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Abstract

Edge computing has emerged as a new computing paradigm that allows com-

putation and storage resources in the cloud to be distributed to edge servers.

Those edge servers are deployed at base stations to provide nearby users with

high-quality services. Thus, data caching is extremely important in ensuring low

latency for service delivery in the edge computing environment. To minimize

the data caching cost and maximize the reduction in service latency, we for-

mulate this Edge Data Caching (EDC) problem as a constrained optimization

problem in this paper. We prove the NP-completeness of this EDC problem

and provide an optimal solution named IPEDC to solve this problem based on

Integer Programming. Then, we propose an approximation algorithm named

AEDC to find approximate solutions with a limited bound. We conduct inten-

sive experiments on a real-world data set and a synthesized data set to evaluate

our approaches. Our results demonstrate that IPEDC and AEDC significantly

outperform the four representative baseline approaches.
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1. Introduction

The world has witnessed an exponential growth of mobile devices including

mobile phones, wearable devices, tablets, smart vehicle, and Internet-of-Things

(IoT) devices [1]. These devices introduce massive traffic that leads to network

congestion and significantly impacts the quality of service, especially service

latency. To address this issue, cloud data caching was introduced to allow users

to access high-demand data, and utilize cloud computing’s configurable and

powerful capacities [2].

However, with the growing demand for high-quality data and lower latency,

the cloud model falls short of those requirements, due to the usually unpre-

dictable network latency and expensive bandwidth [3]. As an evident weak-

ness of the cloud computing paradigm, it is extremely hard to reduce delay at

the wide-area network scale. Edge computing is proposed as a new comput-

ing paradigm to tackle this challenge, where edge servers are attached to base

stations or access points close to users to offer them computation and storage

resources at the edge of the network [4]. This way, mobile and IoT app ven-

dors (together referred to as app vendors hereafter) can rent computation and

storage resources in the edge computing environment to host their services and

cache their data on edge servers. This way, their app users can access those

services or data with low latency [5]. Edge computing is also a key technology

in the 5G mobile network [6].

As edge servers become the entry (first access) point for most mobile and IoT

devices, the rapidly increasing internet traffic data will be transmitted through

those edge servers. Caching data, especially popular data, on edge servers will

significantly reduce the transmission latency in users’ data retrieval. This is

particularly critical for latency-sensitive applications, e.g., smart city deploy-

ment, real-time traffic navigation systems, augmented reality applications, etc.

As popular data account for a large portion of internet traffic, caching popular

data on edge servers can also reduce the pressure on the backbone network. It

is predicted that mobile traffic will be reduced by 35% through caching data on
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edge servers. From an app vendor’s perspective, caching data on edge servers

can decrease the volume of data transferred in and out of the cloud to save the

transfer costs considerably.

Given a piece of popular data, the straightforward solution is to cache it

on every edge server in a specific geographic area. This way, the latency in

all app users’ data retrieval can be minimized. However, edge computing, as

an extension of cloud computing, also employs the pay-as-you-go pricing model.

App vendors need to hire storage resources on edge servers for caching this data.

This solution produces a huge caching cost, and thus is impractical for most, if

not all, app vendors. Thus, app vendors must find a data caching strategy to

guarantee that all their app users can access the data from nearby edge servers

with low latency while minimizing the cost of hired cache spaces on those edge

servers. In this paper, this data caching problem in edge computing is referred

to as the edge data caching (EDC) problem. Our previous work [7] is the first

attempt to investigate this EDC problem from app vendors’ perspective. This

paper significantly extends [7] by providing a more thorough theoretical analysis

and a new approximation algorithm to solve the EDC problem efficiently within

trusted performance bounds.

In this paper, our major contributions are as follows:

• We formulate the EDC problem from the app vendors’ perspective, then

prove its NP-completeness.

• We develop an optimal approach named IPEDC for finding optimal solu-

tions to EDC problems with the Integer Programming technique.

• We develop an approximation approach named AEDC for finding near-

optimal solutions to EDC problems in large-scale scenarios efficiently, and

analyze its theoretical approximation ratio.

• We conduct extensive experiments on both a real-world data set and a

synthesized data set to evaluate the proposed approaches against four

representative approaches.
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The rest of the paper is organized as follows. Section 2 presents an example

to illustrate and motivate the EDC problem. Section 3 formulates the EDC

problem and proves its NP-completeness. Section 4 presents and analyzes our

optimal approach and approximation approach for finding solutions to EDC

problems. Section 5 experimentally evaluates the proposed approaches. Section

6 reviews the related work. Section 7 concludes this paper and points out our

key future work.

2. Motivating Example

Video data is a typical type of data to be cached on edge servers. Accord-

ing to Cisco’s report, mobile video data currently accounts for more than half

of the world’s mobile data traffic and it will further increase by 78% by 2021

[8]. Currently, most app vendors such as YouTube store their videos on cloud

servers. When a video becomes viral over the Internet – which can result in

hundreds of thousands if not millions of requests – very large numbers of users

will send their requests to the cloud server for this video simultaneously. This

creates tremendous traffic load on the network and increases data retrieval la-

tency. Caching these videos on selected edge servers can effectively solve these

problems.

However, in edge computing, three unique constraints differentiate the EDC

problem from the data caching problems in the cloud computing environment

and conventional networks:

• Server adjacency constraint : In the edge computing environment, edge

servers can communicate their neighbor edge servers via high-speed links

[9]. Thus, connected edge servers can share their computation and storage

resources. This way, the edge server network can be treated as a graph

where edge servers are represented by nodes and the links between edge

servers are represented by edges.

• Server coverage constraint : To avoid any blank coverage areas in a specific

geographic area, the coverage areas of nearby edge servers often intersect.
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Thus, app users in an overlapping area can access any of the edge servers

covering them.

• Server capacity constraint : Different from the virtually unlimited com-

putation and storage resources available in the cloud, edge servers only

have limited computation and storage resources due to their limited sizes

[10, 11].

Caching the data blocks of a data/file on multiple servers or machines is com-

mon in a large-scale cloud data center. This improves data reliability. However,

in the edge computing environment, edge servers are attached to base stations

that are geographically distributed. Each edge server covers the set of users

within the coverage areas. Although the users within multiple edge servers’

overlapping coverage area may be able to access multiple edge servers, it is usu-

ally not the case for most users. In addition, retrieving multiple data blocks

from multiple edge servers and composing these data blocks into a data/file is

too time-consuming in the edge computing environment where low latency is a

top priority. In this paper, we have made the assumption that edge data are

always cached in whole for the above reasons.

Figure 1: An example EDC scenario

An EDC example is shown in Fig. 1. There are six edge servers in this area,

with each edge server having a specific coverage area. The number next to an
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edge server indicates the number of users covered by that edge server. When a

YouTube video becomes viral, it is predicted that a large number of YouTube

users in this area will request this video. As a large amount of research effort

has been made to predict video popularity [12], we assume that the number of

YouTube users who will request this popular video can be predicted in this work.

From YouTube’s perspective, a straightforward solution to the EDC problem in

this area is to cache this video on every edge server. This way, all YouTube users

can access this video from edge servers. However, YouTube will need to pay for

the hired resources on edge servers, such as bandwidth and storage, to cache

this video. As even short videos are large, this solution is not cost-effective.

Therefore, the data caching strategy must achieve the minimum data caching

cost while ensuring that all the app users in this area can retrieve the video from

one of the edge servers. This edge data caching (EDC) problem is inherently a

Constrained Optimization Problem (COP).

The data retrieval latency and data caching cost can be evaluated using a

variety of metrics. A user’s data retrieval latency consists of two components:

the latency between the user and its nearby edge server, and the latency be-

tween edge servers. The first component is not affected by the data caching

strategy, and it is also quite small. Thus, this component is not included in the

formulation of the EDC strategy. To model the COP in a more generic man-

ner, including constraints and the optimization objective, we use the number of

cached data replicas to measure the data caching cost, and the number of hops

to measure the data retrieval latency. For example, the data caching cost is 6

if the video is cached on all the edge servers in Fig. 1. The server adjacency

constraint requires that all the users must be able to retrieve the data from an

edge server within one hop. For example, this constraint holds for the u in the

top left corner if the video is cached on v1, v2 or v4 and it does not hold if the

video is only cached on v3, v5 and/or v6. The rationale behind this constraint

is that edge servers can communicate with their neighbor edge servers [9], but

they are not designed or linked to route (potentially large) data across multiple

hops. Based on the generic metrics for data caching cost and data retrieval
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latency, specific pricing policies and latency models can be integrated into our

COP model. For example, app vendors can easily implement their own cost

models and data sizes into our model.

There might exist multiple data caching solutions satisfying the latency con-

straint with the minimum cost. As edge servers often have different coverage

radius and different user densities within their coverage areas, they usually cover

different numbers of app users. Thus, the data caching solution should also re-

duce the maximal latency across all app users in this area. From YouTube’s

perspective, another optimization objective is thus to maximize the benefit pro-

duced by the cached data replicas, which is measured by the total reduction in

the data retrieval latency for all the app users.

In this paper, we study quasi-static scenarios where users will not move

across edge servers’ coverage areas during the period of time when the EDC

problem is being solved [9, 13, 6, 14]. In highly mobile scenarios where users

move across edge servers’ coverage areas quickly, the app vendor can update its

EDC strategy periodically or on-demand with a highly efficient EDC approach,

e.g., AEDC as proposed in Section4.2 and analyzed in Section 5.5. The model

and approaches proposed in this paper are generic and applicable to various edge

computing scenarios. Thus, data are cached on edge servers as a whole and we

currently do not consider the situation where data can be partially cached, e.g.,

video segments. Also, the scale of the EDC problem in real-world scenarios

can be much larger than the example presented in Fig. 1. Finding an optimal

solution to a large-scale EDC problem is far from trivial.

3. Problem Formulation

3.1. Problem Statement

The edge servers in a particular area constitute an edge server network,

which can be modeled as a graph where a node represents an edge server and

an edge represents the link between two edge servers. Denote G(V,E) as the

graph, where V is the set of nodes in G and E is the set of edges in G. In the

remainder of this paper, we will speak inter-changeably of an edge server and
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Table 1: Summary of Notations

Notation Description
bu maximum benefit for user u
bu,j benefit of caching replica on server vj for app user u
CU set of users covered by the selected edge server set S
cui set of users covered by edge server vi
di,j distance from server vi to server vj
dT threshold of distance
du minimum distance from app user u to retrieve replica
E = {e1, e2, ..., em} finite set of links between edge servers
G graph presenting a particular area
R = {r1, r2, ..., rn} set of binary variables indicating cache replicas on edge

servers
S set of selected servers to cache data replica
U = {u1, u2, ..., uk} finite set of users
V = {v1, v2, ..., vn} finite set of edge servers

its corresponding node in graph G, denoted as v. The notations adopted in the

paper are summarized in Table 1.

As mentioned in Section 2, this EDC problem is formulated in a generic

manner: 1) using the number of data replicas to measure the data caching cost;

and 2) using the number of hops between edge servers to measure the latency.

Based on the server capacity constraint in Section 2, edge servers only have

limited resources. However, those limited resources are needed by many app

vendors at the same time to host their services and cache their data for their

app users. Thus, it is unlikely for one app vendor to hire most of those resources

on an edge server and cache a huge amount of its data. A more cost-effective

and realistic method is to cache the most popular data only for most app ven-

dors. Therefore, this work considers the individual data caching scenarios, and

builds the foundation for more sophisticated edge caching scenarios, e.g., caching

multiple data.

Given a piece of data and a set of edge servers vi (i = {1, ..., n}). Let

ri ∈ {0, 1} be the decision indicating whether the data is cached on vi, such

that ri = 1 if edge server vi is selected to cache data. Denote the vector

R =< r1, ..., rn > as the data caching solution.
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The distance between two nodes in the graph can be calculated by their

shortest path. As we use the number of hops to measure the data retrieval

latency, the latency of an app user u can be calculated as follow:

du = min{di,j , rj = 1, vj ∈ V },∀u ∈ Ui (1)

where Ui is the set of users covered by edge server vi.

The main objective of edge data caching is to provide high-quality services

for app users with low latency. Thus, the data caching strategy R must satisfy

the server latency constraint - the required data must be accessible from an edge

server in this edge server network for every app user within a certain number of

hops:

du < dT ,∀u ∈ Ui (2)

where dT is the threshold of latency, measured by the number of hops as well.

Based on the server adjacency constraint discussed in Section 2, communi-

cations only occur between connected edge servers. Thus, dT should be 2 here.

However, this threshold can be relaxed if new techniques occur to allow data

transmissions through multiple edge servers rapidly and the app vendor can

accept the relatively high latency.

3.2. Data Caching Benefit

To evaluate and compare the effectiveness of different data caching strategies,

the concept of data caching benefit is introduced here, which can be calculated

based on the latency reduction of user data retrieval. We use the number of

hops reduced by cached data on an edge server to measure the data caching

benefit. Thus, there is a negative correlation between data retrieval latency and

data caching benefit. The following equation shows how to calculate the benefit

bu,j produced for app user u ∈ Ui if edge server vj is selected to cache data:

bu,j =

dT − di,j if di,j < dT

0 if di,j ≥ dT

(3)
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As discussed in Section 2, to avoid the blank area that is not covered by any

edge servers, the coverage of nearby edge servers often partially overlap. An

app user in the overlapping area can access multiple edge servers, and retrieve

data from any of those edge servers that the data in their cache. Thus, the data

caching benefit produced by the data caching strategy for an app user u is:

bu = max{rj ∗ bu,j , vj ∈ V } (4)

The data caching cost is the primary optimization objective from the app

vendor’s perspective. Thus, the data caching solution R must minimize this

cost:

minimize cost(R) (5)

With the minimum data caching cost, the optimal data caching strategy R

should also maximize the data caching benefit:

maximize benefit(R) (6)

In this way, we formulate this EDC problem as a constrained optimization

problem.

3.3. Problem Hardness

Here we prove the NP-completeness of the EDC problem by Theorem 1.

Theorem 1. The EDC problem is NP-complete.

Proof. To prove the NP-completeness of the EDC problem, the minimum dom-
inating set problem (MDS), one of the classic NP-complete problems, is intro-
duced first. Denote G = (V,E) as an undirected graph where V is the set of n
nodes and E is the set of m edges. Let Conn,n be the matrix to describe the
connection between nodes such that Coni,j is 1 if there is an edge between node
vi and vj . Denote S as the solution of this MDS problem. The MDS problem
can be formulated as below:
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min

n∑
i=1

vi (7a)

s.t. : vi ∈ {0, 1},∀i = {1, .., n} (7b)
n∑

i=1

Coni,j ≥ 1,∀j ∈ {1, ..., n} (7c)

Now we present the reduction process from the EDC problem to the MDS
problem. The reduction consists of two parts: 1) making each app user only
covered by one edge server; and 2) making only one app user in each edge
server’s coverage. Based on the reduction, the value of the benefit objective
(6) is always same if selecting the same number of edge servers. In this case,
the benefit objective is safely ignored. The instance EDC(R,E,Benn,k) can be
constructed with the above reduction by an given instance MDS(S,E,Conn,n)
in polynomial time, where n = k and |R| = |S|. In this EDC(R,E,Benn,k),
the benefit matrix Benn,k is calculated by (3). This way, any feasible solution
S fulfilling objective (7a) and constraint (7b) also fulfills objective (5). The
constraint (7c) of the MDS problem shows that if a node vi is not selected,
there is at least one neighbour of vi selected in the solution s. Similarly, the
benefit of app user u ∈ Ui can be obtained as bu ≥ 1. This way, any feasible
solution S fulfilling the constraint (7c) also fulfills the constraints (1) (2) (3)
and (4). Therefore, the EDC problem is reducible from MDS and it is NP-
complete.

4. Edge Data Caching Strategy

We first propose the optimal model solved by Lexicographic Goal Program-

ming1 technique, then provide an efficient approximation algorithm with the

analysis of its approximation ratio.

4.1. Optimal Model

The EDC problem can be modeled as a constrained optimization problem

(COP). One of the two optimization objectives can be prioritized over the other

with the Lexicographic Goal Programming technique, depending on the app

vendor’s preference.

1https://www.ibm.com/support/knowledgecenter/en/SSSA5P 12.9.0/ilog.odms.cplex.help
/CPLEX/UsrMan/topics/multiobj/multiobj intro.html
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Given G = (V,E), where V = {v1, .., vn, } and E = {e1, ..., em}, there is a

set of variables R = {r1, .., rn}, where ri ∈ {0, 1},∀i ∈ {1, ..., n}, ri being 1 if

the a data replica is cached on the ith node, or 0 otherwise. The constraints for

the COP model are:

bu = max{ri ∗ bu,i},∀u ∈ {1, ..., k},∀i ∈ {1, ..., n} (8)

1 ≤ bu ≤ 2,∀u ∈ {1, ..., k} (9)

Constraint family (8) is calculated by (4), which guarantees that all the

app users can retrieve data from the nearest edge server. Constraint family (9)

enforces the latency constraint to ensure that every app user can retrieve the

data from an edger server within one hop, which means the data is retrieved

from the app user’s local edge server via zero hops or neighbor edge server via

one hop.

(a) Strategy R1 (b) Strategy R2 (c) Strategy R3

Figure 2: Example Data Caching Strategies

To satisfy constraint families (8) and (9), there might be multiple solutions.

For example, two possible data caching solutions in Fig. 2(a) and Fig. 2(b)

are R1 = {0, 1, 1, 1, 0, 0}, which caches the data on v2, v3, and v4, and R2 =

{1, 0, 0, 0, 0, 1}, which caches the data on v1 and v6. Both R1 and R2 are feasible

with consideration of (8) and (9). However, the data caching cost of R2 is less

than that of R1, where cost(R1) = 3 and cost(R2) = 2. To minimize the data

caching cost, the below objective in the COP model is included to capture the

app vendor’s first optimization objective:

12



min

n∑
i=1

ri (10)

The app vendor’s second optimization objective also needs to be modeled

in the COP. Let us assume two solutions as demonstrated in Fig. 2(b) and

Fig. 2(c), R2 = {1, 0, 0, 0, 0, 1}, which caches the data on v1 and v6, and

R3 = {0, 1, 0, 1, 0, 0}, which caches the data on v2 and v4, both fulfilling the

latency constraint and achieving the app vendor’s first optimization objective

to minimize the data caching cost. However, compared with v1 and v6, v2 and

v4 cover more app users, i.e., 39 versus 13 in total. Thus, R3 allows more app

users to retrieve the data from their local edge servers. Thus, from the app

vendor’s perspective, R3 produces more caching benefits (i.e., lower retrieval

latency) than R2 at the same data caching cost. The below objective function

that maximizes the data caching benefits of all app users based on (4) is included

in the COP model to capture the app vendor’s second optimization objective:

max

k∑
u=1

bu (11)

The COP above can be solved with Integer Programming problem solvers,

such as Gurobi2 and IBM CPLEX Optimizer3. Here we name this optimal

solution as IPEDC.

4.2. Approximation Algorithm

As mentioned in Section 3.3, the EDC problem is NP-complete. It is in-

tractable to find optimal solutions to large-scale EDC problems. In [7], we

proposed a simple greedy algorithm, namely LGEDC. However, there is a sig-

nificant performance gap between IPEDC and LGEDC. Thus, we develop a

new approximation algorithm named AEDC to achieve higher performance with

lower computation overhead than LGEDC.

2http://www.gurobi.com/
3https://www.ibm.com/analytics/cplex-optimizer
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Given V = {v1, ..., vn} and U = {u1, ..., um}, AEDC implements an iterative

process for app vendors to hire edge servers to cache data replicas. The pseudo

code is presented in Algorithm 1.

The algorithm starts with the initialization in Lines 1-4. To calculate the

benefits of the solution provided by this algorithm, DCU is introduced to present

the set of app users already covered by the solution, while CU means the set of

app users that can access data via one hop. As edge servers can communicate

with their neighbour edge servers, for each server vi ∈ V , cui can be presented

as the set of app users in the coverage of edge server vi and their neighbour edge

servers (Line 5).

In Algorithm 1, ∆cui and ∆dcui are used to select edge servers to cache data

replicas, where ∆cui is the number of users in cui but not in CU and ∆dcui

presents the number of users in dcui but not in DCU . For each iteration, ∆cui

and ∆dcui are updated for each edge server vi ∈ V . Then edge server v, which

has the maximum value of ∆cu, would be included into the solution set S to

maximize the number of newly covered users. If there are more than one edge

servers with that maximum value, AEDC selects the one with the maximum

value of ∆dcu to earn more benefits. This process iterates until all the app

users are covered by the set of selected edge servers.

(a) S = ∅ (b) S = {v5} (c) S = {v5, v1}

Figure 3: Example System State at Different Moments during AEDC Process

Fig. 3 presents the system state at different moments during the AEDC

process for the EDC example in Fig. 1. Fig. 3(a) illustrates the initial state.

Then, edge server v5 is selected to cache a data replica because v5 can serve the
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Algorithm 1 AEDC Algorithm

1: Initialization:
2: CU,DCU, S ← ∅, benefits, cost = 0
3: for each server vi do
4: dcui ← Ui, cui ← Ui

5: end for
6: End of initialization
7: for each vi ∈ V do
8: for each neighbour vj of vi do
9: cui ← cui ∪ dcuj

10: end for
11: end for
12: repeat
13: for each vi ∈ V do
14: ∆cui = |cui ∩ ¬CU |
15: ∆dcui = |dcui ∩ ¬DCU |
16: end for
17: v ← v0
18: for each vi ∈ V do
19: if ∆cuvi > ∆cuv or

∆cuvi = ∆cuv and ∆dcuvi > ∆dcuv then
20: v ← vi
21: end if
22: end for
23: S ← S ∪ {v}
24: CU ← CU ∪ cui

25: DCU ← DCU ∪ dcui

26: until CU = U
27: return S

most new app users (54 users) via one hop where ∆CU = {42, 41, 38, 50, 54, 46}

in Fig. 3(b). After the first iteration, there are 6 users not covered by the

solution set S = {v5}, and the algorithm continues the iterative process to

choose another edge server. In the second iteration, both ∆cu1 and ∆cu2 are

the maximal value while ∆CU = {6, 6, 5, 5, 0, 0}. In this case, edge server v1 is

selected in Fig. 3(c), because ∆dcu1 = 5 > ∆dcu2 = 4. Thus, the solution of

AEDC is S = {v5, v1}, as all users have been covered by selected edge servers.

Considering the optimal solution R3 = {0, 1, 0, 1, 0, 0} described in Section 4.1,

CostIPEDC = CostAEDC = 2 while BenefitsIPEDC = 99 > BenefitsAEDC =

90.
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As the IPEDC approach is implemented based on the Integer Programming

technique, IPEDC selects the optimal solution among all the possible solutions

that have a total of C1
n + C2

n + ... + Cn
n = 2n possible results. Moreover, we

prove that the COP of EDC is NP-complete in Section 3.3, thus IPEDC cannot

find the optimal solution within polynomial time. In the AEDC algorithm, it

can be calculated that the worst case of computational complexity is O(n2).

This means that AEDC can reduce a large amount of execution time to find the

solution of EDC problem, compared with IPEDC.

Now, we prove the approximation ratio of AEDC, where it is the ratio of

the cost incurred by AEDC and that incurred by IPEDC in the worst case.

Theorem 2. The approximation ratio of AEDC is ln∆ + 1, where ∆ denotes
the maximum number of app users that can be covered by any edge server v ∈ V
within 1 hop.

Proof. As mentioned in Section 2, the number of data replicas is used to mea-
sure the data caching cost. For each edge server selected to cache a data replica,
the cost is 1. Here we implement an amortized strategy to analyze the approxi-
mation ratio. This way, we distribute the cost 1 to newly covered users equally
instead of the selected edge server. Take Fig. 3(b) as an example, the cost of
each user incurred by selecting v5 is 1

54 .
Based on constraint (9), all the app users should be covered by the data

caching strategy. Let Sopt denote the optimal solution found by IPEDC. In this
case, we can divide the graph G into |Sopt| stars. Each star contains 1 edge
server as the center of the star and the newly covered users as its leaves.

Denote newU(v) as the number of newly covered app users by adding edge
server v into the solution. For each edge server v ∈ Sopt, the corresponding star
has newU(v) leaves. Based on the heuristic logic of AEDC, the distributed cost
is at most 1

newU(v) . Otherwise, AEDC would choose another edge server. After

assigning the distributed cost to newly covered app users, those app users would
not produce any more costs. In the worst case, no two app users in the same
star are covered together. Thus, the total distributed cost of a star is at most:

1

newU(v)
+

1

newU(v)− 1
+ · · ·+ 1

2
+

1

1

Based on the harmonic series, we can obtain that the total distributed cost
of a star is at most ln(newU(v)) + 1. Thus, the total cost produced by AEDC
is at most |Sopt| · (ln(newU(v)) + 1). Moreover, for each v ∈ V , newU(v) is
always less than or equal to ∆. Thus, the approximation ratio of AEDC is:

ratio ≤ |Sopt| · (ln∆ + 1)

|Sopt|
= ln∆ + 1 (12)
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5. Experimental Evaluation

We experimentally evaluate IPEDC and AEDC on a widely-used real-world

data set and a synthetic data set, and compare their performance against four

representative approaches.

5.1. Comparison Approaches

In these experiments, we evaluate and compare the performance of IPEDC

and AEDC against four comparison approaches, namely LGEDC [7], DIP [15],

Random and Greedy-Covered-Users:

• LGEDC : This algorithm keeps selecting the edge server with the most

links until it satisfies the latency constraint (2).

• DIP [15]: This approach tries to minimize the app vendor’s revenue, com-

bining caching cost and latency reduction, by caching data on edge servers

without leveraging the collaboration between edge servers. Its parameter

settings in the experiments are the same as [15], i.e., [5, 25] for the unit

cost of cache and [0.5, 2] for the unit cost of latency (same as unit benefit).

Accordingly, the range of the ratio between them is [2.5, 50]. In the EDC

problem, all users must be covered. To pursue this goal, the ratio is fixed

at 2.5 for DIP in the experiments to cover as many users as possible.

• Random: This algorithm keeps selecting the edge server randomly until it

satisfies the latency constraint (2).

• Greedy-Covered-Users(GU): This algorithm keeps selecting the edge server

with the most app users until it satisfies the latency constraint (2).

5.2. Experimental Settings

Data Sets: There are two sets of experiments. The first set is conducted

the public real-world Edge User Allocation (EUA) data set4[4] with 128 edge

4https://github.com/swinedge/eua-dataset
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servers and 816 app users in the Melbourne CBD area. The second set is con-

ducted on a synthetic data set that simulates more general EDC scenarios. In

the experiments on the synthesized data set, a specific number of edge servers

are randomly distributed within a particular area with app users also generated

randomly. In both sets of experiments, edges are randomly generated to con-

nect the edge servers according to the edge density to ensure that the graph is

connected.

Parameter Settings: To comprehensively analyze IPEDC and AEDC, we

vary two parameters in the experiments to simulate different EDC scenarios,

as presented in Table 2. This way, we can also analyze how the changes in

the parameters impact the performance of our approaches. Each experiment

is repeated 100 times every time we change a parameter, and the results are

averaged:

• The total number of edge servers (n = |V |). In experiment Set #1 and

Set #2.1, this number varies from 10 to 50 in steps of 10.

• Edge density (d = |E|/|V |). In experiment Set #2.2, this number varies

from 1 to 3 in steps of 0.4.

Performance Metrics: In the experiments, we use four metrics to evaluate

the effectiveness and efficiency of all the approaches:

1. Data Caching Cost cost, the lower the better;

2. Data Caching Benefit benefit, the higher the better;

3. Benefit per Data Replica bpr, the higher the better; and

4. Computation Overhead time, the lower the better.

To stabilize the impact of the number of app users, we always generate 100

app users in experiment Set #2.

5.3. Experimental Results

Fig. 4, Fig. 5 and Fig. 6 show the results of the experiments Set #1, #2.1

and #2.2, respectively.
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Table 2: Parameter Settings

Number of Edge Servers Edge Density Data Set
Set #1 10, 20, 30, 40, 50 1 Real-World
Set #2.1 10, 20, 30, 40, 50 1 Synthetic
Set #2.2 30 1, 1.4, 1.8, 2.2, 2.6, 3 Synthetic

5.3.1. Effectiveness

Fig. 4 shows the results of experiment Set #1. Overall, of all the six ap-

proaches, IPEDC achieves the highest benefit per data replica at the

lowest data caching cost, while AEDC is the second lowest in cost

with the second highest in benefit per data replica. Fig. 4(b) shows

that AEDC and IPEDC achieve lower data caching benefits than those four

comparison approaches. With the priority to minimize the data caching cost, if

an app user can retrieve data from edge servers via one hop, there is no need

to do so via zero hops. Thus, IPEDC will aim for a solution that barely fulfills

(9), i.e., a solution just good enough to allow as many app users as possible to

retrieve data from edge servers via one hop.

Fig. 4(a) shows that the average data caching costs achieved by

IPEDC and AEDC are much lower than the other four approaches

across all five cases, i.e., 8.61 (IPEDC) and 9.14 (AEDC) versus 16.44 (LGEDC),

19.64 (DIP), 22.04 (GU) and 22.24 (Random). The average advantage of IPEDC

is 5.80% against AEDC, 47.63% against LGEDC, 56.16% against DIP, 60.93%

against GU, and 61.29% against Random. Fig. 4(a) also shows that, as the

number of edge servers increases from 10 to 50, the data caching cost achieved

by AEDC increases from 3.62 replicas to 13.26 replicas on average, similar to

IPEDC (3.58 to 12.4) but much slower than LGEDC (5.26 to 27.3), DIP (9.48

to 26.0), GU (6.34 to 38.38) and Random (6.46 to 37.18). Fig. 4(b) shows that

the increase in the number of edge servers will increase the data caching ben-

efits achieved by all six approaches, from 498.68 to 1252.82 for IPEDC, 470.90

to 1179.74 for AEDC, 523.98 to 1374.32 for LGEDC, 666.24 to 1506.76 for DIP,

602.82 to 1475.24 for GU and 564.48 to 1451.04 for Random. Fig. 4(c) shows

the significant advantages of IPEDC and AEDC over the other ap-
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Figure 4: Experiment Set #1

proaches in achieving cost-effective data caching strategies. IPEDC has the

best performance, which averagely outperforms AEDC by 9.70%, LGEDC by

57.39%, DIP by 87.88% GU by 84.38% and Random by 96.57%.

Fig. 5 depicts the results of experiment Set # 2.1. Overall, IPEDC again

achieves the highest data caching benefit per replica at the lowest data

caching cost, following by AEDC. The advantages of IPEDC and AEDC over

the other four approaches are significant. In this set of experiments, the edge

servers are set up in a similar way as in Set #1. Therefore, the results shown in

Fig. 5(a) are similar to those shown in Fig. 4. However, Fig. 5(b) shows that

the data caching benefit does not increase with the increase in the number

of edge servers. The reason is that, unlike experiment Set #1, the number of

app users in experiment Set #2.1 does not increase. Thus, the data caching
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Figure 5: Experiment Set #2.1

benefit does not increase accumulatively as in Fig. 4(b). This is also the same

reason for the rapid decrease in the benefit per data replica demonstrated in

Fig. 5(c).

Fig. 6 shows the results in experiment Set 2.2 where the edge density varies.

In terms of the average data caching cost and benefit per data replica, IPEDC

and AEDC outperform the other four approaches with large margins,

and IPEDC still has the best performance. The advantage of IPEDC is 9.62%

against AEDC, 58.07% against LGEDC, 66.65% against DIP, 64.68% against

GU and 64.59% against Random on average in data caching cost, while 13.38%

against AEDC, 94.67% against LGEDC, 120.43% against DIP, 116.73% against

GU and 125.71% against Random on average in benefit per data replica.

Interestingly, Fig. 6 shows that the edge density impacts the ap-
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Figure 6: Experiment Set #2.2

proaches in a very different way from the number of edge servers. Fig.

6(a) shows that as the edge density increases from 1.0 to 3.0, the data caching

costs achieved by IPEDC and AEDC decrease from 8.47 to 4.18 and from 8.99

to 4.77 respectively. After investigating the results, we find that the increase in

the edge density allows each edge server to link to more edge servers. This in-

creases the app users’ chances of retrieving data from edge servers via one hop.

IPEDC does not need to cache as many data replicas to ensure that all app

users are served by edge servers within one hop. As a result, the average data

caching cost decreases. For the same reason, the data caching benefit decreases,

as demonstrated in Fig. 6(b). The increase in the connectivity between edge

servers also allows more app users to be able to retrieve data via one hop. As

a result, the benefit per data replica increases, as demonstrated in Fig. 6(c),
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from 18.18 to 31.01 for IPEDC, from 16.35 to 26.97 for AEDC, from 10.41 to

16.15 for LGEDC, from 11.20 to 11.15 for DIP, from 8.89 to 13.67 for GU and

from 8.60 to 13.25 for Random. Since DIP focuses on maximizing the benefits

with consideration of caching cost, the total benefits achieved by DIP are only

changed slightly when the maximum benefits are fixed in Set #2.

Overall, our IPEDC and AEDC outperform LGEDC, DIP, GU and

Random significantly and consistently in formulating cost-effective data

caching strategies. Overall, AEDC can achieve about 90% of IPEDC’s per-

formance in minimizing data caching cost and benefits per replica across all

the experiments. Both IPEDC and AEDC are particularly effective in EDC

scenarios where edge servers are highly connected.

5.3.2. Efficiency

Fig. 4(d), Fig. 5(d) and Fig. 6(d) present the average computation over-

heads of the six approaches in finding a solution to the EDC problem. We can

see in Fig. 4(d) and Fig. 5(d) that the computation overhead of IPEDC in-

creases rapidly when the number of edge servers increases. When there are 50

edge servers to consider, IPEDC takes more than 15 seconds to find the optimal

solution, as shown in Fig. 4(d). Excessive computation overheads are inevitable

when IPEDC is looking for the optimal solution to this NP-complete EDC prob-

lem. Thus, IPEDC is suitable for solving EDC problems in small sizes.

To solve large-scale EDC problems, heuristics-based approaches are more

practical, e.g., AEDC, LGEDC or GU. The results in Fig. 6(d) indicate that

both IPEDC and AEDC are capable for handling dense graphs built based on

edge servers that are highly connected. In conclusion, IPEDC can be used to

solve EDC problems in small sizes while AEDC handles the large-scale ones.

5.4. Threats to Validity

Threat to construct validity. The main threat to construct validity is the

four comparison approaches. Due to the novelty of this edge data caching prob-

lem, we choose the greedy approach proposed in [7], the optimal benefit-based

approach proposed in [15] and two basic baseline approaches to compare with
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our approaches in the experiments. To minimize the threat of comprehensive

evaluation, two parameters are varied in the experiments to simulate different

EDC scenarios. This way, we could not only evaluate IPEDC and AEDC with

four comparison algorithms but also present the impacts of varying parameters

on those algorithms.

Threat to external validity. The main threat here is whether IPEDC

and AEDC are also suitable in other edge computing scenarios. To address this,

we formulate the approaches and measure the performance in a more generic

way: evaluating the effectiveness by using the number of data replicas and

the number of hops for cost and benefit. Moreover, the two data sets used to

conduct the experiments, including a real-world one and a synthetic one. Thus,

the representativeness and comprehensiveness of the evaluation are ensured, and

this threat is reduced.

Threat to conclusion validity. The lack of statistical tests, e.g., chi-

square tests, is the major threat to conclusion validity in our paper. To com-

pensate this threat, we have conducted comprehensive and intensive experiments

to cover various scenarios in different size and complexity. Every time a param-

eter changes, we repeat the experiment for 100 times and calculate the averaged

results. This led to a large number of test cases, which tend to result in a small

p-value in the chi-square tests and lower the practical significance of the test

results [16]. For example, in experiment Set #2, there were a total of 1,100

runs. This number is not even close to the number of observation samples that

concern Lin et al. in [16]. Thus, the threat to the conclusion validity due to the

lack of statistical tests might be high but not significant.

5.5. Real-world Applications

User mobility is an important characteristic of the real-world edge computing

environment. However, the structure of an edge server graph does not change

when the users move in the area. It is determined by how the edge servers in

the area are physically linked. Moreover, for its high efficiency, AEDC can solve

the EDC problem quickly in different time slots, similar to the approaches pro-
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posed in [9, 14]. In each time slot, edge servers need to update the information

including users within its coverage area and their requests. Specifically, when

a user no longer needs a piece of data or has moved out of the current edge

server’s coverage area, this user can be removed from the current edge server’s

user set Ui. In the meantime, new users can be added into Ui. This way, the

context can be rapidly updated at the start of each time slot. Then, the AEDC

algorithm can be executed in each time slot to formulate the corresponding data

caching strategies. Given its high efficiency as demonstrated in Fig. 4(d), Fig.

5(d) and Fig. 6(d), AEDC can be executed periodically or on-demand to adapt

to user mobility in real-world EDC scenarios.

6. Related Work

Data caching have been extensively investigated in the fields of conventional

distributed computing and cloud computing environments. With the popularity

of edge computing, data caching in the edge computing environment is obtaining

attention from researchers recently.

6.1. Conventional Distributed Data Caching

In the last few decades, there are many data caching problems investigated in

conventional distributed computing environments, including web caching [17],

content-centric networking [18], content delivery network [19], etc. Banerjee

et al. [20] developed a content placement strategy for information-centric net-

work based on data popularity, namely Greedy Caching. With popular contents

cached in the network, the Greedy Caching approach considered the cache miss

rate at the edge to decide what contents would be cached on the core server. In

[21], the authors formulated two caching strategies for data publish-subscribe

systems, including eviction-based caching and time-to-live-based caching to ad-

dress the space and time issues, respectively. The authors of [22] focused on

balancing the trade-off between latency and cost in the content-centric network.

They addressed this issue with a holistic model for provisioning the storage

capability based on the network performance and the provisioning cost.
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6.2. Cloud Data Caching

In the cloud computing environment, a critical problem of data caching is

how to utilize cache space efficiently on cloud hosts and mobile devices.

Arteaga et al. [23] proposed CloudCache, a method for managing cache, to

fulfill the caching requirement of the workload and minimize cache wear-out. In

[24], the authors presented how to use segment access-aware dynamic semantic

cache in the cloud computing environment for relational databases. A cache

access algorithm was introduced to consider cache exact hit, cache extended

hit, cache partial hit and cache miss. The authors of [25] explored the cache

design space for embedded processors with evolutionary techniques for mobile

and thin client processors in the cloud computing environment. A heuristic

and evolutionary method was presented to generate a near-optimal cache space

design for enhancing service quality. In [26], the authors formulated a bene-

fit maximization problem and created a cache replacement approach based on

spatio-temporal traffic requirements. They also introduced a content clustering

method for collecting popular data and clustering similar contents.

6.3. Edge Data Caching

As an extension of cloud computing, edge computing distributes both com-

puting capacities and storage resources from cloud server to edge servers[27].

With the deployment of edge servers, the problems of computation offloading

and data caching occurs. The computation offloading problems have been ex-

tensively investigated from different perspectives, including edge servers’ energy

efficiency [28] and offloading cost [29].

Recently, there are some researchers starting to investigate the data caching

problems in edge computing. As mentioned in Section 2, the data caching strate-

gies from conventional distributed computing and cloud computing cannot be

directly applied in edge computing. Thus, those researches introduced new ideas

and approaches. Cao et al. proposed an optimal auction mechanism with the

consideration of the costs produced during delivery and retrieval. The authors

of [30] provided a caching system, namely Agar, from the erasure-coded per-
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spective. Agar was a dynamic programming algorithm which could cache data

chunks optimally with consideration of data popularity and network latency.

Instead of improving internal cache utility on edge servers, some researchers

started to investigate how to combine the advantages of both internal caches

and external caches. Zhang et al. [31] integrated in-network caching and edge

caching to ensure the latency requirements of time-sensitive transmissions over

the 5G network. The authors of [32] introduced a new edge caching architecture

with improved resource utility by using smart vehicles as external edge caches.

The above studies mostly focus on cost savings. Data latency is also an

important issue in edge data caching problems. Drolia et al. [33] proposed an

edge caching system, namely Cachier, to minimize the data retrieval latency.

They implemented a coordinating mechanism to balance the loads between the

cloud server and edge servers dynamically. Liu et al. [15] studied the data

caching problem in the edge computing environment with the aim to maximize

the app vendor’s revenue based on caching cost and latency. This approach was

implemented in our experiments as DIP for comparison. However, those work

ignored the collaboration between edge servers, as well as the benefit produced

by the reduction in user’ service latency.

Edge computing inherits the pay-as-you-go price model from cloud comput-

ing. Thus, the cost incurred for app vendors is critical to the success of edge

computing because they are the main customers in the edge computing envi-

ronment. However, all the above work tackles the data caching problem from

network providers’ or app users’ perspectives, our work solves the Edge Data

Caching (EDC) problem from the app vendor’ perspective in the edge comput-

ing environment. We also realistically and innovatively solve the EDC problem

in a generic manner to minimize the data caching cost and maximize the data

caching benefit with the server coverage constraint and the server adjacency

constraint.
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7. Conclusion

In this paper, we formulated the new Edge Data Caching (EDC) problem as

a constrained optimization problem based on the graph from the app vendor’s

perspective. The optimal solution of the EDC problem is to find a solution that

minimizes the data caching cost and maximizes the data caching benefit. We

proved that the EDC problem is NP-complete. Then we proposed an optimal

solution IPEDC solved by Integer Programming, and an approximation algo-

rithm AEDC within a provable bound. We conducted extensive experiments

based on a real-world data set and a synthetic data set to evaluate our ap-

proaches. The results demonstrate that both IPEDC and AEDC significantly

outperform all other four baseline approaches in formulating cost-effective EDC

solutions, while AEDC solves large-scale EDC problems efficiently.

This research has established the foundation for the EDC problem and

opened up a number of research directions. In the future, we will investigate

multiple data caching scenarios, partitionable data caching scenarios, users’ dy-

namic participation and security policy. Those will allow our approaches to

accommodate more sophisticated EDC scenarios.
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