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Abstract: We present BiDaML (Big Data Analytics Modeling Languages), an integrated suite of visual languages and 

supporting tool to help end-users with the engineering of big data analytics solutions. BiDaML, our visual 

notations suite, comprises six diagrammatic notations: brainstorming diagram, process diagram, technique 

diagrams, data diagrams, output diagrams and deployment diagram. BiDaML tool provides a platform for 

efficiently producing BiDaML visual models and facilitating their design, creation, code generation and 

integration with other tools. To demonstrate the utility of BiDaML, we illustrate our approach with a real-

world example of traffic data analysis. We evaluate BiDaML using two types of evaluations, the physics of 

notations and a cognitive walkthrough with several target end-users e.g. data scientists and software engineers.

1 INTRODUCTION 

Using big data analytics to improve decision-making 

has become a highly active research and practice area 

(Landset, 2015; Portugal, 2016). Gartner’s technical 

professional advice (Sapp, 2017) recommends six 

stages for machine learning (ML) applications: 

classifying the problem, acquiring data, processing 

data, modeling the problem, validation and execution, 

and finally deployment. Traditionally, advanced ML 

knowledge and experience of complex data science 

toolsets were required for data analytics applications. 

Emerging analytics approaches seek to automate 

many of these steps in model building and its 

application, making ML technology more accessible 

to those who lack deep quantitative analysis and tool 

building skills (Rollins, 2015).  

Recently, a number of data analytics and ML tools 

have become popular, providing packaged data 
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sourcing, integration, analysis and visualization 

toolkits oriented towards end-users. Many of these 

tools do not require programming language 

knowledge and are based on simple drag-and-drop 

interfaces. However, they mostly focus on the ML 

algorithms and sometimes one-click deployment, but 

lack domain knowledge and business problem 

capturing, modeling, traceability to the solution and 

validation of the solution against the problem. They 

also lack an explanation of the model from an end-

user perspective.  

To address this, data analytics and ML steps need 

to be more tightly connected to the control and 

management of business and requirements 

engineering processes. However, the primary focus of 

most current big data analytics tools and technologies 

is on storage, processing, and particularly the data 

analysis and ML tasks.  
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Current data analytics tools rarely focus on the 

improvement of end-to-end processes (Aalst, 2015). 

To address this issue, better integration of data 

science, data technology and process science is 

needed (Aalst, 2015). Data science approaches tend 

to be process agonistic whereas process science 

approaches tend to be model-driven without 

considering the evidence hidden in the data. Bringing 

scalable process mining analytics to big data toolkits, 

while enabling them to be easily tailored to 

accommodate domain-specific requirements, is 

needed (Aalst, 2015). Tools filling these gaps would 

be useful for end-users like data scientists, for the 

discovery and exploration phase, to be able to model 

the problem, extract insights/patterns, and develop 

predictive and clustering models if it is feasible 

before they need to involve software engineers. 

We present our novel approach to addressing this 

problem  - Big Data Analytics Modeling Languages 

(BiDaML) - a set of domain specific visual languages 

(DSVLs) at different levels of abstraction (extended 

from (Khalajzadeh, 2019a)), to capture and refine 

requirements and specify different parts of the data 

analytics process. Through these DSVLs, we aim to 

make data analytics design more accessible to end-

users and facilitate dialogues with expert data 

scientists and software engineers. BiDaML provides 

better tool support and collaboration between 

different users while improving the speed of 

implementing data analytics solutions. 

The rest of the paper is organized as follows. In 

Section 2, the background and motivation of this 

research are described with a real-world example of 

traffic data analysis. Our approach is discussed in 

Section 3 and evaluated in Section 4. A 

comprehensive comparison to related work is 

presented in Section 5. Finally, we draw conclusions 

and discuss key future directions in Section 6. 

2 MOTIVATING EXAMPLE 

We discuss key data analytics steps and the different 

types of communication needed between users in a 

data analytics project. A real traffic data analysis 

example integrating data from diverse data sources 

including VicRoads’ SCATS traffic system (Sydney 

Coordinated Adaptive Traffic System, an intelligent 

transport system used to manage traffic signals in the 

state of Victoria, Australia as well as other 

states/cities) (VicRoads, 2018) is then demonstrated 

to reflect the issues and some key challenges in the 

process of data analytics. 

2.1 Data Analytics Process Steps 

The key steps that data scientists take to design their 

solutions are illustrated in Figure 1. Business owners, 

business analysts, data analysts and data scientists 

need to have (a) several rounds of meetings and 

interviews with domain  experts and users; (b) acquire 

datasets from different resources; (c) get access to 

government information; (d) integrate all data items 

with different format, analyze and visualize them; (e) 

communicate with each other to discuss the analyses; 

and (f) finally use different tools to design their 

approaches and develop their models. However, there 

is no unified language that allows to facilitate the 

communication among domain experts, business 

owner/analysts and software engineers and they need 

 

Figure 1: How data scientists currently design their big data analytics solutions 

 



to wait until their models are usable and deployable. 

In this section, we will show an example of the traffic 

data analysis to discuss some of the problems they 

face during the solution design process. 

2.2 Example: Traffic Data Analysis 

For this real-world large project there was a need to 

formally capture detailed requirements for a new 

traffic data platform that would ingest a real-time 

stream of traffic data received from VicRoads (the 

Victorian road transport authority), integrate this with 

other transport data sources, and support modeling 

and visualization of the transport network at a state-

wide level. There were some issues arising in the 

initiation of the project. The project leader and traffic 

modeling experts identified the need for a big data 

platform; however, without a background in software 

engineering or familiarity with modern data science 

tools, they were unable to determine whether the big 

data technology stack offered by the software 

outsourcing company was likely to meet their needs. 

Moreover, the software outsourcing company lacked 

understanding of the domain and thus did not 

understand what tasks were required of them.  

To overcome the communication difficulties, a 

meeting was arranged between the project leader, the 

traffic modeling expert, a data engineer/visualization 

designer, the project team from the software 

outsourcing company, and the eResearch high 

performance computing services team. However, the 

lack of a common language meant that 

communication could only take place at a high-level 

rather than at the level of detail necessary to initiate 

direct technical action. The software outsourcing 

company produced a plan for software they intended 

to deploy; however, no plan existed for who would 

monitor and maintain the software and systems after 

deployment, such as responding to faults in real-time 

data ingestion or adding support for new types of 

data. To justify the cost and time investment into the 

project, the project leader wanted to be able to reuse 

the platform for related projects, such as a smart city. 

However, it was unclear whether the work invested 

into the design of the transport data platform could be 

reused in other projects. Moreover, the software 

outsourcing company lacked deep understanding of 

the datasets and intended use of the platform, thus 

were unable to begin work on the project. It was also 

unclear who would maintain the computing 

infrastructure, monitor data quality, and integrate new 

data sources after the initial phase of the project.  

We worked with transport researchers and used 

BiDaML and toolset to specify the intended software 

solution workflow. We performed in-depth 

interviews with the project leader and traffic 

modeling expert, then used BiDaML tool to 

document the entire data analytics workflow 

including data ingestion, transport modeling and 

simulation, and result visualization. This allowed us 

to assist in the formation of an alternative software 

solution that made better use of the systems and 

services already available. As BiDaML forces the 

user to consider all phases of the project, the 

modeling process helped reveal gaps in planning that 

required attention. We will use the examples of the 

diagrams we created throughout this paper. 

2.3 Key Challenges 

As illustrated, there is no trace back to the business 

needs/requirements that triggered the project. 

Furthermore, communicating and reusing existing big 

data analytics information and models is shown to be 

a challenge for many companies new to data 

analytics. Users need to be able to collaborate with 

each other through different views and aspects of the 

problem and possible solutions. Current practices and 

tools do not cover most activities of data analytics 

design, especially the critical business requirements. 

Most current tools focus on low-level data analytics 

process design, coding and basic visualization of 

results and they mostly assume data is in a form 

amenable to processing. In reality, most data items 

are in different formats and not clean or integrated, 

and great effort is needed to source the data, integrate, 

harmonize, pre-process and cleanse it. Only a few off-

the-shelf ML tools offer the ability for the data 

science expert to embed new code and expand 

algorithms and provide visualizations for their needs.  

Data processing and ML tasks are only a small 

component in the building blocks necessary to build 

real-world deployable data analytics systems 

(Sculley, 2015).  Figure 2 illustrates these tasks cover 

a small part of data and ML operations and 

deployment of models. Business and management 

modeling tools usually don’t support many key data 

analytics steps including data pre-processing and ML 

steps. There is a need to capture the high-level goals 

and requirements for different users such as domain 

expert, business analyst, data analyst, data scientist, 

software engineer, and end-users and relate them to 

low level diagrams and capture details such as 

different tasks for different users, requirements, 

objectives, etc. Finally, most of the tools covering ML 

steps require data science and programming 

knowledge to embed code and change features based 

on user requirements. 



 
Figure 2: Data analytics steps (adapted from (Sculley, 

2015)) 

3 OUR APPROACH 

Many current big data analytics tools, such as Azure 

ML Studio, Amazon AWS ML and Google Cloud 

ML, provide only low-level data science solution 

design, despite many other steps being involved in 

solution development (Khalajzadeh, 2019b). 

Therefore, a high-level presentation of the steps to 

capture, represent, and communicate the business 

requirements analysis and design, data pre-

processing, high-level data analysis process, solution 

deployment and data visualization is required.  

3.1 BiDaML Visual Language 

We present BiDaML, a set of domain-specific visual 

languages using six diagram types at different levels 

of abstraction to support key aspects of big data 

analytics: 

- Brainstorming diagram provides an overview 

of a data analytics project and all the tasks and sub-

tasks that are involved in designing the solution at a 

very high level; 

- Process diagram specifies the analytics 

processes/steps including key details related to the 

participants (individuals and organizations), 

operations, and data items in a data analytics project 

capturing details from a high-level to a lower-level; 

- Technique diagrams show the step by step 

procedures and processes for each sub-task in the 

brainstorming and process diagrams at a low level of 

abstraction; 

- Data diagrams document the data and artifacts 

that are produced in each of the above diagrams in a 

low level, i.e. technical AI based layer; 

- Output diagrams define in detail the outputs 

associated with different tasks e.g. output 

information, reports, results, visualizations, 

outcomes, etc. 

- Deployment diagram depicts the run-time 

configuration, i.e. the system hardware, the software 

installed on it, and the middleware connecting 

different machines to each other. 

Figure 3 shows how our diagrams are connected 

to each other from a high level to a low level. A 

brainstorming diagram is defined for every data 

analytics project. Then, at a lower level to include 

more details and involve the participants, we use a 

process diagram. Every operation in a process 

diagram can be further extended by technique and 

data diagrams, and then, the technique and data 

diagrams are connected to a result output diagram. 

Finally, the deployment diagram, defined for every 

data analytics problem, models deployment related 

details at a low level.  

 

Figure 3: BiDaML diagrams overview for traffic data 

analysis example. 

3.1.1 Brainstorming Diagram 

A data analytics brainstorming diagram’s scope 

covers the entirety of a data analytics project 

expressed at a high-level. There are no rules as to how 

abstractly or explicitly a context is expanded. The 

diagram overviews a data analytics project in terms 

of the specific problem it is associated with, and the 

task and subtasks to solve the specific problem. It 

supports interactive brainstorming to identify key 

aspects of a data analytics project such as its 

requirements implications, analytical methodologies 

and specific tasks.  

Figure 4 (a) shows the visual notation used. It 

comprises an icon representing the data analytics 

problem, tasks which the problem is associated with, 

a hierarchy of sub-tasks for each task, and finally the 

specific information about sub-systems used or 

produced.  

We group the building blocks of an AI-powered 

system into four groups: Domain and business-related 

activities (BusinessOps); data-related activities 

(DataOps); artificial intelligence and ML-related 

activities (AIOps); and development and deployment 

activities (DevOps). The BusinessOps covers domain 

and business knowledge and requirement gathering, 

modeling and analysis. The DataOps includes data 



collection/ingestion, data validation cleansing, 

wrangling, filtering, union, merge, etc. AIOps covers 

feature engineering and model selection, model 

training and tuning. Finally, DevOps covers model 

integration and deployment, monitoring and serving 

infrastructure. Figure 4 (b) depicts a high-level 

brainstorming diagram for traffic data analysis 

example. From this figure we can see that: 

1) Sensor data collection will be done in both 

historical and realtime formats; 

2) SCATS converter is used to convert binary 

data to an open format; and 

3) Traffic modeling consists of traffic 

simulation, driver behavior modeling, 

demand modeling, and supply modeling. 

3.1.2 Process Diagram 

The key business processes in a data analytics 

application are shown in a process diagram, whose 

basic notation is shown in Figure 5. We adapt the 

Business Process Modeling Notation (BPMN) 

("Business Process Model And Notation (BPMN),") 

to specify big data analytics processes at several 

levels of abstraction. Process diagrams support 

business process management, for both technical 

users such as data analysts, data scientists, and 

software engineers as well as non-technical users 

such as domain experts, business users and 

customers, by providing a notation that is intuitive to 

business users, yet able to represent complex process 

semantics. 

In this diagram type, we use different “pools” for 

different organizations and different “swim lanes” for 

the people involved in the process within the same 

organization. Different layers are also defined based 

on different tasks such as business-related tasks 

(BusinessOps), technical (DataOps and AIOps), and 

operational tasks (DevOps and application-based 

tasks). Data and artifacts produced and used in each 

step can be shown as icons specific to the source and 

type of data. Preparation of data items or different 

events trigger other events and redirect the process to 

the other users in the same or different pool. 

Particular detailed activities or tasks performed by 

different users and the order of them are represented 

using rectangles and arrows. Diamonds show 

different decision points that can adjust the path based 

on conditions and double circles show unexpected 

events that can change the process at any step. 

 

 

Figure 5: Process diagram notational elements. 

A high-level process diagram for our traffic data 

analysis example is shown in Figure 6. In this, 1) 

project starts when VicRoads, as the data provider, 

provides historical data. 2) Domain knowledge is 

shared with the software outstanding company to 

provide the project’s cost estimate. 3) Technical lead 

develops web-based interface. 4) eResearch services 

provides big data storage/archival using MyTardis (A 

 

Figure 4: a) Brainstorming diagram notational elements and b) an example for the traffic data analysis problem 

 



large scale (research) data management/archival 

system developed by eResearch). 5) The extracted 

insights are shared with the transport group in order 

to clean and aggregate the dataset. 6) The researchers 

run simulations and deploy algorithms, and finally 7) 

if the final deployed models are satisfactory, then 

further action to progress the project will be taken, 

otherwise the problem needs to be found and 

resolved. In this case, an alert needs to be triggered 

and an issue tracking ticket assigned to the 

responsible participant to improve the process and 

consequently the outcome. 

3.1.3 Technique Diagram 

Data analytics technique diagrams extend the 

brainstorming diagram to low-level detail specific to 

different big data analytics tasks and sub-tasks. For 

every sub-task, the process is broken down into the 

specific stages and the technique used to solve a 

specific sub-task specified. Figure 7 shows the 

technique diagram notation.  

 

Figure 7: Technique diagram notational elements. 

In Figure 8, “Aggregate cycle-by-cycle data into 

15 minutes bins” and “Report volumes as NA and log 

warning if faulty sensor” are used as the 

methods/techniques to clean/aggregate data, and then 

the sub-techniques to solve challenges implementing 

each of the methods are further specified. We can 

create such diagrams for every task and sub-task in 

brainstorming and process diagrams. 

 

Figure 8: A technique diagram example for the traffic data 

analysis problem. 

3.1.4 Data Diagram 

To document the data and artifacts consumed and 

produced in different phases described by each of the 

above diagrams, one or more low-level data 

diagrams are used, as shown in Figure 9 (a). Data 

diagrams support the design of data and artifacts 

collection processes. They represent the structured 

and semi-structured data items involved in the data 

analytics project in different steps. A high-level data 

diagram can be represented by connecting the low-

level diagrams for different BusinessOps, DataOps, 

AIOps, and DevOps. 

A data diagram for our traffic analysis problem is 

shown in Figure 9 (b). Here, data and artifacts related 

to all tasks and sub-tasks in brainstorming and 

process diagrams are connected to different data 

 
Figure 6: A process diagram example for the traffic data analysis problem 

 

 



entities. In this case, different data items, features, 

outliers, the algorithms used, parameters related to 

these algorithms, model created based on different 

algorithms, and the evaluation metrics used for the 

model are captured for the AIOps entity. Data and 

artifacts produced for other data entities such as 

DataOps, DevOps, etc can be detailed and depicted 

with other data diagrams. 

3.1.5 Output Diagram 

Output diagrams specify an individual technique in 

more detail. This diagram type, shown in Figure 10 

(a), reuses and merges the technique diagram and data 

diagrams and adds information on the technique 

(logic entity) and the data produced by it (as output 

ports).  

Figure 10 (b) shows an application in our traffic 

data analysis example. Here we see (a) datasets used, 

(b) part of the data diagram relating to the test for the 

sampled data set and (c) a data analytics output 

diagram defining the expected outputs from the 

technique and data diagrams used for test and its 

output. From this, we can see the outputs and reports 

that can be extracted using current techniques and 

data items, such as simulated vehicle trajectories, 

flow prediction, traffic congestion prediction, etc. 

 
Figure 9: a) Data diagram notational elements and b) an example created for the traffic data analysis problem 

 

 

 

 

 

 
Figure 10: a) Output diagram notational elements and b) an example created for the traffic data analysis problem 

 

 

 

 
Figure 11: a) Deployment diagram notational elements and b) an example for the traffic data analysis problem 

 

 

 

 

 



3.1.6 Deployment Diagram 

Since the deployment part follows the same rules as 

the deployment process in software development, we 

have adapted the deployment diagram from the 

Unified Modeling Language (UML) (Ambler, 2004). 

Our extended UML deployment diagram notation is 

shown in Figure 11 (a).  

In a deployment diagram, three-dimensional 

boxes, known as nodes, represent the basic elements 

of the software or hardware. Rectangles indicate the 

objects in the system and the objects could be 

contained within the nodes to represent the software 

artifacts that are deployed and the components that 

run on those nodes. Lines from one node to another 

node specify the relationships between elements. 

Figure 11 (b) shows an example deployment diagram 

for our traffic data analysis problem, e.g. interactive 

map, data quality monitoring, and live traffic 

prediction demo are deployed on the web server, that 

is in turn deployed within the NeCTAR environment 

(an OpenStack-based cloud computing environment) 

(NeCTAR, 2019). 

 

Figure 12: Defining brainstorming notational elements in 

MetaEdit+ 

3.2 BiDaML Support Tool 

We have developed an integrated design environment 

for creating BiDaML diagrams. The tool support aims 

to provide a platform for efficiently producing 

BiDaML visual models and to facilitate their creation, 

display, editing, storage, code generation and 

integration with other tools. We have used MetaEdit+ 

Workbench ("MetaEdit+ Domain-Specific Modeling 

tools – MetaCase,") to implement our tool. Using 

MetaEdit+, we have created the objects and 

relationships defined as the notational elements for all 

the diagrams, different rules on how to connect the 

objects using the relationships, and how to define low 

level sub-graphs for the high level diagrams. Figure 

12 shows (a) how the objects, relationships, and roles 

are defined, (b) how the rules for connecting objects 

through relationships are defined, (c) how the sub-

graphs are connected to different objects of a graph, 

for a brainstorming diagram. We have defined these 

for all other diagrams. 

 

Figure 14: A snippet of the a) python code generated from 

the brainstorming diagram, and b) report generated from the 

process diagram 

Figure 13 shows our tool used to create the 

brainstorming diagram for our traffic analysis 

example. Here, users (a) choose the notations of 

objects/relationships and (b) modify the properties of 

the object/relationship. Notations added to the 

diagram are all listed (c) and details are shown by 

clicking on the notations (d). Users can click on any 

of the objects and create a sub-graph i.e., data, 

technique, and output diagram for them. Finally, once 

completed, (e) code generation features can be 

embedded and modified and (f) and finally Python 

code, BigML API recommendations and reports can 



be generated for our traffic data analysis example in 

this designed brainstorming diagram. Figure 14 (a) is 

a snippet of the Python code generated from the 

brainstorming diagram and Figure 14 (b) shows the 

report generated from the process diagram. 

4 EVALUATION 

We have evaluated the usability and suitability of our 

visual languages and tool suite in two ways. The first 

was an extensive physics of notations evaluation 

(Moody, 2009). This was a useful end-user 

perspective evaluation without having to involve a 

large-scale usability trial. To understand how easy 

BiDaML diagrams are to learn and use, we also 

conducted a cognitive walkthrough using several 

target domain expert end-users, including data 

scientists and software engineers, as test subjects. 

4.1 Physics of notations evaluation 

Semiotic clarity specifies that a diagram should not 

have symbol redundancy, overload, excess and 

deficit. All our visual symbols in BiDaML have 1:1 

correspondence to their referred concepts. Perceptual 

discriminability is primarily determined by the visual 

distance between symbols. All our symbols in 

BiDaML use different shapes as their main visual 

variable, plus redundant coding such as color and/or 

textual annotation. Semantic transparency identifies 

the extent to which the meaning of a symbol should 

be inferred from its appearance. In BiDaML, icons 

are used to represent visual symbols and minimize the 

use of abstract geometrical shapes. Complexity 

management restricts a diagram to have as few visual 

elements as possible to reduce its diagrammatic 

complexity. We used hierarchical views in BiDaML 

for representation and as our future work, we will add 

the feature for users to hide visual construct details 

for complex diagrams. Cognitive integration 

identifies that the information from separate diagrams 

should be assembled into a coherent mental 

representation of a system; and it should be as simple 

as possible to navigate between diagrams. All the 

diagrams in BiDaML have a hierarchical tree-based 

structure relationship as shown in Figure 5. 

Visual expressiveness defines a range of visual 

variables to be used, resulting in a perceptually 

enriched representation that exploits multiple visual 

communication channels and maximizes 

computational offloading. Various visual variables, 

such as shape, color, orientation, texture, etc are used 

in designing BiDaML visual symbols. Dual coding 

means that textual encoding should also be used, as it 

is most effective when used in a supporting role. In 

BiDaML, all visual symbols have a textual 

annotation. Graphic economy discusses that the 

number of different visual symbols should be 

cognitively manageable. As few visual symbols as 

possible are used in BiDaML. Cognitive fit means 

that the diagram needs to have different visual 

dialects for different tasks or users. All the symbols 

in BiDaML are usable for different users and tasks. 

However, in the future, we will provide different 

views for different users in our BiDaML support tool, 

and users will be able to navigate between views 

based on their requirements. 

 
Figure 13: An example of BiDaML tool for creating brainstorming diagram for the traffic data analysis problem 

 

 

 



4.2 Cognitive walkthrough 

We asked 3 data scientists and 2 software engineers 

(all experienced in big data analytics) to carry out a 

task-based end-user evaluation of BiDaML. The 

objective was to assess how easy it is to learn to use 

the visual models and how efficiently it can solve the 

diagram complexity problem. BiDaML diagrams 

were briefly introduced to the participants who were 

then asked to perform three predefined modeling 

tasks. The first was to design BusinessOps, DataOps, 

AIOps, or DevOps part of a brainstorming diagram 

for a data analytics problem of their choice from 

scratch. In the second, the subject was given a process 

diagram and asked to explain it, comment on the 

information represented and provide suggestions to 

improve it. The third involved subjects designing a 

technique diagram related to a specific task of the data 

analytics problem they chose for the first part of the 

evaluation. Figure 15 shows (a) devOps part of one of 

the brainstorming diagrams and (b and c) two of the 

technique diagrams that the data scientists/software 

engineers drew to help explain their current work 

tasks of (a) automated testcase generation (b) data 

wrangling and (c) data augmentation. 

Overall, users’ feedback indicated that BiDaML 

is very straightforward to use and understand. Users 

felt they could easily communicate with other team 

members and managers and present their ideas, 

techniques, expected outcomes and progress in a 

common language during the project before the final 

solution. They liked how different layers and 

operations are differentiated. Moreover, they could 

capture and understand business requirements and 

expectations and make agreements on requirements, 

outcomes, and results through the project. These 

could then be linked clearly to lower-level data, 

technique and output diagrams. Using this feedback 

we have made some minor changes to our diagrams 

such as the shape and order of some notations, and the 

relationships between different objects. 

However, several limitations and potential 

improvements have also been identified in our 

evaluations. Some users prefer to see technique and 

data diagrams components altogether in a single 

diagram, while some others prefer to have these 

separate. Moreover, in the process diagram, some 

users prefer to only see the operations related to their 

tasks and directly related tasks. Finally, one of the 

users wanted to differentiate between 

tasks/operations that are done by humans versus a 

tool. In future tool updates, we will provide different 

views for different users and will allow users to 

hide/unhide different components of the diagrams 

based on their preference. Moreover, in our future 

code generation plan, we will separate different tasks 

based on whether they are conducted by humans or 

tools. We will run a larger user evaluation with 

business and domain expert end-users. The future 

user study will be conducted in a more structured 

manner, and the feedback will be collected 

anonymously. Moreover, in order to evaluate the 

usability of the current interface for new users of the 

BiDaML tool, the participants will be given more 

independent tasks. Finally, BiDaML will be 

compared with the existing solutions, such as UML. 

 
Figure 15: Example brainstorming and technique diagrams from our evaluators. 

 

 

 

 

 



5 RELATED WORK 

There are many data analytics tools available, such as 

Azure ML Studio , Amazon AWS ML , Google Cloud 

ML , and BigMl  as reviewed in (Khalajzadeh, 

2019b). However, these tools only cover a few phases 

of DataOps, AIOps, and DevOps and none cover 

business problem description, requirements analysis 

and design. Moreover, since most end-users have 

limited technical data science and programming 

knowledge, they usually struggle using these tools. 

Some DSVLs have been developed for supporting 

enterprise service modeling and generation using 

end-user friendly metaphors. An integrated visual 

notation for business process modeling is presented 

and developed in (Li, 2014) using a novel tree-based 

overlay structure that effectively mitigates 

complexity problems. MaramaAIC (Kamalrudin, 

2017) provides end-to-end support between 

requirements engineers and their clients for the 

validation and improvement of the requirements 

inconsistencies. SDLTool (Kim, 2015) provides 

statistician end-users with a visual language 

environment for complex statistical survey 

design/implementation. These tools provide 

environments supporting end-users in different 

domains. However, they do not support data analytics 

processes, techniques, data and requirements, and do 

not target end-users for such applications. 

Scientific workflows are widely recognized as 

useful models to describe, manage, and share 

complex scientific analyses and tools have been 

designed and developed for designing, reusing, and 

sharing such workflows. Kepler ("Kepler,") and 

Taverna ("Apache Taverna,") are Java-based open 

source software systems for designing, executing, 

reusing, evolving, archiving, and sharing scientific 

workflows to help scientists, analysts, and computer 

programmers. VisTrails ("VisTrails,") is a Python/Qt-

based open-source scientific workflow and 

provenance management system supporting 

simulation, data exploration and visualization. It can 

be combined with existing systems and libraries as 

well as your own packages/modules. Finally, 

Workspace ("Workspace,"), built on the Qt toolkit, is 

a powerful, cross-platform scientific workflow 

framework enabling collaboration and software reuse 

and streamlining delivery of software for commercial 

and research purposes. Users can easily create, 

collaborate and reproduce scientific workflows, 

develop custom user interfaces for different 

customers, write their own specialized plug-ins, and 

scale their computation using Workspace’s 

remote/parallel task scheduling engine. Different 

projects can be built on top of these drag and drop 

based graphical tools and these tools are used in a 

variety of applications and domains. However, they 

only offer a limited number of data analysis steps and 

no data analytics and ML capabilities and libraries. 

Finally, some software tools implement 

algorithms specific to a given graphical model such 

as Infer.NET (Minka, 2010). This approach for 

implementing data analytics techniques is called a 

model-based approach to ML (Bishop, 2012). An 

initial conceptualization of a domain specific 

modeling language supporting code generation from 

visual representations of probabilistic models for big 

data analytics is presented in (Breuker, 2014) by 

extending the analysis of the Infer.NET. However, it 

is in very early stages and does not cover many of the 

data analytics steps in real-world problems. 

4 CONCLUSIONS 

We have described a set of visual notations for 

specifying data analytics project software 

requirements and solutions. Our DSVLs, namely 

BiDaML, are aimed at providing a similar modeling 

framework for data analytics solution design as UML 

does for software requirements and design. It is 

comprised of six high- and low-level diagrammatic 

types. These diagrams represent both data- and 

technique-oriented components of a data analytics 

solution design. A physics of notations analysis and a 

cognitive walkthrough with several end-users were 

undertaken to evaluate the usability of BiDaML. We 

have also used our diagrams to model several 

complex big data analytics problems.  

Our future work includes providing multiple 

view/elision support for large diagrams in our 

BiDaML modeling tool. In addition, we see 

considerable scope for providing back end integration 

with other data analytics tools, such as Azure ML 

Studio, Our tool can be used at an abstract level 

during requirements analysis and design, and then 

connected to different tools at a low level from say 

Google, Microsoft or Amazon. Therefore, our DSVLs 

can be used to design, implement and control a data 

analytics solution. Our tool will support modeling and 

code generation, together with collaborative work 

support in the future. Since big data analysis has the 

same steps, the code generation feature of our tool 

will provide a set of templates for handling different 

classes of systems in data analytics projects. These 

will be leveraged to integrate our BiDaML tool with 

other data analytics packages. 
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