 
dependencies of tokens (words) using the Stanford parser [15]. In 
step 3, our rule-based engine analyzes the outcome of the parser to 
identify raw artifact specifications and relationships. In step 4, 
these raw specifications are polished to properly specify artifacts 
and then parameterized. Next, the polished specifications are used 
to classify artifacts into different abstraction levels. In the last 
step, a goal-use case model is constructed. Within our GUI-F 
framework, the extracted goal-use case model can then be 
analyzed by our GUITAR tool [19], which supports the 
identification and resolution of inconsistency, incompleteness and 
incorrectness. In this paper, we focus on GUEST. 

4.1 Requirements Document Pre-Processing 
GUEST currently accepts requirements documents in .doc or .txt 
formats. Although there is no specific constraint on the structure 
of such documents, the sections in a document must be numbered 
in a strictly ascending order. A list of section indicators also needs 
to be manually created by users at the beginning. Such list 
contains the specifications as to which sections should be ignored, 

which sections should be considered as sources of goals or use 
cases (we call such sections “important sections”). Figure 6 
presents an example of a simplified section indicator list in XML 
format. Given the indicators provided, GUEST first automatically 
extracts plain text from the document (i.e., remove all figures). It 
then analyzes the text to identify the important sections. It then 
removes unneeded details from those sections to prepare for the 
linguistic analysis in step 2. These include texts describing within 
brackets, multiple-whitespaces and symbols (i.e., ellipsis, 
exclamation, slashes). 

4.2 Linguistic Analysis 
The linguistic analysis includes the resolution of coreference and 
parsing of texts for POS and dependency information. 

4.2.1 Coreference Resolution 
Coreference refers to cases in which a pronoun or possessive 
adjective is used to replace a noun phrase in the same or nearby 
sentence. For instance, in the sentence “The editor fills in the form 
and submits it”, “it” replaces “the form”. In our work, we use the 
Stanford Coreference Resolution System [16] to resolve 
coreference. For instance, the resolved sentence would be “The 
editor fills in the form and submits the form”. 

4.2.2 Syntactic and Dependency Parsing 
To automate the identification of potential artifact specifications 
and relationships from a sentence, it is important for computers to 
“understand” the composition of such a sentence. Specifically, 
we need to identify its grammatical structure (i.e., what are the 
noun phrases, verb phrases, or adjectival phrases), the roles of 
words in the sentence (i.e., which word is verb, noun, adjective or 
adverb) and the relationships between words (i.e., a word is an 
object, or adjectival modifier of another). Based on such 
understanding, computers can be trained to recognize important 
parts while ignoring unimportant parts in the sentences in regard 
to goal descriptions, and identify relationships between goals.  

Consider, for example, the sentence “The system is designed to 
maximize the editor's work productivity by automating the article 
review process”. Figure 7 shows the parse tree that contains the 
identification of phrases (i.e., NP – noun phrase, VP – verb 
phrase) and part-of-speech of words (i.e., IN – preposition, VBN – 
past-participle verb) in the sentence. Figure 8 presents the typed 
dependencies [8] between words. For example, productivity is the 
direct object (dobj) of maximize, automating is the prepositional 
clausal modifier (prepc_by) of maximize. The parsing results of 
these structure and dependencies are critical for our rule-based 
extraction technique, which will be discussed in section 4.2.3.  

In our work, the linguistic parsing is done by using our extended 
version of Stanford Lexicalized Parser [15]. We have retrained the 
Stanford parser with requirements specifications data and enabled 
the parser to be incrementally trained with new data, without the 
need to re-train from scratch to accommodate new data. 

4.3 Artifact and Relationship Extraction 
The use of rules to extract artifacts and relationships is inspired by 
our observation that although requirements specification text is 
freely styled and unstructured, the identification of unimportant 
phrases or goal relationships usually follow certain patterns. For 
instance, consider again the example sentence, the phrase “The 
system is designed to” should be ignored because it contains no 
important information. The role of this phrase is to introduce an 
intention following it in the sentence (i.e., maximize the editor’s 
work productivity). If this phrase were used in another sentence, 
its role would not change and should still be ignored. In addition, 



the words in this phrase do not equally contribute to its 
unimportance. In fact, “system”, “is”, “designed” and “to” are 
more important than “the”. This leads to the conclusion that the 
phrase “system <tobe> designed to” (do something) (with <tobe> 
refers to the use of “is”, “are”, “will be”, “shall be”…) should 
be ignored in any sentence containing it. Moreover, in this 
sentence the refinement relationship between “automate the article 
review process” and “maximize the editor’s work productivity” is 
recognized by the structure “do something by doing something” 
detected in the sentence. Our observation showed that refinement 
relationships could be extracted by this structure in most cases.  

Note that normal textual comparison cannot guarantee correct 
extractions. For instance, if we identify refinement relationships 
by looking for the exact match of “Verb+Object+by+Verb_ing”, 
then we would fail to reveal the relationship in “maximize the 
editor’s work productivity by efficiently automating the article 
review process” because “efficiently” is now between by and 
Verb_ing, making the structure unmatched. It is the dependencies 
between the words that matter, rather than the order they appear in 
the sentence. In fact, the most important factor in this example is 
the prepc_by relationship between maximize and automating. This 
relationship would still remained unchanged regardless of what 
details are added into the related verb phrases of maximize and 
automating (the relationship between the two words would only 
change if the connector “by” is removed, or either of them is 
changed, or the sentence structure is modified). Therefore, we rely 
on the dependencies between words to define extraction rules. 

Table 1: Terminologies of Typed Dependency 
Term Explanation 
Node A word in a dependency tree 
Link A dependency between two nodes (i.e., det(system, this)) 
Universal Root The node that has no incoming link (i.e., designed) 
X sub-tree Sub-tree of the dependency tree that has X as its root  
Artifact Goal or use case components (i.e., step, condition) 

4.3.1 Extraction Rules 
The discussion in this section is based on the examples in Figure 7 
and 8. Table 1 presents some typed dependency’s terminologies. 
Table 2 presents the syntax of our extraction rule with a list of 
representative rule execution actions1. A rule contains two parts: 
condition (specified by a list of variables and dependencies) and 
actions. In the extraction, a sentence’s dependency tree is matched 
against the condition of a rule. If they are matched, the actions 
will be executed to generate a new dependency tree as the output. 
Since goals and use case specifications are normally located in 
separated sections in a requirements document and the extraction 
is done section by section, the extractions of them are carried out 
separately (except that a use case description sometimes contains 
information about the goal it operationalizes). We thus developed 
separate sets of extraction rules for goals and use cases.  

4.3.1.1 Goal Extraction Rules 
There are four types of goal extraction rules as follows. 

Ignorance Rule: Ignorance rules are used to recognize sentences 
or parts of a sentence that have no important information. They 
thus should be ignored during the extraction process. Rule R1 (in 
Table 3) implies that the word “specifically” which is used as an 
adverbial modifier of a verb in a sentence should be ignored. 

Navigation Rule: a navigation rule requires the dependency tree’s 
root to be moved to a certain node, which means every node 
which is not part of the new root’s sub-tree will be removed. 
                                                                    
1 Full reference of our rules can be found at http://goo.gl/gCUofM 

Consider rule R2 in Table 3, it can be seen that the dependency 
tree in Figure 8 matches this rule (X is designed and Y is 
maximize). Following this rule, the root (is at designed originally) 
needs to be moved to maximize (Y). This implies that the attention 
now is on the maximize sub-tree: “maximize the editor's work 
productivity by automating the article review process”.  
Relationship Rule: relationship rules are concerned with 
extracting goals while identifying relationships between them. We 
support the specification of rules to identify sub-goal (refinement) 
and relevant relationships. Goals are considered relevant when 
they are related, but no additional information to infer more 
detailed relationship between them. Rule R3 can be used to 
identify the refinement relationship between “automate the article 
review process” and “maximize the editor’s work productivity”. 

Splitting Rule: Splitting rules are used in case coordinating 
conjunctions (i.e., and/or) are used in a sentence. They allow a 
sentence to be split into two parts with sibling (if “and” is used) 
or alternative (if “or” is used) relationship between them. For 
instance, R4 can be used to extract two alternative goals “Reader 
can search articles by author names” and “Reader can search 
articles by categories” from the sentence “Reader can search 
articles by author names or categories”. 

4.3.1.2 Use Case Extraction Rules 
In a section that potentially contains use cases, the use case 
components (i.e., use case name, steps, exceptions) can normally 
be identified using a list of indicators similarly to the section 
indicator list presented in Figure 6. For instance, the terms 
“actor” or “primary actor” indicate the actor specification of the 
use case, the terms “main scenario” or “basic path” indicate the 
main list of use case steps. These lists can be updated or extended 
depending on the needs of specific projects. However, in many 
cases, such indicators are missing from the use case specification, 
or the specification of a component contains extra information, or 
the components are mixed up with each other. Thus, we 
developed a list of extraction rules to reveal these components 
from texts. Below, we discuss example use case extraction rules. 

Step Extraction Rule: This type of rules is designed to extract use 
case steps combined in one single sentence (i.e., by “and/or”, or 
“after/before”). Using a step extraction rule, not only the steps are 
extracted, but also their relationships (i.e., “precede”) are 
identified. In case two steps have an “alternative” relationship, a 
new extension is then created to establish an alternative scenario. 
Rule R5 is an example of this type. 
Extension Extraction Rule: is used to identify extensions 
embedded in step description. Rule R6 can help reveal the 
extension embedded in step 4 in Figure 1(a). Specifically, an 
extension with condition “The editor is not updating a reviewer” 
and a step “the system presents a list of reviewers and presents 
information of a reviewer after the editor selects that reviewer” is 
extracted. This step is further extracted into three consecutive 
steps using our step extraction rules. 

Use Case Constraint Extraction Rule: is used to identify non-
functional or data constraints that are combined together with use 
case steps. For instance, Rule R7 can be used to recognize the data 
constraint “The manage options include ‘Add reviewer’ and 
‘Update reviewer’” in the motivating example (cf. Figure 1). 
Use Case Relationship Rule: This is to identify use case 
relationships (i.e., extend, include). Consider a use case step “Use 
case ‘Register for membership’ is performed”, Rule R8 can be 
used to identify the “include” relationship between the currently 
processed use case and the “Register for membership” use case. 



Table 2: Extraction Rule Syntax 
 Syntax Explanation & Example(s) 

Generic Rule 
syntax 

<Variable Declarations> 
<Dependency Declarations> 
-> <Action Declarations> 

The syntax of a rule contains 2 parts: variables and dependencies specify the matching condition of the 
rule, and a list of actions to be executed if the rule is matched. 

Variable 
declaration 

X={a} or X={a|b} Variable X has the value of a, or one of the values in a, b… Example: X={designed|aimed} 
X/AB or X/{AB|CD} Variable X has the POS tag of AB, or one of the POS tags in AB, CD… Example: X/{NN|NNS} 

Dependency 
Declaration 

root(X) Specify that X is the root of the dependency tree (a root has no dependency link pointing to it) 
dep_name(X, ?) There is a dep_name dependency between X and any node. Example: dobj(X, ?) 
dep_name(X, Y) There is a dep_name dependency between X and Y. Example: xcomp(X, Y) 
dep_name(X, ?/{AB|CD}) There is a dep_name dependency between X and any node having one of the POS tags of AB, CD, … 

Example: nsubj(X, ?/{NN|NNS}) 
dep_name(X, {a|b}) There is a dep_name dependency between X and any node that has one of the values of AB, CD, … 

Example: nsubjpass(X, {system|project}) 
not dep_name(X, Y) There is no dep_name dependency between X and Y. Example: not xcomp(X, Y) 

Action 
Declaration 

ignore(X) Ignore the X sub-tree. If X is the root of the entire dependency tree, then the whole sentence is ignored 
root(X) Move the root to node X, consider only the sub-tree whose root is X, ignore the rest of the tree 
sub_goal(goal(X), goal(Y)) Establish a sub-goal relationship between goal extracted from the X sub-tree and the one from Y sub-tree 
split_sibling(X, Y) 
split_alternative(X, Y) 

Splitting the sentence into two separated ones (based on the conjunction), build goals based on these 
sentences and establish a sibling (if and is used) or alternative (if or is used) between these goals 

preceed(statement(X), 
statement(Y)) 

Specify that the statement extracted from the X sub-tree is the preceding step of the one from Y sub-tree 
uc_data_constraint 
(statement(Y)) 

Specify the statement extracted from the Y sub-tree is a data constraint of the currently processed step 

Table 3: Examples of Goal Extraction Rules 
Ignorance Rule (R1) Navigation Rule (R2) Relationship Rule (R3) Splitting Rule (R4) 
X={specifically} 
advmod(?/{VB|VBZ|VBN}, X)  
-> ignore(X) 

X={designed|aimed}    Y/VB 
root(X) 
nsubjpass(X, {system|project}) 
auxpass(X, {be|is|are}) 
xcomp(X, Y) 
-> root(Y) 

X/{VB|VBD|VBG|VBN|VBP|VBZ} 
Y/VBG 
root(X) 
prepc_by(X, Y)  
->sub_goal(goal(Y), goal(X)) 

X/{NN|NNS|NNP|JJ} 
Y/{NN|NNS|NNP|JJ} 
inferred_conj_or(X, Y)  
-> split_alternative(X, Y) 

Step Extraction Rule (R5) Extension Extraction Rule (R6) Constraint Extraction Rule (R7) Use Case Relationship Rule (R8) 
X/{VB|VBD|VBG|VBN|VBP|VBZ} 
Y/{VB|VBD|VBG|VBN|VBP|VBZ} 
inferred_conj_and(X, Y) 
not prep_between(?/{NN |NNS} , 
X) 
not prep_between(?/{NN |NNS}, 
Y) 
not mark(X, {if}) 
not mark(Y, {if}) 
-> preceed(statement(X), 
statement(Y)) 

X/{VB|VBD|VBG|VBN|VBP|VBZ} 
Y/{VB|VBD|VBG|VBN|VBP|VBZ} 
Z/{VB|VBD|VBG|VBN|VBP|VBZ} 
mark(X, {if}) 
nsubj(X, ?/{NN|NNS|NNP|NNPS}) 
advcl(Y, X) 
root(Y) 
advmod(Z, [10]) 
parataxis(Y, Z) 
-> extension_condition(neg(X)), 
extension_step(Z), uc_step(Y) 

X={include|contain} 
Y={choices|options|alternatives} 
Z/{NN|NNS|NNP} 
W/{NN|NNS|NNP} 
root(X) 
nsubj(X, Y) 
dobj(X, Z) 
dobj(X, W) 
conj_and(Z, W) 
-> uc_data_constraint(statement(Y)) 

X={case} 
Y={use} 
Z={performed} 
W/{VB|VBD|VBG|VBN|VBP|VBZ|NN 
|NNP|NNS} 
nn(X, Y) 
nsubjpass(Z, X) 
ccomp(Z, W) 
auxpass(Z, {is|be}) 
root(Z) 
-> uc_include(W) 

4.3.2 How Are Extraction Rules Used? 
Rules can conflict with each other. For instance, two rules 
specifying the same condition (list of dependencies), or the 
conditions of a rule is a sub-set of the conditions of another rule 
but their actions are different. GUEST is able to detect such rules 
and report them to end users for modification (in some cases, 
condition overlap is not a problem if there is a rule of higher 
priority than another). 

In addition, there exist cases that a single sentence matches 
multiple rules and executing a rule before another may lead to 
different results. To solve this problem, rules of different types are 
given different priorities. For instance, the goal extraction rules 
are prioritized in the following order: ignorance rules, navigation 
rules, relationship rules and splitting rules. In the case of having 
multiple matching rules of the same type, GUEST executes all of 
them and produces alternative outputs. The tool then reports this 
issue to users for their decisions. 

To extract artifacts from sentences, we use an iterative process to 
analyze each sentence in consideration of the rule ordering. For 
instance, the outcome (may contain multiple goals if a relationship 
or splitting rule is used) is then considered in the next iteration and 
so on. The process ends when no matching rule is found. 

4.4 Polishing and Parameterization 
In this step, extracted text artifacts in the form of dependency trees 

are taken to produce polished textual specifications and Functional 
Grammar-based parameterization. 
4.4.1 Artifact Specification Polishing 
Specification polishing is used to ensure textual artifacts are 
expressed in a proper way. The cases when polishing is required 
include: (1) the text extracted from a sentence and its tense (i.e., 
continuous tense) is not suitable for a stand-alone artifact 
specification, (2) the text is in passive voice and (3) the text is 
incompatible with our meta-model’s specification rules. 

The first two cases require algorithms to check the dependency 
tree for tense (i.e., the root is a verb with VBG POS tag) or 
passive voice use (i.e., look for auxpass dependency link) and 
making relevant modifications in the dependency tree. However 
the third case requires deeper analysis. In our work, it is 
recommended that artifacts are specified using action verb 
whenever possible to enable better comparison and analysis of 
artifacts [19]. This view has also been adopted in many 
requirements engineering research (i.e., [26]). However there exist 
many cases in which functionalities or conditions are described in 
other forms, i.e., using adjective-preposition phrases. The 
examples below present some of these cases. 

Example 13: “editors are capable of entering new reviewers” is 
re-written as “editors shall be able to enter new reviewers”. 

Example 14: “Readers without technical knowledge can search 
for articles” should be re-written as “Readers who do not have 
technical knowledge shall be able to search for articles”. 



Example 15: “There is more than one reviewers in the list” 
should be rewritten as “More than one reviewers exist in the list”. 

To solve this problem, we developed an extendable set of 
rewriting rules that share the same syntax with extraction rules. A 
text is checked for a match with a rewriting rule that then triggers 
the execution of the rule actions to make necessary modifications. 
The phrase “shall be able to” is added to goal specifications only. 
The rewriting rule for the text in example 13 can be found below. 

X={capable} 
Y/{NN|NNS|NNP|NNPS} 
Z/{NN|NNS|NNP|NNPS} 
T={be|is|are|were|was} 
nsubj(X, Y) 
cop(X, T) 
root(X) 
prep_of(X, Z) 
-> replace_adj_root(X), add_verbal_root(W, {do}, X, Z, T, 
true, false, Z), dobj(W, Z); 

4.4.2 Artifact Specification Parameterization 
Parameterization of specifications enables the understanding of 
artifacts because it identifies the semantic role of each single word 
in an artifact specification. For instance, given the goal 
specification of “Editors shall be able to add new reviewers 
easily”, parameterized as Agent(Editor) + Verb(Add) + Object( 
Head(Reviewer) + Attribute(New) + Manner(Easily). From the 
parameterization it can be identified which function the system 
supports (add new reviewers), who the function is for (editors), 
how the function is accomplished (easily), what the function’s 
object is (reviewers), what the object’s attribute is (new). We term 
such representation as structured specification in our framework. 

To generate structured specification from a textual one, we need 
to identify the semantic role (function) each word or group of 
words plays. The input for this process is the polished dependency 
tree from step 4.4.1. This process starts with the investigation in 
the dependency tree to determine the value of the Verb semantic 
function since it is the central function in our structured 
specifications. Normally universal root constitutes the value of 
Verb except when to-be verb is used. The determination as to 
which semantic function a group of words should fall into depends 
on the relationship between the root of that group and the 
universal root. For instance, if X is the universal root, then the 
relationship nsubj(X, Y) indicates that the Y sub-tree is the value 
of the Agent semantic function. Similarly, dobj(X, Y) may 
indicate Y sub-tree is the value of the Object semantic function.  
However, due to the complexity of English, there are always 
exceptions. For instance, in the sentence “system notifies users 
about the changes”, although notifies is the root and there exist 
the relationship dobj(notifies, users), users is not the Object, but 
instead Beneficiary. In addition, there is no rule for prepositional 
phrases. For instance, in dependency tree of the sentence “editors 
can login with their accounts” has the prep_with(login, account) 
relationship and “their accounts” has the Means semantic role in 
this case. However, in sentence “editors can communicate with 
reviewers”, “reviewers” has the Company semantic role although 
the relationship prep_with(communicate, reviewers) exists. We 
overcome this problem by developing a set of 168 semantic 
labeling rules based on an investigation on the common English 
verb, adjective + preposition combinations. Below we give 
labeling rules for the discussed examples. The first one means that 
if prep_with(communicate, Y) exists, the Y sub-tree has the Means 
semantic role. The second one means that if prep_of(notify, Y) and 
dobj(notify, Z) exist, then Y sub-tree is Reference and Z sub-tree is 
Beneficiary semantic functions. 

 

4.5 Goal Classification 
After the extracted dependency trees are polished, textual 
specifications are generated from them. In this step, they are 
classified to determine whether they are functional or non-
functional goals, and which levels of abstraction they are on. 

Although a number of techniques and tools have been proposed to 
automatically classify requirements in the literature (i.e., [5, 7]), 
none of is currently available for download and use in our work. 
We thus selected Mallet [18], one of the best general text 
classifiers that are available, for artifact classification. Mallet can 
classify a text into a fixed set of classes, such as “functional” vs. 
"non-functional", based on labeled training examples. It includes 
implementations of several classification algorithms, including 
Naïve Bayes, Maximum Entropy, and Decision Trees. Mallet 
calculates the probability of each word for being classified into a 
certain class based on the labeled training data. The probability of 
the whole text for being classified into a certain class is 
determined by the probabilities of the words it contains. In this 
work, we extended Mallet by using text-preprocessing to improve 
its accuracy (to be discussed in section 5). The improvements are 
discussed as follows: 

• Removal of unimportant content: Mallet considers every 
word in a text for probability calculation. However, not all 
words are needed in this process. In fact, we modified it to 
remove unimportant details such as stop words (i.e., a, the, 
that, shall), symbols (i.e., coma) and numbers since their 
existence does not determine the class of a text. 

• Ensure the standard form of the word is used: We updated 
Mallet to consider only the standard form of words. For 
instance, the probability is calculated for “present”, not 
“presents” or “presented” if they are used in the text. 

• Use a set of classification keywords: We developed a set of 
310 keywords that support the classification of artifacts. For 
instance, “available” and “easy-to-use” are non-functional 
goal keywords. “Productivity” is a business goal keyword. 

Our classifier is composed of two separated classifiers. The 
horizontal classifier is used to determine if a text is business, 
functional or non-functional goal specifications. For a non-
functional goal, it also provides the prediction as to which non-
functional category it belongs to (i.e., security, usability). 
Currently we support the identification of 11 non-functional 
categories. The vertical classifier is used to identify the abstraction 
level a goal should belong to (product, feature, or service level). 
The rationale for using two separated classifiers is that they can 
help reducing training data size. For instance, if a single classifier 
were used, then we would need sufficient training data for 13x3 
classes, as opposed to only 13 classes (business goal, functional 
goals and 11 non-functional goal categories) for the horizontal 
classifier and 3 classes for the vertical classifier. Additionally, the 
training data can be shared between the two classifiers, given they 
are appropriately labeled for each classifier. Up to now we have 
trained the classifiers with over 1200 requirements collected from 
multiple sources including online resources, literature and books. 
GUEST allows the classifiers to be further trained or re-trained. 

4.6 Goal-Use Case Model Construction 
After the artifacts are extracted and classified, and relationships 
are identified, the model can be constructed. The following 
subsections describe the main issues to be addressed in this step. 

Identify duplicate artifacts: sometimes goals are repeated in 
different sentences in requirements documents. For instance, the 

communicate, with->COMPANY 
notify%, of-> A1:BENEFICIARY, REFERENCE 
 



goal “maximize the editor’s productivity” is repeated twice in the 
motivating example (cf. Figure 1(a)). Repeated goals are merged 
into one in the model. In GUEST, not only exactly duplicate 
artifacts are identified, highly overlapping artifacts are also 
reported to end users. The identification of overlaps between 
artifacts is done using their parameterizations. In fact, we compare 
two specifications by matching their corresponding semantic 
functions (i.e., match Agent of a specification with Agent of 
another, Object with Object). Partly overlapped artifacts are 
reported to users to decide if a merge of them is suitable.  

Report model construction problems: other problems may 
occur during the model creating. For instance, a goal has the 
equivalent probabilities for two classes (i.e., feature and service). 
Another example is an inconsistency can exist if the goals FSG1, 
FFG1 are classified as functional service and functional feature 
goal respectively, while an extraction rule infers that FFG1 is a 
sub-goal of FSG1. This situation is invalid since feature goals are 
on a higher level than service goals and thus a feature goal cannot 
refine a service goal. All problems from the extraction process are 
reported to users for the decisions. 

Other problems: The emphasis of this paper is on extracting goal-
use case models from what provided in requirement documents. 
The problems related to the extraction are identified and reported 
to users. However, problems inherited from the requirements 
documents, e.g., the model is inconsistent due to some 
inconsistencies exists in the original requirement documents, are 
beyond the scope of this paper. Such problems have been tackled 
in our previous work with the GUITAR tool [19, 20] which 
supports the analysis of goal-use case models for incompleteness, 
inconsistency and incorrectness. Since GUEST is integrated into 
GUITAR, we can ensure the seamless support for the building and 
analysis processes of goal-use case models. 

GUEST is not aimed at fully automating the entire extraction 
process, as this is almost impossible since requirements 
documents can be found in different structures and written in 
uncontrolled styles. It is rather intended to assist requirements 
engineers in modeling goals and use cases from requirements 
documents. Thus, there may be cases not all artifacts and 
relationships can be extracted (i.e., a necessary extraction rule 
may be missing). To assist requirements engineers in verifying the 
extraction results and possibly continue the extraction manually, 
GUEST provides features such as: producing extraction logs that 
capture all steps during the extraction process, mapping artifacts 
with original text where they are extracted from and allowing 
users to modifying the extracted models. 

5. EVALUATION 
In this section, we present three evaluations conducted to evaluate 
the effectiveness of GUEST in extracting goal-use case models 
from requirements documents. Specifically, we seek to answer the 
following research questions: 

• RQ1: How accurately does GUEST classify artifacts by their 
textual specifications? 

• RQ2: How accurately does GUEST parameterize textual 
specifications? 

• RQ3: How accurately does GUEST extract goal-use case 
models from requirement specifications documents? 

Table 4 presents our formulas to calculate the metrics for each 
research questions. Our full experimental data can be found at 
http://goo.gl/gCUofM. 

Table 4: Formulas for Metrics 
 Formulas 
RQ1 

 
TP: True Positive (number of artifacts are correctly classified) 
FP: False Positive (number of incorrectly classified artifacts) 

RQ2 
 

RQ3 
 

TP: True Positive (number of valid extracted artifacts or 
relationships) FP: False Positive (number of invalid extracted 
artifacts or relationships) FN: False Negative (number of 
artifacts or relationships not extracted) 
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Figure 9: Classifier Benchmark Validation Results 

5.1 RQ1: Artifact Classification 
A benchmark validation was carried out to compare and contrast 
our requirements classifier with the existing state-of-the-art 
classifiers: Casamayor et.al. non-functional requirements classifier 
[5] (we term it as Casamayor) and original version of Mallet 
(original Mallet). The reasons for this selection were fourfold. 
First, Casamayor is among the classifiers developed recently and 
reportedly obtained high results in its evaluation. Second, 
Casamayor’s experiment steps were described clearly and its data 
is available, making it possible to reconstruct the exactly same 
validation. Thirdly, no requirements classifier was available to 
download and lastly, original Mallet was selected to verify 
whether our improvements made to extend it were effective. 

We followed Casamayor’s experiment steps to run a validation on 
PROMISE dataset [2] that consists 625 requirements collected 
from 15 software development projects. Among them, 255 items 
are marked as functional requirements and the remaining 370 non-
functional requirements are classified into 11 categories, such as 
Security, Performance and Usability. Only the non-functional 
requirements were used in this evaluation. Multiple experiments 
were run. In each experiment, a k-portion of data (i.e., k=90%) 
was randomly selected as training data and the rest used as testing 
data. Each experiment is run in 10 iterations to obtain the scores 
for the precision and recall metrics (cf. Table 2). 19 experiments 
were run with k was 5, 10,…, 95. 

Figure 9 (a) and (b) present the comparison graph between three 
classifiers for precision and recall. All three classifiers obtained 
higher precision and recall rates when the training set size 
increased. It can be noticed from this comparison that our 
classifier produced higher-quality results than others when the 
training set was small. This was due to the support of our non- 



functional indicator keywords. When the training set size 
increased, Casamayor’s results raised with highest rates and 
surpassed our classifier when the training set was over 55% of the 
entire data (as showed in the graphs). Original Mallet followed a 
very similar trend as our classifier that is due to the share of 
algorithms between the two classifiers. However, our classifier 
outperformed original Mallet with at least 5% difference in most 
experiments. From these results the key benefit of our classifier is 
that it performs relatively well with a small training dataset. 

Table 5: Parameterization Validation Results 
Round 1 (existing capability) 274 over 310 (88%) 
Round 2 (best achievable capability) 297 over 310 (96%) 

Table 6: Extraction Validation Results 
Case Study OPS SPS Average 
Artifact D 175 172  

FP 26 23 
FN 17 29 
Precision 85% 86% 86% 
Recall 89% 83% 86% 

Relationship D 144 102  
FP 22 16 
FN 36 26 
Precision 84% 84% 84% 
Recall 77% 76% 77% 

Polishing & Parameterization 91% 89% 90% 
Goal Classification 81% 78% 80% 

D: total detected   FP: False Positive   FN: False Negative 

5.2 RQ2: Artifact Parameterization 
PROMISE data was pre-processed before being used in this 
validation. For instance, we split a requirement into multiple ones 
if it contains more than one sentence. In addition, combined words 
such as “his/her”, “himself/herself” were changed to single words 
(i.e., his). Moreover, each sentence with coordinating conjunctions 
(i.e., “and”) is split. However, if the split sentences have identical 
structure (i.e., “readers can search articles” and “readers can 
download articles”), we only keep one of them to maintain the 
structural differences between requirements. We have randomly 
selected 200 requirements from all 15 projects and 110 
requirements collected from the literature. Each requirement was 
parameterized by GUEST and the results were manually checked 
by us to determine the accuracy rates. A two round-validation was 
conducted. Firstly, we parameterized the requirements based on 
our existing collection of rewriting and labeling rules to verify 
GUEST’s existing parameterization capability. We then identify 
the reason for errors found in the results. If the reason was 
incorrect parsing or missing supporting rules, we then trained the 
parser with a correct parse tree or attempted to write new rules 
using our defined syntax. In round 2, the failed parameterizations 
were re-generated with new information. The result of this round 
was the best achievable capability of GUEST in this validation. 

Table 5 indicates that we obtained 88% and 96% of accuracy in 
round 1 and 2 respectively. There were a number of requirements 
unsupported by GUEST because their grammatical structures 
were not recognized by our meta-model. For instance, “Out of 
1000 accesses to the system, the system is available 999 times”. 

5.3 RQ3: Goal-Use Case Model Extraction 
We used the online publication system (OPS) and split payment 
system (SPS) industrial case studies in this validation. OPS case 
study comes with a requirements document with 31 pages and 503 
sentences. SPS requirements document contains 46 pages and 586 
sentences. Each requirements document follows the IEEE 
requirements specification template and contains a number of 

sections for goals and use cases. In each case study, we manually 
modeled goals and use cases from the given requirements 
document and then compare that model with the one generated by 
GUEST. We analyzed the results of each extraction phrase to 
provide detailed evaluation of the approach. The phrases analyzed 
were: extraction of raw artifacts and relationships, polishing and 
parameterization of artifacts, and goal classification.  

The results are showed in table 6. We achieved 86% precision and 
recall rates for the artifact extraction, and 84% precision and 77% 
recall rate for the relationship extraction. A number of artifacts 
and relationships were not extracted due to the missing of relevant 
extraction rules. In addition, some relationships were not detected 
since detecting such relationships required the understanding of 
the entire contexts in which the artifacts were specified. For 
instance, “this system is designed to allow an editor to 
communicate with reviewers and authors. The software will 
facilitate communication between authors, reviewers, and the 
editor via E-Mail”. GUEST could not identify the relationship 
between these two goals. However, an alert regarding the possible 
overlap between them was generated. We achieved 90% accuracy 
rates of the polishing and parameterization of artifacts (to be 
considered correct, the artifact needed to be both correctly 
polished and parameterized). The common errors were due to 
missing relevant rewriting rules. For instance, GUEST could not 
properly rewrite the goal “Include support for simultaneous bills” 
to the desired form “Support simultaneous bills”. We achieved 
80% for goal classification in this validation. 

These evaluation results indicate that the missing artifacts and 
relationships were due to missing extraction rules. The 
incorrectness in artifact parameterization and classification came 
from invalid results produced by the linguistic parser and artifact 
classifier respectively. Results could be improved if our extraction 
rules set is extended and the parser and classifier further trained.  

5.4 Threats to Validity 
Threats to external validity include representativeness of the 
selected subjects and quality of our parser, classifier and rules. To 
reduce these we increased the variability of the data by selecting 
requirements from different sources. For RQ2 we carried our a 
second round of validation to evaluate the tool in case the parser 
and rules were perfect for the given set of requirements. Threats to 
internal validity include the human factors in determining the 
correctness of GUEST results in each validation. In RQ3, we 
manually extracted goals and use cases from the requirements 
documents. In RQ2 and RQ3, we manually verified the tool’s 
outputs for semantic parameterization, goals, use cases and their 
relationships and classifications. To mitigate, we reviewed all 
manual tasks twice. Using two or more people with relevant 
knowledge and experience in validation would further improve. 

6. DISCUSSION AND FUTURE WORK 
Reduce effort for goal-use cases modeling: Our approach can 
reduce the effort and time to model goals and use cases from 
requirements documents for analysts. Moreover, GUEST can 
potentially be used to quickly gain understanding of natural 
language requirements documents. GUEST rules can be used 
across different projects. Users can add new rules to improve the 
quality of extraction. Furthermore, since GUEST’s underlying 
techniques for natural language parsing and artifact classification 
provide support for multiple languages, it is possible to adopt and 
apply our approach for requirements written in other languages. 
However, a new set of extraction rules that suits the grammars of 
each such language needs to be developed. 



Enable the Analysis of goal-use case models: Our automated 
semantic parameterization enables the seamless integration of 
GUEST and our tool GUITAR which provides automated analysis 
of goals and use cases [19]. This provides comprehensive support 
for the modeling and analysis on goal-use case models. 

Possible application of our technique in other areas: Our 
technique of automated parameterization can be used for any 
textual sentences. While our set of extraction rules was developed 
specifically for goals and use cases, its underlining concept can 
still be applied to support the information extraction in other 
areas. For instance, extraction rules can be developed in a similar 
way (i.e., develop rule actions and algorithms to execute these 
actions) to identify privacy or security policies [31] from software 
documents. Our rule-based technique can also provide a new 
approach in ontology learning [4, 6]. Specifically, similar rules 
can be created to detect ontological concepts, properties and their 
relationships to extract ontologies from natural language texts. 
GUEST’s extraction accuracy depends on the quality of the 
Stanford parser and the artifact classifier: a common issue for 
a statistical machine learning technique is that it may not produce 
correct results for what it has not been trained for. Therefore, it is 
possible to have a sentence incorrectly parsed or a specification 
incorrectly classified in GUEST. Such problems can be resolved 
by training the parser and classifier with relevant data. GUEST 
provides the incremental training of both the parser and classifier. 

Understanding of grammatical dependency required for rules 
writing: In GUEST, the extraction and rewriting rules need to be 
manually written. This requires the rule writers to have knowledge 
of grammatical dependency and thus some training would be 
required for end users to be able to extend the rules repository. We 
plan to overcome this problem by developing an algorithm that 
semi-automates the generation of a rule from the associations 
between sentences and lists of desired information to be extracted 
from them. In addition, a visual rule editor would be developed. 

Unidentifiable artifact relationships: a number of relationships 
between artifacts in different sentences are not detectable. 
Detecting such relationships requires the understanding of the 
entire context in which they are specified. Our future work will 
thus will focus on resolving these types of problems. 

Lack of evaluation of the approach’s usefulness: although 
having promising results in our case study-based evaluation, 
GUEST has not been validated for a real software project. We 
thus plan to carry out an evaluation with our industry partners to 
evaluate the approach’s usefulness in requirements engineering. 

7. RELATED WORK 
To the best of our knowledge, no technique has been proposed to 
automatically extract goal-use case models from natural language 
documents. In this section, we discuss existing techniques that 
extract requirements or use cases separately. 
Natural language requirements Extraction and formalization 
Rauf et.al. [25] proposed a technique to identify sections that 
contains logical structures (LSs) such as requirements or use cases 
and logical components (LCs) such as actor or use case extensions 
in a requirements document. Their objective is to locate where 
requirements and use cases are located, similar to what we 
achieved by using a list of section indicators. This work, however, 
does not extract individual requirements, use cases and their 
relationships. Niu and Easterbrook [23] semi-automatically extract 
product line requirement asset from natural language requirements 
documents based on the use of Functional Requirement Profile, 
domain terminologies, and heuristic rules. However, this only 

focuses on functional requirements in the format of Verb+Direct 
Object. Ghosh et.al. [12] transforms textual requirements into 
Linear Temporal Logic based on the use of dependency parsing, 
domain specific terminologies and a set of transformation rules. It 
has no support for extracting requirements or goals from texts. 
Breaux et.al. [3] developed a semantic parameterization technique 
to formalize natural language goal specifications with Description 
Logics. They provided a set of templates in which a statement 
contains a number of semantic components such as subject, object 
and location. This is similar to semantic functions in our work. 
However, we provide a larger set of semantic roles (i.e., our 
frequency, duration roles are not supported in their work). Also, 
this work does not automate the semantic parameterization. 

Extraction of use cases from natural language documents 
Ilieva [13] used linguistic analysis to extract use case paths model 
from uncontrolled natural language use case specifications. This 
work is only concerned with identifying actor, action (a single 
verb) and their ordering without considering other information 
(i.e., object, target of a use case step, pre/post condition or data 
constraints). Drazan and Mencl [11] developed a technique to 
identify use case steps from textual use case descriptions. Similar 
to our work, it is able to identify multiple steps combined using 
coordinating conjunctions. The limitation of this work is that it 
assumes use case descriptions are written in a restricted natural 
language. In addition, it does not allow the extraction of other use 
case components (i.e., pre/post condition or extensions). Sinha 
et.al. [27] developed a linguistic analysis engine to get the 
understanding of textual use case descriptions. The engine is able 
to identify components in use case steps (actor, action) and 
classify steps into a number of predefined classes (i.e., UPDATE, 
INPUT, OUTPUT) using a domain dictionary. This work, 
however, does not deal with the cases when multiple artifacts (i.e., 
step and constraint) are mixed together. In addition, various use 
case components (i.e., conditions, extensions, constraints) are not 
detectable. Rago et.al. [24] focused on extracting sequenced use 
case steps from textual use cases and identifying duplication 
among them. It however does not support the identification of 
other use case components and relationships between use cases.  

8. SUMMARY 
We have developed a semi-automated rule-based approach to 
extract goal-use case models from unformatted textual 
requirements documents. It incorporates various techniques to 
locate goals, use cases and their relationships from text, ensure 
they have proper textual specifications, classify goals and provide 
semantic parameterization of their textual specifications. 
Evaluation results are very promising. In two selected case 
studies, GUEST achieved 86% precision and recall rates for goals 
and use cases extraction, 84% and 77% of precision and recall 
rates for relationships extraction. It obtained 88% accuracy for the 
automated parameterization with PROMISE data. The evaluation 
showed that our artifact classifier entirely outperformed Mallet 
and was better than Casamayor’s classifier with smaller training 
datasets. GUEST is integrated with our previous work on goal-use 
case automated analysis (GUITAR), providing a comprehensive 
framework for goal-use case extraction and analysis. 
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