
Towards Human-Centric Model-Driven Software Engineering

John Grundy a, Hourieh Khalajzadeh b and Jennifer McIntosh c

Faculty of Information Technology, Monash University, Clayton, Victoria, Australia
{John.Grundy, Hourieh.Khalajzadeh, Jenny.McIntosh}@monash.edu

Keywords: Model-driven engineering, Human-centric software engineering, human factors

Abstract: Many current software systems suffer from a lack of consideration of the human differences between end users.
This includes age, gender, language, culture, emotions, personality, education, physical and mental challenges,
and so on. We describe our work looking to address these issues by incorporation of human centric-issues
throughout the model-driven engineering process lifecycle. We propose the use of the co-creational ”living
lab” model to better collect human-centric issues in the software requirements. We focus on modelling these
human centric factors using domain-specific visual languages, themselves human centric modelling artefacts.
We describe work to incorporate these human-centric issues into model-driven engineering design models,
and to support both code generation and run-time adaptation to different user human factors. We discuss
continuous evaluation of such human-centric issues in the produced software and feedback of user reported
defects to requirements and model refinement.

1 INTRODUCTION

Modern software systems are extremely complex,
currently hand-crafted artefacts, which leads them
to be extremely brittle and error prone in practice.
We continually hear about issues with security and
data breaches (due to poorly captured and imple-
mented policies and enforcement); massive cost over-
runs and project slippage (due to poor estimation
and badly captured software requirements); hard-to-
deploy, hard-to-maintain, slow, clunky and even dan-
gerous solutions (due to incorrect technology choice,
usage or deployment); and hard-to-use software that
does not meet the users’ needs and causing frustra-
tion (due to poor understanding of user needs and
poor design) (Curumsing et al., 2019; Prikladnicki
et al., 2013; Yusop et al., 2016). This leads to huge
economic cost, inefficiencies, not fit-for-purpose so-
lutions, and dangerous and lifethreatening situations.
Software is designed and built primarily to solve hu-
man needs. Many of these problems can be traced to
a lack of understanding and incorporation of human-
centric issues during the software engineering process
(Hartzel, 2003; Miller et al., 2015; Stock et al., 2008;
Wirtz et al., 2009; Smith, 1998).

a https://orcid.org/0000-0003-4928-7076
b https://orcid.org/0000-0001-9958-0102
c https://orcid.org/0000-0000-0000-0000

2 MOTIVATING EXAMPLE

2.1 Smart Home

Consider a representative example - a “smart home”
aimed at providing ageing people with technology-
based support for physical and mental challenges so
they are able to stay in their own home longer and
feel safe and secure (Curumsing et al., 2019; Grundy
et al., 2018). To develop a solution the software
team must deeply understand technologies like sen-
sors, data capture and analysis, communication with
hospital systems, and software development methods
and tools. However, they must also deeply under-
stand and appreciate the human aspects of their stake-
holders: ageing people, their families and friends,
and clinicians/community workers. These include
the Technology Proficiency and Acceptance of age-
ing people – likely to be much older than the soft-
ware designers. The development of ”Smart homes”
technology should factor in the Emotional – both pos-
itive and negative – reactions to the smart home e.g.
daily interaction is potentially positive but being mon-
itored potentially negative. The Accessibility of the
solutions for people with e.g. physical tremors, poor
eyesight, wheel-chair bound, and cognitive decline.
Within this, personality differences may be very im-
portant e.g. those wanting flexible dialogue compared
to those needing directive dialogue with the system.

John Grundy
5th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE2020), 5-6 May 2020, Prague, Chez Republic,



Figure 1: Incorporating “Human-centric” software issues into Model-Driven Software Engineering.

The Usability of the software for a group of people
with varied needs e.g. incorporating the use of voice
or gestures or modified smart phone interface. The
ageing population is diverse and therefore smart home
technology must accommodate for the different Ages,
Genders, Cultures and Languages of users including
appropriate use of text, colours, symbols. This is par-
ticularly important as one quarter of the elderly in
Australia are non-native English speakers and the ma-
jority women, but by far the majority of software de-
velopers are 20-something year old English-speaking
men. Within this, personality differences may be very
important e.g. those wanting flexible dialogue com-
pared to those needing directive dialogue with the sys-
tem. Failure to incorporate human-centric issues into
the development of Smart Home software has the po-
tential to result in a home that is unsuitable for who it
is designed to help, by introducing confusing, possi-
bly unsettling and invasive, and even potentially dan-
gerous technology.

2.2 Key Challenges

Current software engineering approaches ignore
many of these human-centric issues or address them
in piece-meal, ad-hoc ways (Prikladnicki et al., 2013;
Curumsing et al., 2019; Hartzel, 2003; Wirtz et al.,
2009; Ameller et al., 2010). For example, key aspects
of Model-Driven Software Engineering (MDSE) are
outlined in Figure 1. In MDSE user requirements for
the software are captured and represented by a vari-
ety of abstract requirements models (a). These are
then refined to detailed design models (b) to describe
the software solution. These design models are then
transformed by a set of generators into software code
(c) to implement the target system (Schmidt, 2006).
However, currently almost no human-centric issues
are captured, reasoned about or used when produc-
ing or testing this software (Miller et al., 2015; Yusop

et al., 2016).

2.3 Generating More Human-centric
Software

We need to fully integrate these human-centric issues
into model-driven software development. In order to
do this, we aim to carry out the following steps:

1. use a co-creational, agile Living Lab-based
approach, enabling software teams to capture
and reason about under-represented, under-used,
under-supported yet critical human-centric re-
quirements of target software;

2. develop a new set of human-centric requirements
modelling languages, enabling software engineers
to effectively model diverse human-centric is-
sues, along with new approaches for obtaining and
extracting such human-centric software require-
ments from a wide variety of sources e.g. Word,
PDF, natural language, videos, sketches, . . . ;

3. augment conventional model-driven engineering
design models with human-centric requirements
for use during MDSE, along with techniques to
verify the completeness, correctness and consis-
tency of these models, and proactively check them
against best practice models and principles;

4. develop new techniques to incorporate these
human-centric issues in design models into
MDSE-based software code generators, enabling
target software to dynamically adapt to differing
user needs at run-time; and

5. use these human-centric requirements dur-
ing software testing to support human-centric
requirements-based testing of software systems,
along with techniques to receive feedback from
users on human factors-related defects in their
software solutions.



Figure 2: A clinician-oriented Domain-specific Visual Language for care plan modelling and using Model-driven Engineering
to generate an eHealth app.

3 BACKGROUND

Model-Driven Software Engineering (MDSE) cap-
tures high-level models about software requirements
i.e. what users need their software to do. MDSE
then refines these models to detailed designs about
how the software solution is organized, composed
and its appearance. Model transformation then turns
these models into software code. This is in con-
trast with most current software development meth-
ods which use informal and imprecise models, hand-
translation into code via error-prone, time-consuming
low-level hand-coding. Advantages of MDSE-based
approaches include capture of formal models of a
software system at high levels of abstraction, be-
ing able to formally reason about these high-level
models and more quickly locate errors, and being
able to generate lower-level software artefacts, such
as code, without overheads and errors of traditional
hand-translating informal models.

However, most MSDE approaches use generic re-
quirements and design languages e.g. the Unified
Modelling Language (UML) and extensions (Fon-
toura et al., 2000; Kent, 2002). These have the dis-
advantages of being overly complex and very difficult
to use by non-software engineering domain experts
(Hutchinson et al., 2011). Domain-specific Visual
Languages (DSVLs) provide a more accessible ap-
proach to presenting complex models for domain ex-
perts (Sprinkle and Karsai, 2004). DSVLs use one or
more visual metaphors, typically derived from the do-
main experts, to represent the model(s). They enable

domain experts to understand and even create and
use the models directly, rather than rely on software
engineers. These DSVLs are then used to generate
software code and configuration artefacts to realise
a software solution via MDSE approaches. This ap-
proach provides higher abstractions and productivity,
improves target software quality, provides for repeata-
bility, and supports systematic reuse of best practices
(Sprinkle and Karsai, 2004; Hutchinson et al., 2011;
Kent, 2002; Schmidt, 2006).

There are many DSVLs for MDSE tools (Sprinkle
and Karsai, 2004; Li et al., 2014; Ali et al., 2013).
A representative example is shown in Figure 2: (a) a
custom DSVL designed for clinicians is being used to
model a new patient care plan for diabetes and obe-
sity management. Then (b) a model transformer takes
the care plan and generates a mobile app to assist
the patient to implement their plan (Khambati et al.,
2008). This is a major improvement on developing
software using conventional techniques. However, the
approach fails to model or incorporate into the mobile
app a range of critical human-centric issues, result-
ing in its failure in practice. Patient-specific, human-
centric needs are not captured e.g. technology accep-
tance and emotional reactions e.g. some patients react
negatively to the remote monitoring approach used.
Some users are not English speakers.Colours and care
plan model language used in the app are confusing
for many older users. Users with eye-sight limitations
find the app too hard to see and too fiddly to interact
with. The app can’t adapt to different contexts of use
or preferences of the users e.g. it can’t use their smart



home sensors or each patient’s particular mobile app
dialogue preferences. The app displays Euro-centric
terminology about well-being, therefore, putting off
some users from following their care plan. We need
to incorporate these human-centric issues into MDE
(Ameller et al., 2010).

There has been recent interest in the human-
centric issues of complex software and how to bet-
ter support these during software development. Agile
methods, design thinking and living lab approaches
all try and incorporate a human element both in elicit-
ing software requirements and in involving end users
of software in the development process (Dybå and
Dingsøyr, 2008; Hyysalo and Hakkarainen, 2014;
Mummah et al., 2016). However, none capture
human-centric issues in any systematic way and
therefore the software fails to address several critical
aspects of the human users. Some new approaches
have tried to capture limited human-centric software
issues. Emotional aspects of software usage include
identifying the emotional reactions of users e.g. when
engaging with health and fitness apps or for gaming.
Work has been done modelling these Emotional Re-
quirements and applying them to challenging eHealth
domains (Miller et al., 2015; Curumsing et al., 2019).

Figure 3 shows a representative example using an
emotion-oriented requirements DSVL to design bet-
ter smart homes (Grundy et al., 2018). Here a con-
ventional goal-based DSVL (1) has been augmented
with a set of ‘emotional goal’ elements (2) specific to
different users (3). Human characteristics like age,
gender, culture and language can dramatically im-
pact aspects of software, especially in the user in-
terface presented by the software and the dialogue
had with the user (Hartzel, 2003; Stock et al., 2008;
Wirtz et al., 2009). Limited support for the cap-
ture of some of these has been developed. Another
example is a multi-lingual requirements tool provid-
ing requirements modelling in English and Bahasa
Malaysia, including supporting linguistic and some
cultural differences between users (Kamalrudin et al.,
2017). Usability and usability testing has long been
studied in Human Computer Interaction (HCI) re-
search and practice. However, usability defect report-
ing is very under-researched in the context of soft-
ware engineering (Yusop et al., 2016). Similarly, a
lot of work has been done on accessibility in HCI e.g.
sight, hearing or cognitively impaired (Stock et al.,
2008; Wirtz et al., 2009), and health IT e.g. mental
health challenges when using mobile apps (Donker T,
2013). However, little has been done to evaluate the
extent to which physical and mental challenges are
properly addressed in engineering software develop-
ment, and is also poorly supported in practice. Per-

sonality, team climate and organisational issues relat-
ing to people have been heavily researched in Man-
agement, Information Systems, and the personality
of programmers and testers in software development
(Pikkarainen et al., 2008; Soomro et al., 2016). How-
ever, little attention has been paid to how to go about
supporting differing personality, team climate or or-
ganisational or user culture in software, nor to capture
requirements relating to these human-centric issues.
Traditional software requirements and design models
have very limited (or no) ability to capture these sorts
of human-centric software issues, and approaches are
ad-hoc, inconsistent, and incomplete.

There are no modelling principles, DSVL-based
model design principles, nor widely applicable, prac-
tical modelling tools to capture human-centric soft-
ware issues at requirements or design levels. While
a DSVL provides a more human-centric engineer-
ing approach, it fails to capture and support the key
human-centric issues in the target software itself.
Current MDSE tools, while providing significant soft-
ware engineering benefits do not support modelling
and using these critical human-centric issues. Cur-
rent software engineering processes lack consistent,
coherent ways to address these increasingly important
human-centric software issues and thus they are often
very incompletely supported or in fact are usually ig-
nored.

4 APPROACH

We aim to employ several innovative approaches
to (i) systematically capture and model a wide
range of human-centric software requirements and
develop a novel integrated taxonomy and formal
model for these; (ii) promote a wide range of
human-centric requirements for first-class considera-
tion during software engineering by applying princi-
ples for modelling and reasoning about these human-
centric requirements using DSVLs; (iii) support a
wide range human-centric requirements in model-
driven engineering during software generation and
run-time reconfiguration via MDSE techniques; and
(iv) systematically use human-centric requirements
for requirements-based software testing and reporting
human-centric software defects. This will improve
model-driven software engineering by placing cru-
cially important, but to date often forgotten, human-
centric aspects of software as first-class considera-
tions in model-driven software engineering. The crit-
ical importance of this is really only just becoming
recognised, due to the increasing breadth of uses of
IT in society and the increasing recognition that un-



Figure 3: A Human-centric, Emotion-oriented Domain-specific Visual Language.

derstanding and incorporating the very diverse needs
of our very diverse software end users is essential.

Key features of this approach include:
• Use of the Living Lab concept’s design think-

ing, agile, co-creation and continuous feedback
mechanisms. These will be used to provide a
MDSE approach in which human-centric require-
ments can be effectively and efficiently captured,
treated as priorities by the software team, users
can quickly report defective software violating
these human-centric requirements, and the soft-
ware team can work effectively with these end
users to co-design changes.

• A set of principles for domain-specific visual
modelling languages will be developed that en-
able software engineers to capture a wide range
of human-centric aspects of software: including
user’s age, gender, cultural preferences, language
needs, emotional needs, personality and cognitive
characteristics, and accessibility constraints, both
physical and mental. These and other human end
user characteristics are essential to prioritise dur-
ing both software development and software de-
ployment to ensure a useful and usable end prod-
uct results for a broad range of end users.

• These principles will be used to design a range
of novel DSVLs that fully support the capture of
many of the important human-centric aspects and
model them as the critical requirements issues that
they are.

• Augmented models that ensure these modelled
human-centric properties are preserved for use at
design-time to ensure that MDSE-based solutions
take them into account appropriately when gener-
ating software applications.

• We will develop a new framework for human-
centric, requirements-based testing of software

Figure 4: Overall approach

that can verify whether the constructed software
systems meet these critical human-centric require-
ments.

5 RESEARCH ACTIVITIES

Figure 4 illustrates the new human-centric, model-
driven software engineering approach we aim to pro-
duce. We have identified a set of key approaches
that are needed to achieve this vision. An Agile Liv-
ing Lab approach will be used to colocate the soft-
ware team and target end users (Grundy et al., 2018).
This will provide a co-creational environment to elicit



human-centric requirements, model and capture with
human-centric DSVLs, and receive continuous feed-
back from users. A set of DSVL tools will be used to
capture and model the human-centric requirements,
validate them against design principles and best prac-
tice modelling patterns, and translate them to ex-
tended design-level models. A set of MDSE gener-
ators will generate software applications – code, con-
figurations, etc. Unlike existing generators, these will
take into account variations of end-users as specified
in the human-centric requirements, producing either
multiple versions of the target software applications
and/or reconfigurable applications that adapt to each
end user’s differing human-centric needs. A combina-
tion of human-centric requirements testing and con-
tinuous defect feedback will be fed to the develop-
ment team. By leveraging the Living Lab concept,
this will enable both faster feedback and defect cor-
rection, but also better evolution and modelling of
the human-centric requirements over time. Lessons
will be fed into the improvement of the DSVL tools,
best practice patterns and MDSE generators. We
have identified a set of necessary research activities
to achieve this outcome, summarised below.

5.1 A Human-Centric Agile Living Lab

Human-centric requirements have to be elicited from
target end users (or stakeholders), captured (or mod-
elled) using our DVSL-based tools, used by extended
MDSE solutions to generate software, and then the
software tested and user feedback accepted and ac-
tioned to correct requirements and design model prob-
lems. A new approach is needed to effectively sup-
port the software team in achieving this, and pro-
pose investigating the Living Lab co-creation con-
cept that has become popular in digital health soft-
ware development (Hyysalo and Hakkarainen, 2014;
Grundy et al., 2018). We are establishing this lab
with a domain-specific focus with partner companies
and target end users and the software team co-located
as in Agile customer-in-team approaches (Dybå and
Dingsøyr, 2008; Pikkarainen et al., 2008). Target end
users and developers closely collaborate to elicit, cap-
ture, test, use and refine the human-centric software
requirements. The DSVL modelling tools, MDSE
generators and testing tools all need to support col-
laborative capture, discussion and refinement of the
human-centric requirements for this to be most ef-
fective. We plan to do this by extending our cur-
rent work on developing digital health technologies
(Grundy et al., 2018), human-centric software engi-
neering processes in software teams, including per-
sonality and team climate (Salleh et al., 2018), and

collaborative DSVL-based modelling tools (Grundy
et al., 2013).

To the best of our knowledge, no taxonomy of
human-centric software requirements or even infor-
mal definition exists at this time. We are working on
developing a new, rich taxonomy of human-centric
requirements for software systems. The taxonomy
will include different human-centric concepts relating
to computer software, and will draw on other disci-
plines including HCI, usability, psychology, and oth-
ers to build the conceptual model, and provide de-
tailed relationships and trade-offs between different
human-centric requirements. We are applying this
to a number of representative requirements examples
to test and refine it, and use the outcomes to in-
form the development of DSVLs, DSVL tools and
MDSE solutions in other activities. This is critical re-
search as it will provide software engineers a set of
principles and conceptual model to model and rea-
son about these kinds of requirements. We are con-
ducting a detailed analysis of several representative
real-world software applications from eHealth apps,
smart homes, community service apps, educational
apps, and other heavily human-centric requirements
critical domains. From these we are developing a
framework and model for prioritising human-centric
software issues. This will characterise complex trade-
offs and other relationships between different human-
centric issues that make supporting one issue prob-
lematic for other issues, similar to the Cognitive Di-
mensions framework (Green and Petre, 1996). We
will use focus groups with end users and developers
to refine and validate our taxonomy. The taxonomy
will be tested on real-world example requirements to
gain feedback from both developers and end users to
demonstrate its effectiveness. We are drawing on our
extensive previous work developing taxonomies for
design critics (Ali et al., 2013), emotion-oriented re-
quirements (Curumsing et al., 2019), usability defects
(Yusop et al., 2016), and team climate (Soomro et al.,
2016).

5.2 Human-centric Requirements
Engineering

While DSVLs have been an active research area for
at least 20 years, remarkably few principles exist for
design and evaluation of effective DSVLs (Moody,
2009). We are developing a set of new design prin-
ciples and associated DSVL evaluation approaches
to provide more rigorous principles and design steps
for specifically human-centric DSVL development.
This will require us to identify for the range of a
human-centric software requirements and design is-



sues identified in the taxonomy built, how we can
model these, use appropriate visual metaphors to rep-
resent the models, how we can support interaction
with the visual models, and how we can reason about
the suitability of these visual models in terms of us-
ability and effectiveness. We are drawing upon the
work on DSVL design tools to achieve this (Grundy
et al., 2013; Li et al., 2014; Ali et al., 2013), as well
as work on ‘Physics’ of Notations (Moody, 2009) and
Cognitive Dimensions (Green and Petre, 1996) to de-
velop these DSVL design principles for modelling
human-centric software issues.

We are developing a range of new and augmented
DSVLs to model a wide variety of human-centric is-
sues at the requirements level for software systems.
Some of these DSVLs extend existing requirements
modelling languages – in successively more princi-
pled ways than currently – e.g. goal-directed re-
quirements languages such as i*, use cases and es-
sential use cases, target user personas, user stories,
etc. However, others may provide wholly novel re-
quirements modelling techniques and diagrams that
are then linked to other requirements models. We
envisage novel requirements capture for things like
identifying cultural, age, accessibility and personal-
ity aspects of target end users. Where multiple target
end users for the same software application have dif-
fering human-centric requirements, multiple or com-
posite models may be necessary. We are building
on a wide range of DSVLs, including for design
tools, requirements, reporting, business processes,
surveys, performance testing, and many others (Ali
et al., 2013; Grundy et al., 2013; Kamalrudin et al.,
2017) as well as digital health software (Grundy et al.,
2018) and work on modelling usability defects and
emotional and multi-lingual requirements (Curums-
ing et al., 2019).

Software requirements need to be elicited from
end users and these are typically held in a variety
of documents and can be obtained in a variety of
ways. We will work - in the context of the Living
Lab - to develop new tools to extract human-centric
requirements from diverse sources, including Power-
point, Word, Excel, PDF, audio transcripts, images
and video. A number of works have addressed differ-
ent parts of this problem, including extracting require-
ments using light weight and heavy weight natural
language processing (Ali et al., 2010; Lee and Xue,
1999). However, none have specifically addressed
the extraction of a wide range of human-centric re-
quirements. We will develop, trial and refine a set
of extraction tools leveraging existing approaches but
focused on human-centric requirements capture and
representation using our DSVLs, within our living lab

approach, and leveraging our human-centric require-
ments taxonomy. These tools will also be refined as
these other related activities are refined and extended,
and applying these tools to representative real-world
requirements artefacts will help us to test and ex-
tend the outputs of these other tasks. We will de-
velop leading-edge tools for extracting requirements
for goal-directed and multi-lingual models (Lee and
Xue, 1999; Kamalrudin et al., 2017), and require-
ments checking and improvement (Ali et al., 2010).

5.3 Using Human-centric Issues in
Model Driven Engineering

MDSE tools typically use Unified Modelling Lan-
guage (UML) or similar design models. Even those
using their own design models need to refine higher-
level abstract requirements models into lower-level
architectural, software design, interface, database and
other models. We will explore different ways to ef-
fectively extend design-level models to capture nec-
essary design-level human-centric properties, derived
from higher level human-centric requirements-level
properties (Ameller et al., 2010). For example, we
want to capture design alternatives to achieve an ap-
plication user interface for a target end user who has
sight-impairment, prefers a gesture-based sensor in-
terface to using a Smart phone, has limited mobil-
ity, and is quite “neurotic” about device feedback.
We will evaluate the different modelling solutions via
our living lab with both software engineers and end
users, in terms of needed design information and pre-
serving critical human-centred end user needs respec-
tively. Even partial successful outcomes here will be
immediately of interest and applicable for software
teams. We will extend design models with aspects
(Mouheb et al., 2009), goal-use case model integra-
tion (Lee and Xue, 1999), and goal-models extended
with emotions (Curumsing et al., 2019; Grundy et al.,
2018). Just because we add human-centric issues to
our requirements and design models does not mean
they may be correct or even appropriate. We will de-
velop a set of proactive tool support systems to ad-
vise software engineers of errors or potentially incor-
rect/unintended issues with their models (Ali et al.,
2013; Robbins and Redmiles, 1998). This will en-
able the DSVL toolsets for human-centric require-
ments and design models to provide proactive feed-
back to modellers. To enable these design critics
we will develop a range of “human-centric require-
ments and design patterns”. These will provide best-
practice approaches to modelling complex require-
ments and design models mixed with human-centric
issues. These features will be added to successive



iterations of our prototype tools from above. This
work will build on our approaches to develop DSVL
design critics (Ali et al., 2013) and DSVL-based re-
quirements and design pattern modelling tools (Ka-
malrudin et al., 2011).

Once we have some quality design-level human-
centric issues in models (incremental outcomes from
the above activities), we can use these in model-
driven engineering code and configuration generators.
Results from this work will be fed back to extend-
ing the taxonomy and human-centric design princi-
ples. This will involve adding generators that con-
sume design level models augmented with human-
centric properties and synthesizing software applica-
tions that use these appropriately. For example, we
might generate a gesture-based, passive-voice feed-
back solution for the target user from the example
above. However, we might instead generate sev-
eral interfaces for the same software feature, and
at run-time configure the software either with pre-
deployment knowledge, end user input, or even mod-
ify it while in use based on end user feedback. Thus
for example a part of the software for our smart home
example could adapt to different end users’ current
and changing needs (e.g. age, culture, emerging phys-
ical and mental challenges, personality etc). This
work will be done incrementally, focusing on single
issues first then looking at successively more com-
plex combinations, adding support to the prototype
tools and repeatedly trialling the tools. We will work
on adding human-centric issues to MDSE code gen-
erators (Ameller et al., 2010), generating adaptive
user interfaces (Lavie and Meyer, 2010), adaptive
run-time software (Mohamed Almorsy, 2014), and
DSVL-based MDSE solutions (Sprinkle and Karsai,
2004).

5.4 Using Human-centric Requirements
in Testing, Defect Reporting and
Continuous Feedback

Here we will address critically important issues of
(i) testing whether the resultant software generated
from our augmented MDSE actually meets the re-
quirements specified; (ii) providing a feedback mech-
anism for end users to report defects in the software
specifically relating to human-centric issues; and (iii)
providing a feedback mechanism from software de-
velopers to users about changes made relating to their
personal human-centric issues. We are developing
a human-centric requirements-based testing frame-
work, techniques and tools. These enable human-
centric issues to be used in acceptance tests to im-
prove validation of software against these require-

ments. We will also develop new human-centric de-
fect reporting mechanisms and developer review and
notification mechanisms. These will support continu-
ous defect reporting, correction, and feedback via the
living lab and remotely. Even partial outcomes would
be of immediate benefit to the software engineering
research and practice communities. This work is ex-
tending research on software tester practices and us-
ability defect reporting (Yusop et al., 2016; Garousi
and Zhi, 2013) and requirements-based testing (Ka-
malrudin et al., 2017).

5.5 Trials on Industry-scale Examples

We will trial our approach with real industry practi-
tioners and organisations for whom human-centric is-
sues are critical. Our approach is particularly suit-
able on applications with end users with challeng-
ing human-centric issues, such as physical or men-
tal disability, English as second language, cognitive
decline, very young or old, and needing software to
adapt to their changing personal or contextual usage
needs. Planned target application domains include
digital health apps for community members, commu-
nity educational apps, government service and trans-
port apps and websites, and smart home and smart
building management software.

6 CONCLUSION AND
PERSPECTIVES

We have proposed a new approach to incorporating
and supporting a wide range of human-centric issues
into model-driven software development. We are set-
ting up a co-creational, agile living lab in which to
collaborative elicit user requirements, capture in aug-
mented models, use to generate multiple solutions,
and enable requirements-based testing and feedback.
We are developing a new taxonomy of human-centric
issues and then incorporating these into requirements
and design modelling languages and tools. We are
using these augmented models in model-driven engi-
neering to generate multiple versions of software to
support diverse end user needs, or support run-time
adaptation of the generated code to these needs. We
are supporting iterative user feedback to proactively
incorporate human-centric issues into models and re-
generating and re-deploying solutions.



ACKNOWLEDGEMENTS

Support from ARC Discovery Project
DP170101932 and ARC Laureate Program
FL190100035 is gratefully acknowledged

REFERENCES

Ali, N. M., Hosking, J., and Grundy, J. (2013). A tax-
onomy and mapping of computer-based critiquing
tools. IEEE Transactions on Software Engineering,
39(11):1494–1520.

Ali, R., Dalpiaz, F., and Giorgini, P. (2010). A goal-based
framework for contextual requirements modeling and
analysis. Requirements Engineering, 15(4):439–458.

Ameller, D., Franch, X., and Cabot, J. (2010). Dealing with
non-functional requirements in model-driven develop-
ment. In 2010 18th IEEE international requirements
engineering conference, pages 189–198. IEEE.

Curumsing, M. K., Fernando, N., Abdelrazek, M., Vasa,
R., Mouzakis, K., and Grundy, J. (2019). Emotion-
oriented requirements engineering: A case study in
developing a smart home system for the elderly. Jour-
nal of Systems and Software, 147:215 – 229.

Donker T, Petrie K, P. J. C. J. B. M. C. H. (2013). Smart-
phones for smarter delivery of mental health pro-
grams: a systematic review. J Med Internet Res,
15(11).

Dybå, T. and Dingsøyr, T. (2008). Empirical studies of agile
software development: A systematic review. Informa-
tion and Software Technology, 50(9):833 – 859.

Fontoura, M., Pree, W., and Rumpe, B. (2000). The Uml
Profile for Framework Architectures. Addison-Wesley
Longman Publishing Co., Inc., USA.

Garousi, V. and Zhi, J. (2013). A survey of software testing
practices in canada. Journal of Systems and Software,
86(5):1354–1376.

Green, T. R. G. and Petre, M. (1996). Usability analysis
of visual programming environments: a ‘cognitive di-
mensions’ framework. Journal of Visual Languages
& Computing, 7(2):131–174.

Grundy, J., Mouzakis, K., Vasa, R., Cain, A., Curumsing,
M., Abdelrazek, M., and Fernando, N. (2018). Sup-
porting diverse challenges of ageing with digital en-
hanced living solutions. In Global Telehealth Confer-
ence 2017, pages 75–90. IOS Press.

Grundy, J. C., Hosking, J., Li, K. N., Ali, N. M., Huh,
J., and Li, R. L. (2013). Generating domain-specific
visual language tools from abstract visual specifica-
tions. IEEE Transactions on Software Engineering,
39(4):487–515.

Hartzel, K. (2003). How self-efficacy and gender issues
affect software adoption and use. Communications of
the ACM, 46(9):167–171.

Hutchinson, J., Whittle, J., Rouncefield, M., and Kristof-
fersen, S. (2011). Empirical assessment of mde in in-
dustry. In Proceedings of the 33rd international con-
ference on software engineering, pages 471–480.

Hyysalo, S. and Hakkarainen, L. (2014). What difference
does a living lab make? comparing two health tech-
nology innovation projects. CoDesign, 10(3-4):191–
208.

Kamalrudin, M., Hosking, J., and Grundy, J. (2011). Im-
proving requirements quality using essential use case
interaction patterns. In 2011 33rd International Con-
ference on Software Engineering (ICSE), pages 531–
540. IEEE.

Kamalrudin, M., Hosking, J., and Grundy, J. (2017). Mara-
maaic: tool support for consistency management and
validation of requirements. Automated software engi-
neering, 24(1):1–45.

Kent, S. (2002). Model driven engineering. In Inter-
national Conference on Integrated Formal Methods,
pages 286–298. Springer.

Khambati, A., Grundy, J., Warren, J., and Hosking, J.
(2008). Model-driven development of mobile personal
health care applications. In 2008 23rd IEEE/ACM In-
ternational Conference on Automated Software Engi-
neering, pages 467–470. IEEE.

Lavie, T. and Meyer, J. (2010). Benefits and costs of adap-
tive user interfaces. International Journal of Human-
Computer Studies, 68(8):508–524.

Lee, J. and Xue, N.-L. (1999). Analyzing user requirements
by use cases: A goal-driven approach. IEEE software,
16(4):92–101.

Li, L., Grundy, J., and Hosking, J. (2014). A visual lan-
guage and environment for enterprise system mod-
elling and automation. Journal of Visual Languages
& Computing, 25(4):253–277.

Miller, T., Pedell, S., Lopez-Lorca, A. A., Mendoza, A.,
Sterling, L., and Keirnan, A. (2015). Emotion-led
modelling for people-oriented requirements engineer-
ing: the case study of emergency systems. Journal of
Systems and Software, 105:54–71.

Mohamed Almorsy, John Grundy, A. S. I. (2014). Adapt-
able, model-driven security engineering for saas
cloud-based applications. Automated software engi-
neering, 21(2):187–224.

Moody, D. (2009). The “physics” of notations: toward a sci-
entific basis for constructing visual notations in soft-
ware engineering. IEEE Transactions on software en-
gineering, 35(6):756–779.

Mouheb, D., Talhi, C., Lima, V., Debbabi, M., Wang, L.,
and Pourzandi, M. (2009). Weaving security aspects
into uml 2.0 design models. In Proceedings of the 13th
workshop on Aspect-oriented modeling, pages 7–12.

Mummah, S. A., Robinson, T. N., King, A. C., Gardner,
C. D., and Sutton, S. (2016). Ideas (integrate, de-
sign, assess, and share): a framework and toolkit of
strategies for the development of more effective digi-
tal interventions to change health behavior. Journal of
medical Internet research, 18(12):e317.

Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P.,
and Still, J. (2008). The impact of agile practices on
communication in software development. Empirical
Software Engineering, 13(3):303–337.

Prikladnicki, R., Dittrich, Y., Sharp, H., De Souza, C.,
Cataldo, M., and Hoda, R. (2013). Cooperative and



human aspects of software engineering: Chase 2013.
SIGSOFT Softw. Eng. Notes, 38(5):34–37.

Robbins, J. E. and Redmiles, D. F. (1998). Software
architecture critics in the argo design environment.
Knowledge-Based Systems, 11(1):47–60.

Salleh, N., Hoda, R., Su, M. T., Kanij, T., and Grundy,
J. (2018). Recruitment, engagement and feedback
in empirical software engineering studies in indus-
trial contexts. Information and software technology,
98:161–172.

Schmidt, D. C. (2006). Model-driven engineer-
ing. COMPUTER-IEEE COMPUTER SOCIETY-,
39(2):25.

Smith, J. (1998). The Book. The publishing company, Lon-
don, 2nd edition.

Soomro, A. B., Salleh, N., Mendes, E., Grundy, J., Burch,
G., and Nordin, A. (2016). The effect of software en-
gineers’ personality traits on team climate and perfor-
mance: A systematic literature review. Information
and Software Technology, 73:52–65.

Sprinkle, J. and Karsai, G. (2004). A domain-specific vi-
sual language for domain model evolution. Journal of
Visual Languages & Computing, 15(3-4):291–307.

Stock, S. E., Davies, D. K., Wehmeyer, M. L., and Palmer,
S. B. (2008). Evaluation of cognitively accessi-
ble software to increase independent access to cell-
phone technology for people with intellectual dis-
ability. Journal of Intellectual Disability Research,
52(12):1155–1164.

Wirtz, S., Jakobs, E.-M., and Ziefle, M. (2009). Age-
specific usability issues of software interfaces. In Pro-
ceedings of the IEA, volume 17.

Yusop, N. S. M., Grundy, J., and Vasa, R. (2016). Re-
porting usability defects: A systematic literature re-
view. IEEE Transactions on Software Engineering,
43(9):848–867.


