
Rule-Based Extraction of Goal-Use Case Models from Text
Tuong Huan Nguyen, John Grundy, Mohamed Almorsy

Faculty of Science, Engineering and Technology
Swinburne University of Technology

Melbourne, Australia
{huannguyen, jgrundy, malmorsy}@swin.edu.au

ABSTRACT
Goal and use case modeling has been recognized as a key
approach for understanding and analyzing requirements. However,
in practice, goals and use cases are often buried among other
content in requirements specifications documents and written in
unstructured styles. It is thus a time-consuming and error-prone
process to identify such goals and use cases. In addition, having
them embedded in natural language documents greatly limits the
possibility of formally analyzing the requirements for problems.
To address these issues, we have developed a novel rule-based
approach to automatically extract goal and use case models from
natural language requirements documents. Our approach is able to
automatically categorize goals and ensure they are properly
specified. We also provide automated semantic parameterization
of artifact textual specifications to promote further analysis on the
extracted goal-use case models. Our approach achieves 85%
precision and 82% recall rates on average for model extraction
and 88% accuracy for the automated parameterization.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirement/Specifications –
languages, methodologies, tools.

General Terms
Algorithms, Languages.

Keywords
Goal-Use Case modeling, extraction, semantic parameterization.

1. INTRODUCTION
Requirements Engineering (RE) is an iterative process of eliciting,
structuring, specifying, analyzing, and managing requirements of
a software system [28]. The functionality and constraints of a
target system identified in each RE iteration are usually captured
in a textual software requirements specification document (SRS).
Goal-Use case integration modeling (GUIM) [17, 29] has been
recognized as a key approach for understanding, organizing,
justifying and analyzing requirements, and facilitating early
system designs [17]. GUIM helps capturing the underlining
rationale and motivation of the system being developed while
aligning the business objectives with the functionalities and
constraints of system components. The details of system-user
interactions (use cases) are also modeled and linked to system

goals. Such a combination enables GUIM to provide a
comprehensive view of the system [1].

However, extracting and modeling goals and use cases from SRSs
are not trivial tasks. Domain experts often find it difficult to
formulate and express goals at the required abstraction levels [26].
In textual requirements documents, goals are normally buried
among other (non-goal) sentences and written in unstructured
styles. Furthermore, frequently use cases descriptions are not clear
in requirements documents. Multiple use case steps may be
combined as one (i.e., by conjunctions). Moreover, data or non-
functional constraints are often mixed up with use case steps,
making it hard to locate the information they need. Due to such
complexities, manual goals and use cases modeling can be a
tedious, time-consuming and error-prone process, especially for
inexperienced requirements engineers and large requirements
documents. In addition, having goals and use cases embedded in
natural language documents greatly limit the capability of the
automatic requirements analysis for quality problems. In fact, such
automated analysis support requires requirements to be expressed
in formal specifications [30] or semantically parameterized [21,
22] so that their contents can be processed by computers.

For these reasons, we propose a novel approach with tool support
named Goal-Use case model Extraction Supporting Tool
(GUEST) to automatically extract goal and use case models from
requirements specification documents. GUEST is part of our Goal
and Use case Integration Framework (GUI-F) that supports the
elicitation and analysis of goal-use case integration models. Our
technique is based on a set of extendable extraction rules that help
identify goals, use cases and their relationships from texts.
Moreover, relying on our goal-use case integration meta-model
that provides classification and specification rules of goals based
on their levels of abstraction and quality attributes, GUEST is able
to automatically categorize goals and ensure they are properly
specified. Furthermore, GUEST provides automated semantic
parameterization of textual artifact specifications to enable the
automatic analysis of extracted goal-use case models in our GUI-F
framework. This paper makes the following key contributions:

(1) A rule-based approach to automatically extract goal-use case
models from software requirements specifications. The
extraction carries out the identification of goals, use cases
(including use case steps, pre/post conditions, data or non-
functional constraints) and their relationships from texts,
categorization of goals, and the guaranty of proper artifact
specifications in extracted goal-use case models.

(2) A technique to automate the semantic parameterization of
textual artifact specifications to allow model analysis.

(3) Validating our approach with various requirements from
both literature and industry. We achieved the precision and
recall rates of 85% and 82% (on average) respectively for
goal-use case model extraction and 88% accuracy rate for
the automated semantic parameterization of textual artifacts.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEC/FSE’15, August 30–September 4, 2015, Bergamo, Italy.
Copyright 2015 ACM 1-58113-000-0/00/0010 …$15.00.

(S1)This software system will be a Web Publishing
System for a local editor of a regional historical
society. (S2)This system will be designed to
maximize the editor’s work productivity by providing
tools to assist in automating the article review and
publishing process, which would otherwise have to
be performed manually. (S3)By maximizing the
editor’s work efficiency and productivity the system
will meet the their needs while remaining easy to
understand and use. (S4)More specifically, this
system is designed to allow an editor to manage and
communicate with a group of reviewers and authors
to publish articles to a public website.
...
Use case: Manage Reviewer
Brief Description
The editor enters a new reviewer or update
information of the current reviewer.
Initial Step-By-Step Description
Before this use case can be initiated, the editor has
already accessed the main page of the Article
Manager.
1. The editor selects to manage a reviewer.
2. The system presents manage options. Manage
options include "add reviewer" or "update reviewer".
3. The editor selects an manage option.
4. If the editor is updating a reviewer, the system
presents the information of the reviewer; else the
system presents a list of reviewers and presents
information of a reviewer after the editor selects that
reviewer.
5. The editor fills in the information and submits the
form.

6. The system verifies the information and returns
the editor to the Article Manager main page.
After this use case is successfully finished, the
reviewer's information is stored

BG2: Maximise the
editor's work productivity

FFG4: Editors shall be
able to manage a group of
reviewers

FFG1: Assist in automating
the article review process

FFG2: Assist in automating
the article publishing process

BG1: Meet the editor's
needs

BG3: Maximise the
editor's work efficiency NPG1: The system shall

be easy to understand
NPG2: The system shall
be easy to use

FFG5: Editors shall be able
to manage a group of authors

FFG7: Editors shall be able to
communicate with a group of
reviewers

FFG6: Editors shall be able to
communicate with a group of authors

FFG3: Editors shall be able to
publish articles to a publish website

Use Case UC1: Manage Reviewer Actor: Editor
Pre-condition: The editor has already accessed the main page of the Article Manager
Post-condition: The reviewer's information is stored
Steps:
1. The editor selects to manage a reviewer
2. The system present manage options
3. The editor selects a manage option
4. If the editor is updating a reviewer, the system presents the information of the reviewer
5. The editor fills in the information
6. The editor submits the form
7. The system verifies the information
8. The system returns the editors to the Article Manager main page
Extension Ext1:
 Condition: The editor is not updating a reviewer
 Starting Step: 4
 Extension Steps:
 4.1. The system presents a list of reviewers
 4.2. The editor selects a reviewer
 4.3. The system presents information of the selected reviewer
 Resuming Step: 5

FSG1: Editors shall be able to
add new reviewers

FSG2: Editors shall be able to
update reviewers' information

Business Level

Product Level

Feature Level

Service Level

(b)

(a)

DC1: Manage options include
"add reviewer" or "update
reviewer"

Operationalize link
Refine link

Constrain link

Figure 1: Example of Goal-Use Case Model Extraction From Text

2. MOTIVATION
Figure 1 presents an example of a goal-use case model extracted
from textual requirements. Figure 1 (a) shows some parts taken
from a requirements document. Figure 1 (b) presents a desired
goal-use case model to be extracted from the requirements. BG1,
BG2, etc. are business goals. FFG1, FFG2, etc. are functional
feature goals. FSG1, FSG2, etc. are functional service goals.

2.1 Identification of Artifacts from Text
Identifying artifacts from text is a key challenge because: (1) Not
all sentences and not all parts of a sentence in a requirement
document contain goal or use case descriptions, (2) Multiple goals
or use case steps maybe mixed up in a single sentence, (3) Use
case steps are often combined with constraints and (4) Alternative
paths are often combined as a single step. Thus, automatically
filtering important information from text is needed. So is the
automatic separation of different artifacts mixed up together.

Example 1: Sentence (S1) does not contain a goal description, it is
rather an introduction to the system. Thus, it should be ignored.
Example 2: In sentence (S2), the part “which would otherwise
have to be performed manually” has no significance regarding the
objective, functionality or quality of the system. Similarly, “This
system will be designed to” is unimportant. In addition, S2
contains multiple phrases that can be extracted to goals BG1,
FFG1 and FFG2 in Figure 1 (b). Note that the phrase “assist in
automating the article review and publishing process” is split into
two goals FFG1 and FFG2 as conjunctions (i.e., and) are
discouraged in textual requirements to avoid ambiguity [14].
Example 3: Step 2 of the use case (Figure 1(a)) contains a use
case step in the first part and a data constraint (about manage
options) in the second part. They need to be distinguished to
guarantee a correct extraction of use cases. Additionally, step
number 5 is a combination of two separated steps (“The editor
fills in the information” and “The editor submits the form”).
Example 4: Step 4 of the use case (Figure 1(a)) combines a use
case step with an extension specification. It should be extracted
into the extension Ext1 in Figure 1 (b).

2.2 Identification of Artifact Relationships
A goal-use case model requires the relationships between the
artifacts to be specified. These relationships are often implicitly
mentioned in requirements specifications.
Example 5: In sentence (S2), the structure “by providing…”
implies a refinement relationship between “providing tools to
assist in automating the article review and publishing process”
and “maximize the editor’s work productivity”. It is then extracted
as showed between BG1, FFG1 and FFG2 in Figure 1(b).

2.3 Classification of Goals
In goal modeling, goals need to be classified to functional or non-
functional. Moreover, they need to be classified based on how
abstract or concrete they are. Both such classifications are
important to understanding and analyze goal models.

Example 6: The goal BG1 “Meet the editor’s needs” should be
classified as a business goal and placed on the business level since
it describes a business objective, not a functionality or quality.

Example 7: The goal NPG1 “The system shall be easy to
understand” should be classified as a non-functional goal since it
describes a usability quality that the system must meet. Moreover,
NPG1 should be placed on the product level since it is concerned
about the system as a whole, rather than a specific feature.

2.4 Ensure artifacts are properly specified
When identifying artifacts, relevant text in the requirements
document is located. However, they are often fragments of the
sentences they are in and thus in many cases, cannot be used as
descriptions for stand-alone artifacts. Therefore, we need to ensure
those artifacts are rewritten in a sensible way after being extracted.

Example 9: In sentence (S3), it is identified that “remaining easy
to understand” contains a goal description. However, this phrase
by itself is not a meaningful goal description. The context of the
whole sentence needs to be considered to obtain a proper
specification. As showed in Figure 1(b), this phrase is rewritten as
“The system shall be easy to understand” to specify NPG1.

Specification

Core
Predicate

Reference Location
Spatial

Orientation

Destination

Source

0..1 0..20..1 0..1

Purpose

0..1

0..1 0..1

0..1

0..1

Additional
Participant

Beneficiary

Company

Way

Means

Manner

Extended
Predicate

Tense Negation

1

1 1
Duration

0..1

Nuclear
Predicate

Verb Target

Object

Quality

1

1 0..1
Primary

Participant

Agent

Positioner

0..1

Frequency
0..1

Proposition
Predicate

Condition Event

0..1

0..1 0..1

Figure 2: The Structure of a Specification

Figure 3: Artifact Layer

Example 10: In sentence (S3), “meet their needs” is identified as
a potential goal description. The context of the sentence is needed
to recognize which noun phrase the possessive adjective “their”
refers to. A replacement of “their” by “the editor” is necessary
for a proper goal specification (BG1). This process is referred to
as coreference resolution in the natural language processing field.

3. REQUIREMENTS MODEL
In this section, we discuss Functional Grammar and present our
goal-use case integration meta-model on which artifact
classifications and specifications are based.

3.1 Functional Grammar
Functional Grammar (FG) is a grammatical theory concerning the
organization of natural languages [9]. In FG, a sentence contains
different components with unique semantic roles called semantic
functions. In our work, FG is the underlining theory to
parameterize artifact specifications (i.e., goals, use case steps).
This provides a standard way to interpret the semantic role of each
group of words in a specification and thus offers a means to
interpret and analyze specifications. Figure 2 presents the
structure of a specification. A specification consists of four
predicates. For instance, nuclear predicate contains elements
describing which action is conducted (verb), on what target
(object), etc. Core predicate provides details about the beneficiary
or how an activity is performed (manner). Each semantic function
is described by a term. For instance, nominal terms are used to
describe entities while verbal terms describe activities.

Example 11: The specification of goal FFG1 (in Figure 1(b)) is
parameterized as Verb(Maximize) + Object(NomTerm(Head(Work
Productivity) + Possessor(Editor))).
Example 12: The use case UC1’s step 4 is parameterized as
Agent(System) + Verb(Present) + Object(NomTerm(Head(Inform
-ation) + Possessor(Reviewer))) + Condition(Agent(Reviewer) +
Verb(Update) + Object(Reviewer)).

3.2 Goal-Use Case Integration Meta-model
Our meta-model contains two layers, the artifact layer provides
the classification of artifacts while the specification layer provides
specification rule for each artifact class.

Business
Goal

Nuclear
Predicate

Core
Predicate

Verb Target

Beneficiary

Possessive
Verb

Action Verb

ToBe

Transitive
Action Verb
Intransitive
Action Verb

Object

Quality

Reference

Manner

1

1 0..1

Extended
Predicate

Tense Negation

1

1 1

Location Spatial
Orientation

Destination

Source

0..1 0..2

0..1

0..1

Purpose

0..1

0..1

0..1

0..1

0..1

Figure 4: Specification Rule for Business Goals
3.2.1 The Artifact Layer
Figure 3 depicts the key components of artifact layer that defines
the artifact classes across levels of abstractions. For instance,
business goals describe the business objectives of the software
system (e.g., “Maximize the editor’s productivity”). Functional
feature goals list features the system should support in order to
achieve business goals while offering no details as to what
functions are needed to support a feature (e.g., “Assist in
automating the article publishing process”). Functional service
goals provide the details of how a feature is achieved and thus
contains the description of what function a user can perform (e.g.,
“Editors shall be able to add new reviewers”). Non-functional
product goals are concerned with quality attributes of the product
as a whole (e.g., “System shall be easy to use”). Non-functional
service goals specify quality constraints of associated service
(e.g., “Editors shall be able to add new reviewers easily).
Constraints (i.e., data constraint) and various relationships
between the artifacts (i.e., require, refine…) are also defined.

3.2.2 The Specification Layer
This layer imposes rules on how each artifact should be specified.
It provides guidelines for writing artifacts as to which semantic
functions should and should not be used for a certain artifact. For
example, since business goals are usually high-level strategic
statements, condition or duration should not be specified while
other parameters (i.e., beneficiary) are permitted. Figure 4 shows
the specification rule for business goal’s specifications.

Pre-
Processing

Requirements
Document

Linguistic
Analysis

Artifact &
Relationship
Identification

Artifact
Polishing &

Transformation

Artifact
Clasisifcation

Goal-Use
Case Model
Construction

Sections with
Artefact Specs

Classified
Artefacts

Polished Textual
Specs & Formal

Specs

Raw Artifact
Specs &

Relationships

Parse Trees &
Dependency

Trees

Goal-Use
Case Model

GUEST

GUITAR
Identified Incompleteness,

Inconsistency &
Incorrectness

Figure 5: Process for Goal-Use Case Model Extraction

Figure 6: Example of Section Indicator List

Figure 7: Example of Parse Tree

Figure 8: Example of Dependencies

4. OUR APPROACH
Figure 5 presents an overview of our extraction approach
(supported by tool GUEST) in the context of our Goal-Use Case
Integration Framework (GUI-F). The extraction consists of six
main steps. First, the requirements document is preprocessed to
find the sections that contain goal and use case specifications. In
addition, the text in these sections is analyzed to remove
unnecessary information such as pictures, brackets, and multiple
whitespaces. Secondly, a linguistic analysis is done on the text to
resolve coreference, and obtain part-of-speech (POS) and typed
dependencies of tokens (words) using the Stanford parser [15]. In
step 3, our rule-based engine analyzes the outcome of the parser to
identify raw artifact specifications and relationships. In step 4,
these raw specifications are polished to properly specify artifacts
and then parameterized. Next, the polished specifications are used
to classify artifacts into different abstraction levels. In the last
step, a goal-use case model is constructed. Within our GUI-F
framework, the extracted goal-use case model can then be
analyzed by our GUITAR tool [19], which supports the
identification and resolution of inconsistency, incompleteness and
incorrectness. In this paper, we focus on GUEST.

4.1 Requirements Document Pre-Processing
GUEST currently accepts requirements documents in .doc or .txt
formats. Although there is no specific constraint on the structure
of such documents, the sections in a document must be numbered
in a strictly ascending order. A list of section indicators also needs
to be manually created by users at the beginning. Such list
contains the specifications as to which sections should be ignored,

which sections should be considered as sources of goals or use
cases (we call such sections “important sections”). Figure 6
presents an example of a simplified section indicator list in XML
format. Given the indicators provided, GUEST first automatically
extracts plain text from the document (i.e., remove all figures). It
then analyzes the text to identify the important sections. It then
removes unneeded details from those sections to prepare for the
linguistic analysis in step 2. These include texts describing within
brackets, multiple-whitespaces and symbols (i.e., ellipsis,
exclamation, slashes).

4.2 Linguistic Analysis
The linguistic analysis includes the resolution of coreference and
parsing of texts for POS and dependency information.

4.2.1 Coreference Resolution
Coreference refers to cases in which a pronoun or possessive
adjective is used to replace a noun phrase in the same or nearby
sentence. For instance, in the sentence “The editor fills in the form
and submits it”, “it” replaces “the form”. In our work, we use the
Stanford Coreference Resolution System [16] to resolve
coreference. For instance, the resolved sentence would be “The
editor fills in the form and submits the form”.

4.2.2 Syntactic and Dependency Parsing
To automate the identification of potential artifact specifications
and relationships from a sentence, it is important for computers to
“understand” the composition of such a sentence. Specifically,
we need to identify its grammatical structure (i.e., what are the
noun phrases, verb phrases, or adjectival phrases), the roles of
words in the sentence (i.e., which word is verb, noun, adjective or
adverb) and the relationships between words (i.e., a word is an
object, or adjectival modifier of another). Based on such
understanding, computers can be trained to recognize important
parts while ignoring unimportant parts in the sentences in regard
to goal descriptions, and identify relationships between goals.

Consider, for example, the sentence “The system is designed to
maximize the editor's work productivity by automating the article
review process”. Figure 7 shows the parse tree that contains the
identification of phrases (i.e., NP – noun phrase, VP – verb
phrase) and part-of-speech of words (i.e., IN – preposition, VBN –
past-participle verb) in the sentence. Figure 8 presents the typed
dependencies [8] between words. For example, productivity is the
direct object (dobj) of maximize, automating is the prepositional
clausal modifier (prepc_by) of maximize. The parsing results of
these structure and dependencies are critical for our rule-based
extraction technique, which will be discussed in section 4.2.3.

In our work, the linguistic parsing is done by using our extended
version of Stanford Lexicalized Parser [15]. We have retrained the
Stanford parser with requirements specifications data and enabled
the parser to be incrementally trained with new data, without the
need to re-train from scratch to accommodate new data.

4.3 Artifact and Relationship Extraction
The use of rules to extract artifacts and relationships is inspired by
our observation that although requirements specification text is
freely styled and unstructured, the identification of unimportant
phrases or goal relationships usually follow certain patterns. For
instance, consider again the example sentence, the phrase “The
system is designed to” should be ignored because it contains no
important information. The role of this phrase is to introduce an
intention following it in the sentence (i.e., maximize the editor’s
work productivity). If this phrase were used in another sentence,
its role would not change and should still be ignored. In addition,

the words in this phrase do not equally contribute to its
unimportance. In fact, “system”, “is”, “designed” and “to” are
more important than “the”. This leads to the conclusion that the
phrase “system <tobe> designed to” (do something) (with <tobe>
refers to the use of “is”, “are”, “will be”, “shall be”…) should
be ignored in any sentence containing it. Moreover, in this
sentence the refinement relationship between “automate the article
review process” and “maximize the editor’s work productivity” is
recognized by the structure “do something by doing something”
detected in the sentence. Our observation showed that refinement
relationships could be extracted by this structure in most cases.

Note that normal textual comparison cannot guarantee correct
extractions. For instance, if we identify refinement relationships
by looking for the exact match of “Verb+Object+by+Verb_ing”,
then we would fail to reveal the relationship in “maximize the
editor’s work productivity by efficiently automating the article
review process” because “efficiently” is now between by and
Verb_ing, making the structure unmatched. It is the dependencies
between the words that matter, rather than the order they appear in
the sentence. In fact, the most important factor in this example is
the prepc_by relationship between maximize and automating. This
relationship would still remained unchanged regardless of what
details are added into the related verb phrases of maximize and
automating (the relationship between the two words would only
change if the connector “by” is removed, or either of them is
changed, or the sentence structure is modified). Therefore, we rely
on the dependencies between words to define extraction rules.

Table 1: Terminologies of Typed Dependency
Term Explanation
Node A word in a dependency tree
Link A dependency between two nodes (i.e., det(system, this))
Universal Root The node that has no incoming link (i.e., designed)
X sub-tree Sub-tree of the dependency tree that has X as its root
Artifact Goal or use case components (i.e., step, condition)

4.3.1 Extraction Rules
The discussion in this section is based on the examples in Figure 7
and 8. Table 1 presents some typed dependency’s terminologies.
Table 2 presents the syntax of our extraction rule with a list of
representative rule execution actions1. A rule contains two parts:
condition (specified by a list of variables and dependencies) and
actions. In the extraction, a sentence’s dependency tree is matched
against the condition of a rule. If they are matched, the actions
will be executed to generate a new dependency tree as the output.
Since goals and use case specifications are normally located in
separated sections in a requirements document and the extraction
is done section by section, the extractions of them are carried out
separately (except that a use case description sometimes contains
information about the goal it operationalizes). We thus developed
separate sets of extraction rules for goals and use cases.

4.3.1.1 Goal Extraction Rules
There are four types of goal extraction rules as follows.

Ignorance Rule: Ignorance rules are used to recognize sentences
or parts of a sentence that have no important information. They
thus should be ignored during the extraction process. Rule R1 (in
Table 3) implies that the word “specifically” which is used as an
adverbial modifier of a verb in a sentence should be ignored.

Navigation Rule: a navigation rule requires the dependency tree’s
root to be moved to a certain node, which means every node
which is not part of the new root’s sub-tree will be removed.

1 Full reference of our rules can be found at http://goo.gl/gCUofM

Consider rule R2 in Table 3, it can be seen that the dependency
tree in Figure 8 matches this rule (X is designed and Y is
maximize). Following this rule, the root (is at designed originally)
needs to be moved to maximize (Y). This implies that the attention
now is on the maximize sub-tree: “maximize the editor's work
productivity by automating the article review process”.
Relationship Rule: relationship rules are concerned with
extracting goals while identifying relationships between them. We
support the specification of rules to identify sub-goal (refinement)
and relevant relationships. Goals are considered relevant when
they are related, but no additional information to infer more
detailed relationship between them. Rule R3 can be used to
identify the refinement relationship between “automate the article
review process” and “maximize the editor’s work productivity”.

Splitting Rule: Splitting rules are used in case coordinating
conjunctions (i.e., and/or) are used in a sentence. They allow a
sentence to be split into two parts with sibling (if “and” is used)
or alternative (if “or” is used) relationship between them. For
instance, R4 can be used to extract two alternative goals “Reader
can search articles by author names” and “Reader can search
articles by categories” from the sentence “Reader can search
articles by author names or categories”.

4.3.1.2 Use Case Extraction Rules
In a section that potentially contains use cases, the use case
components (i.e., use case name, steps, exceptions) can normally
be identified using a list of indicators similarly to the section
indicator list presented in Figure 6. For instance, the terms
“actor” or “primary actor” indicate the actor specification of the
use case, the terms “main scenario” or “basic path” indicate the
main list of use case steps. These lists can be updated or extended
depending on the needs of specific projects. However, in many
cases, such indicators are missing from the use case specification,
or the specification of a component contains extra information, or
the components are mixed up with each other. Thus, we
developed a list of extraction rules to reveal these components
from texts. Below, we discuss example use case extraction rules.

Step Extraction Rule: This type of rules is designed to extract use
case steps combined in one single sentence (i.e., by “and/or”, or
“after/before”). Using a step extraction rule, not only the steps are
extracted, but also their relationships (i.e., “precede”) are
identified. In case two steps have an “alternative” relationship, a
new extension is then created to establish an alternative scenario.
Rule R5 is an example of this type.
Extension Extraction Rule: is used to identify extensions
embedded in step description. Rule R6 can help reveal the
extension embedded in step 4 in Figure 1(a). Specifically, an
extension with condition “The editor is not updating a reviewer”
and a step “the system presents a list of reviewers and presents
information of a reviewer after the editor selects that reviewer” is
extracted. This step is further extracted into three consecutive
steps using our step extraction rules.

Use Case Constraint Extraction Rule: is used to identify non-
functional or data constraints that are combined together with use
case steps. For instance, Rule R7 can be used to recognize the data
constraint “The manage options include ‘Add reviewer’ and
‘Update reviewer’” in the motivating example (cf. Figure 1).
Use Case Relationship Rule: This is to identify use case
relationships (i.e., extend, include). Consider a use case step “Use
case ‘Register for membership’ is performed”, Rule R8 can be
used to identify the “include” relationship between the currently
processed use case and the “Register for membership” use case.

Table 2: Extraction Rule Syntax
 Syntax Explanation & Example(s)

Generic Rule
syntax

<Variable Declarations>
<Dependency Declarations>
-> <Action Declarations>

The syntax of a rule contains 2 parts: variables and dependencies specify the matching condition of the
rule, and a list of actions to be executed if the rule is matched.

Variable
declaration

X={a} or X={a|b} Variable X has the value of a, or one of the values in a, b… Example: X={designed|aimed}
X/AB or X/{AB|CD} Variable X has the POS tag of AB, or one of the POS tags in AB, CD… Example: X/{NN|NNS}

Dependency
Declaration

root(X) Specify that X is the root of the dependency tree (a root has no dependency link pointing to it)
dep_name(X, ?) There is a dep_name dependency between X and any node. Example: dobj(X, ?)
dep_name(X, Y) There is a dep_name dependency between X and Y. Example: xcomp(X, Y)
dep_name(X, ?/{AB|CD}) There is a dep_name dependency between X and any node having one of the POS tags of AB, CD, …

Example: nsubj(X, ?/{NN|NNS})
dep_name(X, {a|b}) There is a dep_name dependency between X and any node that has one of the values of AB, CD, …

Example: nsubjpass(X, {system|project})
not dep_name(X, Y) There is no dep_name dependency between X and Y. Example: not xcomp(X, Y)

Action
Declaration

ignore(X) Ignore the X sub-tree. If X is the root of the entire dependency tree, then the whole sentence is ignored
root(X) Move the root to node X, consider only the sub-tree whose root is X, ignore the rest of the tree
sub_goal(goal(X), goal(Y)) Establish a sub-goal relationship between goal extracted from the X sub-tree and the one from Y sub-tree
split_sibling(X, Y)
split_alternative(X, Y)

Splitting the sentence into two separated ones (based on the conjunction), build goals based on these
sentences and establish a sibling (if and is used) or alternative (if or is used) between these goals

preceed(statement(X),
statement(Y))

Specify that the statement extracted from the X sub-tree is the preceding step of the one from Y sub-tree
uc_data_constraint
(statement(Y))

Specify the statement extracted from the Y sub-tree is a data constraint of the currently processed step

Table 3: Examples of Goal Extraction Rules
Ignorance Rule (R1) Navigation Rule (R2) Relationship Rule (R3) Splitting Rule (R4)
X={specifically}
advmod(?/{VB|VBZ|VBN}, X)
-> ignore(X)

X={designed|aimed} Y/VB
root(X)
nsubjpass(X, {system|project})
auxpass(X, {be|is|are})
xcomp(X, Y)
-> root(Y)

X/{VB|VBD|VBG|VBN|VBP|VBZ}
Y/VBG
root(X)
prepc_by(X, Y)
->sub_goal(goal(Y), goal(X))

X/{NN|NNS|NNP|JJ}
Y/{NN|NNS|NNP|JJ}
inferred_conj_or(X, Y)
-> split_alternative(X, Y)

Step Extraction Rule (R5) Extension Extraction Rule (R6) Constraint Extraction Rule (R7) Use Case Relationship Rule (R8)
X/{VB|VBD|VBG|VBN|VBP|VBZ}
Y/{VB|VBD|VBG|VBN|VBP|VBZ}
inferred_conj_and(X, Y)
not prep_between(?/{NN |NNS} ,
X)
not prep_between(?/{NN |NNS},
Y)
not mark(X, {if})
not mark(Y, {if})
-> preceed(statement(X),
statement(Y))

X/{VB|VBD|VBG|VBN|VBP|VBZ}
Y/{VB|VBD|VBG|VBN|VBP|VBZ}
Z/{VB|VBD|VBG|VBN|VBP|VBZ}
mark(X, {if})
nsubj(X, ?/{NN|NNS|NNP|NNPS})
advcl(Y, X)
root(Y)
advmod(Z, [10])
parataxis(Y, Z)
-> extension_condition(neg(X)),
extension_step(Z), uc_step(Y)

X={include|contain}
Y={choices|options|alternatives}
Z/{NN|NNS|NNP}
W/{NN|NNS|NNP}
root(X)
nsubj(X, Y)
dobj(X, Z)
dobj(X, W)
conj_and(Z, W)
-> uc_data_constraint(statement(Y))

X={case}
Y={use}
Z={performed}
W/{VB|VBD|VBG|VBN|VBP|VBZ|NN
|NNP|NNS}
nn(X, Y)
nsubjpass(Z, X)
ccomp(Z, W)
auxpass(Z, {is|be})
root(Z)
-> uc_include(W)

4.3.2 How Are Extraction Rules Used?
Rules can conflict with each other. For instance, two rules
specifying the same condition (list of dependencies), or the
conditions of a rule is a sub-set of the conditions of another rule
but their actions are different. GUEST is able to detect such rules
and report them to end users for modification (in some cases,
condition overlap is not a problem if there is a rule of higher
priority than another).

In addition, there exist cases that a single sentence matches
multiple rules and executing a rule before another may lead to
different results. To solve this problem, rules of different types are
given different priorities. For instance, the goal extraction rules
are prioritized in the following order: ignorance rules, navigation
rules, relationship rules and splitting rules. In the case of having
multiple matching rules of the same type, GUEST executes all of
them and produces alternative outputs. The tool then reports this
issue to users for their decisions.

To extract artifacts from sentences, we use an iterative process to
analyze each sentence in consideration of the rule ordering. For
instance, the outcome (may contain multiple goals if a relationship
or splitting rule is used) is then considered in the next iteration and
so on. The process ends when no matching rule is found.

4.4 Polishing and Parameterization
In this step, extracted text artifacts in the form of dependency trees

are taken to produce polished textual specifications and Functional
Grammar-based parameterization.
4.4.1 Artifact Specification Polishing
Specification polishing is used to ensure textual artifacts are
expressed in a proper way. The cases when polishing is required
include: (1) the text extracted from a sentence and its tense (i.e.,
continuous tense) is not suitable for a stand-alone artifact
specification, (2) the text is in passive voice and (3) the text is
incompatible with our meta-model’s specification rules.

The first two cases require algorithms to check the dependency
tree for tense (i.e., the root is a verb with VBG POS tag) or
passive voice use (i.e., look for auxpass dependency link) and
making relevant modifications in the dependency tree. However
the third case requires deeper analysis. In our work, it is
recommended that artifacts are specified using action verb
whenever possible to enable better comparison and analysis of
artifacts [19]. This view has also been adopted in many
requirements engineering research (i.e., [26]). However there exist
many cases in which functionalities or conditions are described in
other forms, i.e., using adjective-preposition phrases. The
examples below present some of these cases.

Example 13: “editors are capable of entering new reviewers” is
re-written as “editors shall be able to enter new reviewers”.

Example 14: “Readers without technical knowledge can search
for articles” should be re-written as “Readers who do not have
technical knowledge shall be able to search for articles”.

Example 15: “There is more than one reviewers in the list”
should be rewritten as “More than one reviewers exist in the list”.

To solve this problem, we developed an extendable set of
rewriting rules that share the same syntax with extraction rules. A
text is checked for a match with a rewriting rule that then triggers
the execution of the rule actions to make necessary modifications.
The phrase “shall be able to” is added to goal specifications only.
The rewriting rule for the text in example 13 can be found below.

X={capable}
Y/{NN|NNS|NNP|NNPS}
Z/{NN|NNS|NNP|NNPS}
T={be|is|are|were|was}
nsubj(X, Y)
cop(X, T)
root(X)
prep_of(X, Z)
-> replace_adj_root(X), add_verbal_root(W, {do}, X, Z, T,
true, false, Z), dobj(W, Z);

4.4.2 Artifact Specification Parameterization
Parameterization of specifications enables the understanding of
artifacts because it identifies the semantic role of each single word
in an artifact specification. For instance, given the goal
specification of “Editors shall be able to add new reviewers
easily”, parameterized as Agent(Editor) + Verb(Add) + Object(
Head(Reviewer) + Attribute(New) + Manner(Easily). From the
parameterization it can be identified which function the system
supports (add new reviewers), who the function is for (editors),
how the function is accomplished (easily), what the function’s
object is (reviewers), what the object’s attribute is (new). We term
such representation as structured specification in our framework.

To generate structured specification from a textual one, we need
to identify the semantic role (function) each word or group of
words plays. The input for this process is the polished dependency
tree from step 4.4.1. This process starts with the investigation in
the dependency tree to determine the value of the Verb semantic
function since it is the central function in our structured
specifications. Normally universal root constitutes the value of
Verb except when to-be verb is used. The determination as to
which semantic function a group of words should fall into depends
on the relationship between the root of that group and the
universal root. For instance, if X is the universal root, then the
relationship nsubj(X, Y) indicates that the Y sub-tree is the value
of the Agent semantic function. Similarly, dobj(X, Y) may
indicate Y sub-tree is the value of the Object semantic function.
However, due to the complexity of English, there are always
exceptions. For instance, in the sentence “system notifies users
about the changes”, although notifies is the root and there exist
the relationship dobj(notifies, users), users is not the Object, but
instead Beneficiary. In addition, there is no rule for prepositional
phrases. For instance, in dependency tree of the sentence “editors
can login with their accounts” has the prep_with(login, account)
relationship and “their accounts” has the Means semantic role in
this case. However, in sentence “editors can communicate with
reviewers”, “reviewers” has the Company semantic role although
the relationship prep_with(communicate, reviewers) exists. We
overcome this problem by developing a set of 168 semantic
labeling rules based on an investigation on the common English
verb, adjective + preposition combinations. Below we give
labeling rules for the discussed examples. The first one means that
if prep_with(communicate, Y) exists, the Y sub-tree has the Means
semantic role. The second one means that if prep_of(notify, Y) and
dobj(notify, Z) exist, then Y sub-tree is Reference and Z sub-tree is
Beneficiary semantic functions.

4.5 Goal Classification
After the extracted dependency trees are polished, textual
specifications are generated from them. In this step, they are
classified to determine whether they are functional or non-
functional goals, and which levels of abstraction they are on.

Although a number of techniques and tools have been proposed to
automatically classify requirements in the literature (i.e., [5, 7]),
none of is currently available for download and use in our work.
We thus selected Mallet [18], one of the best general text
classifiers that are available, for artifact classification. Mallet can
classify a text into a fixed set of classes, such as “functional” vs.
"non-functional", based on labeled training examples. It includes
implementations of several classification algorithms, including
Naïve Bayes, Maximum Entropy, and Decision Trees. Mallet
calculates the probability of each word for being classified into a
certain class based on the labeled training data. The probability of
the whole text for being classified into a certain class is
determined by the probabilities of the words it contains. In this
work, we extended Mallet by using text-preprocessing to improve
its accuracy (to be discussed in section 5). The improvements are
discussed as follows:

• Removal of unimportant content: Mallet considers every
word in a text for probability calculation. However, not all
words are needed in this process. In fact, we modified it to
remove unimportant details such as stop words (i.e., a, the,
that, shall), symbols (i.e., coma) and numbers since their
existence does not determine the class of a text.

• Ensure the standard form of the word is used: We updated
Mallet to consider only the standard form of words. For
instance, the probability is calculated for “present”, not
“presents” or “presented” if they are used in the text.

• Use a set of classification keywords: We developed a set of
310 keywords that support the classification of artifacts. For
instance, “available” and “easy-to-use” are non-functional
goal keywords. “Productivity” is a business goal keyword.

Our classifier is composed of two separated classifiers. The
horizontal classifier is used to determine if a text is business,
functional or non-functional goal specifications. For a non-
functional goal, it also provides the prediction as to which non-
functional category it belongs to (i.e., security, usability).
Currently we support the identification of 11 non-functional
categories. The vertical classifier is used to identify the abstraction
level a goal should belong to (product, feature, or service level).
The rationale for using two separated classifiers is that they can
help reducing training data size. For instance, if a single classifier
were used, then we would need sufficient training data for 13x3
classes, as opposed to only 13 classes (business goal, functional
goals and 11 non-functional goal categories) for the horizontal
classifier and 3 classes for the vertical classifier. Additionally, the
training data can be shared between the two classifiers, given they
are appropriately labeled for each classifier. Up to now we have
trained the classifiers with over 1200 requirements collected from
multiple sources including online resources, literature and books.
GUEST allows the classifiers to be further trained or re-trained.

4.6 Goal-Use Case Model Construction
After the artifacts are extracted and classified, and relationships
are identified, the model can be constructed. The following
subsections describe the main issues to be addressed in this step.

Identify duplicate artifacts: sometimes goals are repeated in
different sentences in requirements documents. For instance, the

communicate, with->COMPANY
notify%, of-> A1:BENEFICIARY, REFERENCE

goal “maximize the editor’s productivity” is repeated twice in the
motivating example (cf. Figure 1(a)). Repeated goals are merged
into one in the model. In GUEST, not only exactly duplicate
artifacts are identified, highly overlapping artifacts are also
reported to end users. The identification of overlaps between
artifacts is done using their parameterizations. In fact, we compare
two specifications by matching their corresponding semantic
functions (i.e., match Agent of a specification with Agent of
another, Object with Object). Partly overlapped artifacts are
reported to users to decide if a merge of them is suitable.

Report model construction problems: other problems may
occur during the model creating. For instance, a goal has the
equivalent probabilities for two classes (i.e., feature and service).
Another example is an inconsistency can exist if the goals FSG1,
FFG1 are classified as functional service and functional feature
goal respectively, while an extraction rule infers that FFG1 is a
sub-goal of FSG1. This situation is invalid since feature goals are
on a higher level than service goals and thus a feature goal cannot
refine a service goal. All problems from the extraction process are
reported to users for the decisions.

Other problems: The emphasis of this paper is on extracting goal-
use case models from what provided in requirement documents.
The problems related to the extraction are identified and reported
to users. However, problems inherited from the requirements
documents, e.g., the model is inconsistent due to some
inconsistencies exists in the original requirement documents, are
beyond the scope of this paper. Such problems have been tackled
in our previous work with the GUITAR tool [19, 20] which
supports the analysis of goal-use case models for incompleteness,
inconsistency and incorrectness. Since GUEST is integrated into
GUITAR, we can ensure the seamless support for the building and
analysis processes of goal-use case models.

GUEST is not aimed at fully automating the entire extraction
process, as this is almost impossible since requirements
documents can be found in different structures and written in
uncontrolled styles. It is rather intended to assist requirements
engineers in modeling goals and use cases from requirements
documents. Thus, there may be cases not all artifacts and
relationships can be extracted (i.e., a necessary extraction rule
may be missing). To assist requirements engineers in verifying the
extraction results and possibly continue the extraction manually,
GUEST provides features such as: producing extraction logs that
capture all steps during the extraction process, mapping artifacts
with original text where they are extracted from and allowing
users to modifying the extracted models.

5. EVALUATION
In this section, we present three evaluations conducted to evaluate
the effectiveness of GUEST in extracting goal-use case models
from requirements documents. Specifically, we seek to answer the
following research questions:

• RQ1: How accurately does GUEST classify artifacts by their
textual specifications?

• RQ2: How accurately does GUEST parameterize textual
specifications?

• RQ3: How accurately does GUEST extract goal-use case
models from requirement specifications documents?

Table 4 presents our formulas to calculate the metrics for each
research questions. Our full experimental data can be found at
http://goo.gl/gCUofM.

Table 4: Formulas for Metrics
 Formulas
RQ1

TP: True Positive (number of artifacts are correctly classified)
FP: False Positive (number of incorrectly classified artifacts)

RQ2

RQ3

TP: True Positive (number of valid extracted artifacts or
relationships) FP: False Positive (number of invalid extracted
artifacts or relationships) FN: False Negative (number of
artifacts or relationships not extracted)

0"

20"

40"

60"

80"

100"

5" 10" 15" 20" 25" 30" 35" 40" 45" 50" 55" 60" 65" 70" 75" 80" 85" 90" 95"
Training'Data'Size'(%)'

Precision'(a)'

Casamayor" Our"Extended"Mallet" Original"Mallet"

0"

20"

40"

60"

80"

100"

5" 10" 15" 20" 25" 30" 35" 40" 45" 50" 55" 60" 65" 70" 75" 80" 85" 90" 95"
Training'Data'Size'(%)'

Recall'(b)'

Casamayor" Our"Extended"Mallet" Original"Mallet"
Figure 9: Classifier Benchmark Validation Results

5.1 RQ1: Artifact Classification
A benchmark validation was carried out to compare and contrast
our requirements classifier with the existing state-of-the-art
classifiers: Casamayor et.al. non-functional requirements classifier
[5] (we term it as Casamayor) and original version of Mallet
(original Mallet). The reasons for this selection were fourfold.
First, Casamayor is among the classifiers developed recently and
reportedly obtained high results in its evaluation. Second,
Casamayor’s experiment steps were described clearly and its data
is available, making it possible to reconstruct the exactly same
validation. Thirdly, no requirements classifier was available to
download and lastly, original Mallet was selected to verify
whether our improvements made to extend it were effective.

We followed Casamayor’s experiment steps to run a validation on
PROMISE dataset [2] that consists 625 requirements collected
from 15 software development projects. Among them, 255 items
are marked as functional requirements and the remaining 370 non-
functional requirements are classified into 11 categories, such as
Security, Performance and Usability. Only the non-functional
requirements were used in this evaluation. Multiple experiments
were run. In each experiment, a k-portion of data (i.e., k=90%)
was randomly selected as training data and the rest used as testing
data. Each experiment is run in 10 iterations to obtain the scores
for the precision and recall metrics (cf. Table 2). 19 experiments
were run with k was 5, 10,…, 95.

Figure 9 (a) and (b) present the comparison graph between three
classifiers for precision and recall. All three classifiers obtained
higher precision and recall rates when the training set size
increased. It can be noticed from this comparison that our
classifier produced higher-quality results than others when the
training set was small. This was due to the support of our non-

functional indicator keywords. When the training set size
increased, Casamayor’s results raised with highest rates and
surpassed our classifier when the training set was over 55% of the
entire data (as showed in the graphs). Original Mallet followed a
very similar trend as our classifier that is due to the share of
algorithms between the two classifiers. However, our classifier
outperformed original Mallet with at least 5% difference in most
experiments. From these results the key benefit of our classifier is
that it performs relatively well with a small training dataset.

Table 5: Parameterization Validation Results
Round 1 (existing capability) 274 over 310 (88%)
Round 2 (best achievable capability) 297 over 310 (96%)

Table 6: Extraction Validation Results
Case Study OPS SPS Average
Artifact D 175 172

FP 26 23
FN 17 29
Precision 85% 86% 86%
Recall 89% 83% 86%

Relationship D 144 102
FP 22 16
FN 36 26
Precision 84% 84% 84%
Recall 77% 76% 77%

Polishing & Parameterization 91% 89% 90%
Goal Classification 81% 78% 80%

D: total detected FP: False Positive FN: False Negative

5.2 RQ2: Artifact Parameterization
PROMISE data was pre-processed before being used in this
validation. For instance, we split a requirement into multiple ones
if it contains more than one sentence. In addition, combined words
such as “his/her”, “himself/herself” were changed to single words
(i.e., his). Moreover, each sentence with coordinating conjunctions
(i.e., “and”) is split. However, if the split sentences have identical
structure (i.e., “readers can search articles” and “readers can
download articles”), we only keep one of them to maintain the
structural differences between requirements. We have randomly
selected 200 requirements from all 15 projects and 110
requirements collected from the literature. Each requirement was
parameterized by GUEST and the results were manually checked
by us to determine the accuracy rates. A two round-validation was
conducted. Firstly, we parameterized the requirements based on
our existing collection of rewriting and labeling rules to verify
GUEST’s existing parameterization capability. We then identify
the reason for errors found in the results. If the reason was
incorrect parsing or missing supporting rules, we then trained the
parser with a correct parse tree or attempted to write new rules
using our defined syntax. In round 2, the failed parameterizations
were re-generated with new information. The result of this round
was the best achievable capability of GUEST in this validation.

Table 5 indicates that we obtained 88% and 96% of accuracy in
round 1 and 2 respectively. There were a number of requirements
unsupported by GUEST because their grammatical structures
were not recognized by our meta-model. For instance, “Out of
1000 accesses to the system, the system is available 999 times”.

5.3 RQ3: Goal-Use Case Model Extraction
We used the online publication system (OPS) and split payment
system (SPS) industrial case studies in this validation. OPS case
study comes with a requirements document with 31 pages and 503
sentences. SPS requirements document contains 46 pages and 586
sentences. Each requirements document follows the IEEE
requirements specification template and contains a number of

sections for goals and use cases. In each case study, we manually
modeled goals and use cases from the given requirements
document and then compare that model with the one generated by
GUEST. We analyzed the results of each extraction phrase to
provide detailed evaluation of the approach. The phrases analyzed
were: extraction of raw artifacts and relationships, polishing and
parameterization of artifacts, and goal classification.

The results are showed in table 6. We achieved 86% precision and
recall rates for the artifact extraction, and 84% precision and 77%
recall rate for the relationship extraction. A number of artifacts
and relationships were not extracted due to the missing of relevant
extraction rules. In addition, some relationships were not detected
since detecting such relationships required the understanding of
the entire contexts in which the artifacts were specified. For
instance, “this system is designed to allow an editor to
communicate with reviewers and authors. The software will
facilitate communication between authors, reviewers, and the
editor via E-Mail”. GUEST could not identify the relationship
between these two goals. However, an alert regarding the possible
overlap between them was generated. We achieved 90% accuracy
rates of the polishing and parameterization of artifacts (to be
considered correct, the artifact needed to be both correctly
polished and parameterized). The common errors were due to
missing relevant rewriting rules. For instance, GUEST could not
properly rewrite the goal “Include support for simultaneous bills”
to the desired form “Support simultaneous bills”. We achieved
80% for goal classification in this validation.

These evaluation results indicate that the missing artifacts and
relationships were due to missing extraction rules. The
incorrectness in artifact parameterization and classification came
from invalid results produced by the linguistic parser and artifact
classifier respectively. Results could be improved if our extraction
rules set is extended and the parser and classifier further trained.

5.4 Threats to Validity
Threats to external validity include representativeness of the
selected subjects and quality of our parser, classifier and rules. To
reduce these we increased the variability of the data by selecting
requirements from different sources. For RQ2 we carried our a
second round of validation to evaluate the tool in case the parser
and rules were perfect for the given set of requirements. Threats to
internal validity include the human factors in determining the
correctness of GUEST results in each validation. In RQ3, we
manually extracted goals and use cases from the requirements
documents. In RQ2 and RQ3, we manually verified the tool’s
outputs for semantic parameterization, goals, use cases and their
relationships and classifications. To mitigate, we reviewed all
manual tasks twice. Using two or more people with relevant
knowledge and experience in validation would further improve.

6. DISCUSSION AND FUTURE WORK
Reduce effort for goal-use cases modeling: Our approach can
reduce the effort and time to model goals and use cases from
requirements documents for analysts. Moreover, GUEST can
potentially be used to quickly gain understanding of natural
language requirements documents. GUEST rules can be used
across different projects. Users can add new rules to improve the
quality of extraction. Furthermore, since GUEST’s underlying
techniques for natural language parsing and artifact classification
provide support for multiple languages, it is possible to adopt and
apply our approach for requirements written in other languages.
However, a new set of extraction rules that suits the grammars of
each such language needs to be developed.

Enable the Analysis of goal-use case models: Our automated
semantic parameterization enables the seamless integration of
GUEST and our tool GUITAR which provides automated analysis
of goals and use cases [19]. This provides comprehensive support
for the modeling and analysis on goal-use case models.

Possible application of our technique in other areas: Our
technique of automated parameterization can be used for any
textual sentences. While our set of extraction rules was developed
specifically for goals and use cases, its underlining concept can
still be applied to support the information extraction in other
areas. For instance, extraction rules can be developed in a similar
way (i.e., develop rule actions and algorithms to execute these
actions) to identify privacy or security policies [31] from software
documents. Our rule-based technique can also provide a new
approach in ontology learning [4, 6]. Specifically, similar rules
can be created to detect ontological concepts, properties and their
relationships to extract ontologies from natural language texts.
GUEST’s extraction accuracy depends on the quality of the
Stanford parser and the artifact classifier: a common issue for
a statistical machine learning technique is that it may not produce
correct results for what it has not been trained for. Therefore, it is
possible to have a sentence incorrectly parsed or a specification
incorrectly classified in GUEST. Such problems can be resolved
by training the parser and classifier with relevant data. GUEST
provides the incremental training of both the parser and classifier.

Understanding of grammatical dependency required for rules
writing: In GUEST, the extraction and rewriting rules need to be
manually written. This requires the rule writers to have knowledge
of grammatical dependency and thus some training would be
required for end users to be able to extend the rules repository. We
plan to overcome this problem by developing an algorithm that
semi-automates the generation of a rule from the associations
between sentences and lists of desired information to be extracted
from them. In addition, a visual rule editor would be developed.

Unidentifiable artifact relationships: a number of relationships
between artifacts in different sentences are not detectable.
Detecting such relationships requires the understanding of the
entire context in which they are specified. Our future work will
thus will focus on resolving these types of problems.

Lack of evaluation of the approach’s usefulness: although
having promising results in our case study-based evaluation,
GUEST has not been validated for a real software project. We
thus plan to carry out an evaluation with our industry partners to
evaluate the approach’s usefulness in requirements engineering.

7. RELATED WORK
To the best of our knowledge, no technique has been proposed to
automatically extract goal-use case models from natural language
documents. In this section, we discuss existing techniques that
extract requirements or use cases separately.
Natural language requirements Extraction and formalization
Rauf et.al. [25] proposed a technique to identify sections that
contains logical structures (LSs) such as requirements or use cases
and logical components (LCs) such as actor or use case extensions
in a requirements document. Their objective is to locate where
requirements and use cases are located, similar to what we
achieved by using a list of section indicators. This work, however,
does not extract individual requirements, use cases and their
relationships. Niu and Easterbrook [23] semi-automatically extract
product line requirement asset from natural language requirements
documents based on the use of Functional Requirement Profile,
domain terminologies, and heuristic rules. However, this only

focuses on functional requirements in the format of Verb+Direct
Object. Ghosh et.al. [12] transforms textual requirements into
Linear Temporal Logic based on the use of dependency parsing,
domain specific terminologies and a set of transformation rules. It
has no support for extracting requirements or goals from texts.
Breaux et.al. [3] developed a semantic parameterization technique
to formalize natural language goal specifications with Description
Logics. They provided a set of templates in which a statement
contains a number of semantic components such as subject, object
and location. This is similar to semantic functions in our work.
However, we provide a larger set of semantic roles (i.e., our
frequency, duration roles are not supported in their work). Also,
this work does not automate the semantic parameterization.

Extraction of use cases from natural language documents
Ilieva [13] used linguistic analysis to extract use case paths model
from uncontrolled natural language use case specifications. This
work is only concerned with identifying actor, action (a single
verb) and their ordering without considering other information
(i.e., object, target of a use case step, pre/post condition or data
constraints). Drazan and Mencl [11] developed a technique to
identify use case steps from textual use case descriptions. Similar
to our work, it is able to identify multiple steps combined using
coordinating conjunctions. The limitation of this work is that it
assumes use case descriptions are written in a restricted natural
language. In addition, it does not allow the extraction of other use
case components (i.e., pre/post condition or extensions). Sinha
et.al. [27] developed a linguistic analysis engine to get the
understanding of textual use case descriptions. The engine is able
to identify components in use case steps (actor, action) and
classify steps into a number of predefined classes (i.e., UPDATE,
INPUT, OUTPUT) using a domain dictionary. This work,
however, does not deal with the cases when multiple artifacts (i.e.,
step and constraint) are mixed together. In addition, various use
case components (i.e., conditions, extensions, constraints) are not
detectable. Rago et.al. [24] focused on extracting sequenced use
case steps from textual use cases and identifying duplication
among them. It however does not support the identification of
other use case components and relationships between use cases.

8. SUMMARY
We have developed a semi-automated rule-based approach to
extract goal-use case models from unformatted textual
requirements documents. It incorporates various techniques to
locate goals, use cases and their relationships from text, ensure
they have proper textual specifications, classify goals and provide
semantic parameterization of their textual specifications.
Evaluation results are very promising. In two selected case
studies, GUEST achieved 86% precision and recall rates for goals
and use cases extraction, 84% and 77% of precision and recall
rates for relationships extraction. It obtained 88% accuracy for the
automated parameterization with PROMISE data. The evaluation
showed that our artifact classifier entirely outperformed Mallet
and was better than Casamayor’s classifier with smaller training
datasets. GUEST is integrated with our previous work on goal-use
case automated analysis (GUITAR), providing a comprehensive
framework for goal-use case extraction and analysis.

9. ACKNOWLEDGEMENTS
The authors gratefully acknowledge support from the Victorian
Government under the Victorian International Research
Scholarships scheme, Swinburne University of Technology, and
the Australian Research Council under Linkage Project
LP130100201.

10. REFERENCES
[1] A.I. Anton, R.A. Carter, A. Dagnino, J.H. Dempster, and

D.F. Siege. Deriving goals from a use-case based
requirements specification. Requirements Engineering, 6(1):
p. 63-73. 2001.

[2] G. Boetticher, T. Menzies, and T. Ostrand, The PROMISE
Repository of Empirical Software Engineering Data, 2007.

[3] T.D. Breaux, A.I. Antón, and J. Doyle. Semantic
parameterization: A process for modeling domain
descriptions. ACM Transactions on Software Engineering
and Methodology (TOSEM), 18(2): p. 5. 2008.

[4] P. Buitelaar, D. Olejnik, and M. Sintek, A protégé plug-in for
ontology extraction from text based on linguistic analysis, in
The Semantic Web: Research and Applications. 2004,
Springer. p. 31-44.

[5] A. Casamayor, D. Godoy, and M. Campo. Identification of
non-functional requirements in textual specifications: A
semi-supervised learning approach. Information and
Software Technology, 52(4): p. 436-445. 2010.

[6] P. Cimiano and J. Völker, "Text2Onto", in Natural language
processing and information systems. 2005, Springer. p. 227-
238.

[7] J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc.
Automated classification of non-functional requirements.
Requirements Engineering, 12(2): p. 103-120. 2007.

[8] M.-C. De Marneffe and C.D. Manning. Stanford typed
dependencies manual. URL http://nlp.stanford.
edu/software/dependencies manual. pdf. 2008.

[9] S.C. Dik, The theory of functional grammar. Walter de
Gruyter. 1989.

[10] S.C. Dik, K. Hengeveld, E. Vester, and C. Vet. The
hierarchical structure of the clause and the typology of
adverbial satellites. Layers and levels of representation in
language theory: p. 25-70. 1990.

[11] J. Drazan and V. Mencl, Improved processing of textual use
cases: Deriving behavior specifications, in SOFSEM 2007:
Theory and Practice of Computer Science. 2007, Springer. p.
856-868.

[12] S. Ghosh, D. Elenius, W. Li, P. Lincoln, N. Shankar, and W.
Steiner. Automatically Extracting Requirements
Specifications from Natural Language. arXiv preprint
arXiv:1403.3142. 2014.

[13] M. Ilieva. Use Case Paths Model Revealing Through Natural
Language Requirements Analysis. in IC-AI. 2007.

[14] I.J. Jureta, S. Faulkner, and P.-Y. Schobbens. Clear
justification of modeling decisions for goal-oriented
requirements engineering. Requirements Engineering, 13(2):
p. 87-115. 2008.

[15] D. Klein and C.D. Manning. Accurate unlexicalized parsing.
in Proceedings of the 41st Annual Meeting on Association
for Computational Linguistics-Volume 1. Association for
Computational Linguistics. 2003.

[16] H. Lee, Y. Peirsman, A. Chang, N. Chambers, M. Surdeanu,
and D. Jurafsky. Stanford's multi-pass sieve coreference
resolution system at the CoNLL-2011 shared task. in
Proceedings of the Fifteenth Conference on Computational

Natural Language Learning: Shared Task. Association for
Computational Linguistics. 2011.

[17] J. Lee, N.-L. Xue, and J.-Y. Kuo. Structuring requirement
specifications with goals. Information and Software
Technology, 43(2): p. 121-135. 2001.

[18] A.K. McCallum. MALLET: A Machine Learning for
Language Toolkit. 2002.

[19] T.H. Nguyen, J. Grundy, and M. Almorsy. GUITAR: An
ontology-based automated requirements analysis tool. in
Requirements Engineering Conference (RE), 2014 IEEE
22nd International. IEEE. 2014.

[20] T.H. Nguyen, J.C. Grundy, and M. Almorsy. Ontology-based
automated support for goal–use case model analysis.
Software Quality Journal: p. 1-39. 2015.

[21] T.H. Nguyen, B.Q. Vo, M. Lumpe, and J. Grundy.
REInDetector: a framework for knowledge-based
requirements engineering. in Proceedings of the 27th
IEEE/ACM International Conference on Automated
Software Engineering. ACM. 2012.

[22] T.H. Nguyen, B.Q. Vo, M. Lumpe, and J. Grundy. KBRE: a
framework for knowledge-based requirements engineering.
Software Quality Journal, 22(1): p. 87-119. 2014.

[23] N. Niu and S. Easterbrook. Extracting and modeling product
line functional requirements. in International Requirements
Engineering, 2008. RE'08. 16th IEEE. IEEE. 2008.

[24] A. Rago, C. Marcos, and J.A. Diaz-Pace. Identifying
duplicate functionality in textual use cases by aligning
semantic actions. Software & Systems Modeling: p. 1-25.
2014.

[25] R. Rauf, M. Antkiewicz, and K. Czarnecki. Logical structure
extraction from software requirements documents. in
Requirements Engineering Conference (RE), 2011 19th IEEE
International. IEEE. 2011.

[26] C. Rolland, C. Souveyet, and C.B. Achour. Guiding goal
modeling using scenarios. Software Engineering, IEEE
Transactions on, 24(12): p. 1055-1071. 1998.

[27] A. Sinha, A. Paradkar, P. Kumanan, and B. Boguraev. A
linguistic analysis engine for natural language use case
description and its application to dependability analysis in
industrial use cases. in Dependable Systems & Networks,
2009. DSN'09. IEEE/IFIP International Conference on.
IEEE. 2009.

[28] I. Sommerville. Software engineering. Software Reuse, based
on Software Engineering. 2012.

[29] S. Supakkul and L. Chung. Integrating FRs and NFRs: A use
case and goal driven approach. framework, 6: p. 7. 2005.

[30] A. Van Lamsweerde, R. Darimont, and E. Letier. Managing
conflicts in goal-driven requirements engineering. Software
Engineering, IEEE Transactions on, 24(11): p. 908-926.
1998.

[31] X. Xiao, A. Paradkar, S. Thummalapenta, and T. Xie.
Automated extraction of security policies from natural-
language software documents. in Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations
of Software Engineering. ACM. 2012

