
Visual Languages for Supporting Big Data Analytics Development

Hourieh Khalajzadeh1 a, Andrew Simmons2 b, Mohamed Abdelrazek2 c, John Grundy1 d, John

Hosking3 e, Qiang He4 f
1Faculty of Information Technology, Monash University, Australia
2School of Information Technology, Deakin University, Australia

3Faculty of Science, University of Auckland, New Zealand
4School of Software and Electrical Engineering, Swinburne University of Technology, Australia

{hourieh.khalajzadeh, john.grundy}@monash.edu, {a.simmons, mohamed.abdelrazek}@deakin.edu.au,

j.hosking@auckland.ac.nz, qhe@swin.edu.au

Keywords: Big data analytics, Big data modeling, Big data toolkits, Domain specific visual languages, End-user tools

Abstract: We present BiDaML (Big Data Analytics Modeling Languages), an integrated suite of visual languages and

supporting tool to help end-users with the engineering of big data analytics solutions. BiDaML, our visual

notations suite, comprises six diagrammatic notations: brainstorming diagram, process diagram, technique

diagrams, data diagrams, output diagrams and deployment diagram. BiDaML tool provides a platform for

efficiently producing BiDaML visual models and facilitating their design, creation, code generation and

integration with other tools. To demonstrate the utility of BiDaML, we illustrate our approach with a real-

world example of traffic data analysis. We evaluate BiDaML using two types of evaluations, the physics of

notations and a cognitive walkthrough with several target end-users e.g. data scientists and software engineers.

1 INTRODUCTION

Using big data analytics to improve decision-making

has become a highly active research and practice area

(Landset, 2015; Portugal, 2016). Gartner’s technical

professional advice (Sapp, 2017) recommends six

stages for machine learning (ML) applications:

classifying the problem, acquiring data, processing

data, modeling the problem, validation and execution,

and finally deployment. Traditionally, advanced ML

knowledge and experience of complex data science

toolsets were required for data analytics applications.

Emerging analytics approaches seek to automate

many of these steps in model building and its

application, making ML technology more accessible

to those who lack deep quantitative analysis and tool

building skills (Rollins, 2015).

Recently, a number of data analytics and ML tools

have become popular, providing packaged data

a https://orcid.org/0000-0001-9958-0102
b https://orcid.org/0000-0001-8402-2853
c https://orcid.org/0000-0003-3812-9785
d https://orcid.org/0000-0003-4928-7076
e https://orcid.org/0000-0002-4776-3828
f https://orcid.org/0000-0002-2607-4556

sourcing, integration, analysis and visualization

toolkits oriented towards end-users. Many of these

tools do not require programming language

knowledge and are based on simple drag-and-drop

interfaces. However, they mostly focus on the ML

algorithms and sometimes one-click deployment, but

lack domain knowledge and business problem

capturing, modeling, traceability to the solution and

validation of the solution against the problem. They

also lack an explanation of the model from an end-

user perspective.

To address this, data analytics and ML steps need

to be more tightly connected to the control and

management of business and requirements

engineering processes. However, the primary focus of

most current big data analytics tools and technologies

is on storage, processing, and particularly the data

analysis and ML tasks.

John Grundy
15th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE2020), 5-6 May 2020, Prague, Chez Republic

Current data analytics tools rarely focus on the

improvement of end-to-end processes (Aalst, 2015).

To address this issue, better integration of data

science, data technology and process science is

needed (Aalst, 2015). Data science approaches tend

to be process agonistic whereas process science

approaches tend to be model-driven without

considering the evidence hidden in the data. Bringing

scalable process mining analytics to big data toolkits,

while enabling them to be easily tailored to

accommodate domain-specific requirements, is

needed (Aalst, 2015). Tools filling these gaps would

be useful for end-users like data scientists, for the

discovery and exploration phase, to be able to model

the problem, extract insights/patterns, and develop

predictive and clustering models if it is feasible

before they need to involve software engineers.

We present our novel approach to addressing this

problem - Big Data Analytics Modeling Languages

(BiDaML) - a set of domain specific visual languages

(DSVLs) at different levels of abstraction (extended

from (Khalajzadeh, 2019a)), to capture and refine

requirements and specify different parts of the data

analytics process. Through these DSVLs, we aim to

make data analytics design more accessible to end-

users and facilitate dialogues with expert data

scientists and software engineers. BiDaML provides

better tool support and collaboration between

different users while improving the speed of

implementing data analytics solutions.

The rest of the paper is organized as follows. In

Section 2, the background and motivation of this

research are described with a real-world example of

traffic data analysis. Our approach is discussed in

Section 3 and evaluated in Section 4. A

comprehensive comparison to related work is

presented in Section 5. Finally, we draw conclusions

and discuss key future directions in Section 6.

2 MOTIVATING EXAMPLE

We discuss key data analytics steps and the different

types of communication needed between users in a

data analytics project. A real traffic data analysis

example integrating data from diverse data sources

including VicRoads’ SCATS traffic system (Sydney

Coordinated Adaptive Traffic System, an intelligent

transport system used to manage traffic signals in the

state of Victoria, Australia as well as other

states/cities) (VicRoads, 2018) is then demonstrated

to reflect the issues and some key challenges in the

process of data analytics.

2.1 Data Analytics Process Steps

The key steps that data scientists take to design their

solutions are illustrated in Figure 1. Business owners,

business analysts, data analysts and data scientists

need to have (a) several rounds of meetings and

interviews with domain experts and users; (b) acquire

datasets from different resources; (c) get access to

government information; (d) integrate all data items

with different format, analyze and visualize them; (e)

communicate with each other to discuss the analyses;

and (f) finally use different tools to design their

approaches and develop their models. However, there

is no unified language that allows to facilitate the

communication among domain experts, business

owner/analysts and software engineers and they need

Figure 1: How data scientists currently design their big data analytics solutions

to wait until their models are usable and deployable.

In this section, we will show an example of the traffic

data analysis to discuss some of the problems they

face during the solution design process.

2.2 Example: Traffic Data Analysis

For this real-world large project there was a need to

formally capture detailed requirements for a new

traffic data platform that would ingest a real-time

stream of traffic data received from VicRoads (the

Victorian road transport authority), integrate this with

other transport data sources, and support modeling

and visualization of the transport network at a state-

wide level. There were some issues arising in the

initiation of the project. The project leader and traffic

modeling experts identified the need for a big data

platform; however, without a background in software

engineering or familiarity with modern data science

tools, they were unable to determine whether the big

data technology stack offered by the software

outsourcing company was likely to meet their needs.

Moreover, the software outsourcing company lacked

understanding of the domain and thus did not

understand what tasks were required of them.

To overcome the communication difficulties, a

meeting was arranged between the project leader, the

traffic modeling expert, a data engineer/visualization

designer, the project team from the software

outsourcing company, and the eResearch high

performance computing services team. However, the

lack of a common language meant that

communication could only take place at a high-level

rather than at the level of detail necessary to initiate

direct technical action. The software outsourcing

company produced a plan for software they intended

to deploy; however, no plan existed for who would

monitor and maintain the software and systems after

deployment, such as responding to faults in real-time

data ingestion or adding support for new types of

data. To justify the cost and time investment into the

project, the project leader wanted to be able to reuse

the platform for related projects, such as a smart city.

However, it was unclear whether the work invested

into the design of the transport data platform could be

reused in other projects. Moreover, the software

outsourcing company lacked deep understanding of

the datasets and intended use of the platform, thus

were unable to begin work on the project. It was also

unclear who would maintain the computing

infrastructure, monitor data quality, and integrate new

data sources after the initial phase of the project.

We worked with transport researchers and used

BiDaML and toolset to specify the intended software

solution workflow. We performed in-depth

interviews with the project leader and traffic

modeling expert, then used BiDaML tool to

document the entire data analytics workflow

including data ingestion, transport modeling and

simulation, and result visualization. This allowed us

to assist in the formation of an alternative software

solution that made better use of the systems and

services already available. As BiDaML forces the

user to consider all phases of the project, the

modeling process helped reveal gaps in planning that

required attention. We will use the examples of the

diagrams we created throughout this paper.

2.3 Key Challenges

As illustrated, there is no trace back to the business

needs/requirements that triggered the project.

Furthermore, communicating and reusing existing big

data analytics information and models is shown to be

a challenge for many companies new to data

analytics. Users need to be able to collaborate with

each other through different views and aspects of the

problem and possible solutions. Current practices and

tools do not cover most activities of data analytics

design, especially the critical business requirements.

Most current tools focus on low-level data analytics

process design, coding and basic visualization of

results and they mostly assume data is in a form

amenable to processing. In reality, most data items

are in different formats and not clean or integrated,

and great effort is needed to source the data, integrate,

harmonize, pre-process and cleanse it. Only a few off-

the-shelf ML tools offer the ability for the data

science expert to embed new code and expand

algorithms and provide visualizations for their needs.

Data processing and ML tasks are only a small

component in the building blocks necessary to build

real-world deployable data analytics systems

(Sculley, 2015). Figure 2 illustrates these tasks cover

a small part of data and ML operations and

deployment of models. Business and management

modeling tools usually don’t support many key data

analytics steps including data pre-processing and ML

steps. There is a need to capture the high-level goals

and requirements for different users such as domain

expert, business analyst, data analyst, data scientist,

software engineer, and end-users and relate them to

low level diagrams and capture details such as

different tasks for different users, requirements,

objectives, etc. Finally, most of the tools covering ML

steps require data science and programming

knowledge to embed code and change features based

on user requirements.

Figure 2: Data analytics steps (adapted from (Sculley,

2015))

3 OUR APPROACH

Many current big data analytics tools, such as Azure

ML Studio, Amazon AWS ML and Google Cloud

ML, provide only low-level data science solution

design, despite many other steps being involved in

solution development (Khalajzadeh, 2019b).

Therefore, a high-level presentation of the steps to

capture, represent, and communicate the business

requirements analysis and design, data pre-

processing, high-level data analysis process, solution

deployment and data visualization is required.

3.1 BiDaML Visual Language

We present BiDaML, a set of domain-specific visual

languages using six diagram types at different levels

of abstraction to support key aspects of big data

analytics:

- Brainstorming diagram provides an overview

of a data analytics project and all the tasks and sub-

tasks that are involved in designing the solution at a

very high level;

- Process diagram specifies the analytics

processes/steps including key details related to the

participants (individuals and organizations),

operations, and data items in a data analytics project

capturing details from a high-level to a lower-level;

- Technique diagrams show the step by step

procedures and processes for each sub-task in the

brainstorming and process diagrams at a low level of

abstraction;

- Data diagrams document the data and artifacts

that are produced in each of the above diagrams in a

low level, i.e. technical AI based layer;

- Output diagrams define in detail the outputs

associated with different tasks e.g. output

information, reports, results, visualizations,

outcomes, etc.

- Deployment diagram depicts the run-time

configuration, i.e. the system hardware, the software

installed on it, and the middleware connecting

different machines to each other.

Figure 3 shows how our diagrams are connected

to each other from a high level to a low level. A

brainstorming diagram is defined for every data

analytics project. Then, at a lower level to include

more details and involve the participants, we use a

process diagram. Every operation in a process

diagram can be further extended by technique and

data diagrams, and then, the technique and data

diagrams are connected to a result output diagram.

Finally, the deployment diagram, defined for every

data analytics problem, models deployment related

details at a low level.

Figure 3: BiDaML diagrams overview for traffic data

analysis example.

3.1.1 Brainstorming Diagram

A data analytics brainstorming diagram’s scope

covers the entirety of a data analytics project

expressed at a high-level. There are no rules as to how

abstractly or explicitly a context is expanded. The

diagram overviews a data analytics project in terms

of the specific problem it is associated with, and the

task and subtasks to solve the specific problem. It

supports interactive brainstorming to identify key

aspects of a data analytics project such as its

requirements implications, analytical methodologies

and specific tasks.

Figure 4 (a) shows the visual notation used. It

comprises an icon representing the data analytics

problem, tasks which the problem is associated with,

a hierarchy of sub-tasks for each task, and finally the

specific information about sub-systems used or

produced.

We group the building blocks of an AI-powered

system into four groups: Domain and business-related

activities (BusinessOps); data-related activities

(DataOps); artificial intelligence and ML-related

activities (AIOps); and development and deployment

activities (DevOps). The BusinessOps covers domain

and business knowledge and requirement gathering,

modeling and analysis. The DataOps includes data

collection/ingestion, data validation cleansing,

wrangling, filtering, union, merge, etc. AIOps covers

feature engineering and model selection, model

training and tuning. Finally, DevOps covers model

integration and deployment, monitoring and serving

infrastructure. Figure 4 (b) depicts a high-level

brainstorming diagram for traffic data analysis

example. From this figure we can see that:

1) Sensor data collection will be done in both

historical and realtime formats;

2) SCATS converter is used to convert binary

data to an open format; and

3) Traffic modeling consists of traffic

simulation, driver behavior modeling,

demand modeling, and supply modeling.

3.1.2 Process Diagram

The key business processes in a data analytics

application are shown in a process diagram, whose

basic notation is shown in Figure 5. We adapt the

Business Process Modeling Notation (BPMN)

("Business Process Model And Notation (BPMN),")

to specify big data analytics processes at several

levels of abstraction. Process diagrams support

business process management, for both technical

users such as data analysts, data scientists, and

software engineers as well as non-technical users

such as domain experts, business users and

customers, by providing a notation that is intuitive to

business users, yet able to represent complex process

semantics.

In this diagram type, we use different “pools” for

different organizations and different “swim lanes” for

the people involved in the process within the same

organization. Different layers are also defined based

on different tasks such as business-related tasks

(BusinessOps), technical (DataOps and AIOps), and

operational tasks (DevOps and application-based

tasks). Data and artifacts produced and used in each

step can be shown as icons specific to the source and

type of data. Preparation of data items or different

events trigger other events and redirect the process to

the other users in the same or different pool.

Particular detailed activities or tasks performed by

different users and the order of them are represented

using rectangles and arrows. Diamonds show

different decision points that can adjust the path based

on conditions and double circles show unexpected

events that can change the process at any step.

Figure 5: Process diagram notational elements.

A high-level process diagram for our traffic data

analysis example is shown in Figure 6. In this, 1)

project starts when VicRoads, as the data provider,

provides historical data. 2) Domain knowledge is

shared with the software outstanding company to

provide the project’s cost estimate. 3) Technical lead

develops web-based interface. 4) eResearch services

provides big data storage/archival using MyTardis (A

Figure 4: a) Brainstorming diagram notational elements and b) an example for the traffic data analysis problem

large scale (research) data management/archival

system developed by eResearch). 5) The extracted

insights are shared with the transport group in order

to clean and aggregate the dataset. 6) The researchers

run simulations and deploy algorithms, and finally 7)

if the final deployed models are satisfactory, then

further action to progress the project will be taken,

otherwise the problem needs to be found and

resolved. In this case, an alert needs to be triggered

and an issue tracking ticket assigned to the

responsible participant to improve the process and

consequently the outcome.

3.1.3 Technique Diagram

Data analytics technique diagrams extend the

brainstorming diagram to low-level detail specific to

different big data analytics tasks and sub-tasks. For

every sub-task, the process is broken down into the

specific stages and the technique used to solve a

specific sub-task specified. Figure 7 shows the

technique diagram notation.

Figure 7: Technique diagram notational elements.

In Figure 8, “Aggregate cycle-by-cycle data into

15 minutes bins” and “Report volumes as NA and log

warning if faulty sensor” are used as the

methods/techniques to clean/aggregate data, and then

the sub-techniques to solve challenges implementing

each of the methods are further specified. We can

create such diagrams for every task and sub-task in

brainstorming and process diagrams.

Figure 8: A technique diagram example for the traffic data

analysis problem.

3.1.4 Data Diagram

To document the data and artifacts consumed and

produced in different phases described by each of the

above diagrams, one or more low-level data

diagrams are used, as shown in Figure 9 (a). Data

diagrams support the design of data and artifacts

collection processes. They represent the structured

and semi-structured data items involved in the data

analytics project in different steps. A high-level data

diagram can be represented by connecting the low-

level diagrams for different BusinessOps, DataOps,

AIOps, and DevOps.

A data diagram for our traffic analysis problem is

shown in Figure 9 (b). Here, data and artifacts related

to all tasks and sub-tasks in brainstorming and

process diagrams are connected to different data

Figure 6: A process diagram example for the traffic data analysis problem

entities. In this case, different data items, features,

outliers, the algorithms used, parameters related to

these algorithms, model created based on different

algorithms, and the evaluation metrics used for the

model are captured for the AIOps entity. Data and

artifacts produced for other data entities such as

DataOps, DevOps, etc can be detailed and depicted

with other data diagrams.

3.1.5 Output Diagram

Output diagrams specify an individual technique in

more detail. This diagram type, shown in Figure 10

(a), reuses and merges the technique diagram and data

diagrams and adds information on the technique

(logic entity) and the data produced by it (as output

ports).

Figure 10 (b) shows an application in our traffic

data analysis example. Here we see (a) datasets used,

(b) part of the data diagram relating to the test for the

sampled data set and (c) a data analytics output

diagram defining the expected outputs from the

technique and data diagrams used for test and its

output. From this, we can see the outputs and reports

that can be extracted using current techniques and

data items, such as simulated vehicle trajectories,

flow prediction, traffic congestion prediction, etc.

Figure 9: a) Data diagram notational elements and b) an example created for the traffic data analysis problem

Figure 10: a) Output diagram notational elements and b) an example created for the traffic data analysis problem

Figure 11: a) Deployment diagram notational elements and b) an example for the traffic data analysis problem

3.1.6 Deployment Diagram

Since the deployment part follows the same rules as

the deployment process in software development, we

have adapted the deployment diagram from the

Unified Modeling Language (UML) (Ambler, 2004).

Our extended UML deployment diagram notation is

shown in Figure 11 (a).

In a deployment diagram, three-dimensional

boxes, known as nodes, represent the basic elements

of the software or hardware. Rectangles indicate the

objects in the system and the objects could be

contained within the nodes to represent the software

artifacts that are deployed and the components that

run on those nodes. Lines from one node to another

node specify the relationships between elements.

Figure 11 (b) shows an example deployment diagram

for our traffic data analysis problem, e.g. interactive

map, data quality monitoring, and live traffic

prediction demo are deployed on the web server, that

is in turn deployed within the NeCTAR environment

(an OpenStack-based cloud computing environment)

(NeCTAR, 2019).

Figure 12: Defining brainstorming notational elements in

MetaEdit+

3.2 BiDaML Support Tool

We have developed an integrated design environment

for creating BiDaML diagrams. The tool support aims

to provide a platform for efficiently producing

BiDaML visual models and to facilitate their creation,

display, editing, storage, code generation and

integration with other tools. We have used MetaEdit+

Workbench ("MetaEdit+ Domain-Specific Modeling

tools – MetaCase,") to implement our tool. Using

MetaEdit+, we have created the objects and

relationships defined as the notational elements for all

the diagrams, different rules on how to connect the

objects using the relationships, and how to define low

level sub-graphs for the high level diagrams. Figure

12 shows (a) how the objects, relationships, and roles

are defined, (b) how the rules for connecting objects

through relationships are defined, (c) how the sub-

graphs are connected to different objects of a graph,

for a brainstorming diagram. We have defined these

for all other diagrams.

Figure 14: A snippet of the a) python code generated from

the brainstorming diagram, and b) report generated from the

process diagram

Figure 13 shows our tool used to create the

brainstorming diagram for our traffic analysis

example. Here, users (a) choose the notations of

objects/relationships and (b) modify the properties of

the object/relationship. Notations added to the

diagram are all listed (c) and details are shown by

clicking on the notations (d). Users can click on any

of the objects and create a sub-graph i.e., data,

technique, and output diagram for them. Finally, once

completed, (e) code generation features can be

embedded and modified and (f) and finally Python

code, BigML API recommendations and reports can

be generated for our traffic data analysis example in

this designed brainstorming diagram. Figure 14 (a) is

a snippet of the Python code generated from the

brainstorming diagram and Figure 14 (b) shows the

report generated from the process diagram.

4 EVALUATION

We have evaluated the usability and suitability of our

visual languages and tool suite in two ways. The first

was an extensive physics of notations evaluation

(Moody, 2009). This was a useful end-user

perspective evaluation without having to involve a

large-scale usability trial. To understand how easy

BiDaML diagrams are to learn and use, we also

conducted a cognitive walkthrough using several

target domain expert end-users, including data

scientists and software engineers, as test subjects.

4.1 Physics of notations evaluation

Semiotic clarity specifies that a diagram should not

have symbol redundancy, overload, excess and

deficit. All our visual symbols in BiDaML have 1:1

correspondence to their referred concepts. Perceptual

discriminability is primarily determined by the visual

distance between symbols. All our symbols in

BiDaML use different shapes as their main visual

variable, plus redundant coding such as color and/or

textual annotation. Semantic transparency identifies

the extent to which the meaning of a symbol should

be inferred from its appearance. In BiDaML, icons

are used to represent visual symbols and minimize the

use of abstract geometrical shapes. Complexity

management restricts a diagram to have as few visual

elements as possible to reduce its diagrammatic

complexity. We used hierarchical views in BiDaML

for representation and as our future work, we will add

the feature for users to hide visual construct details

for complex diagrams. Cognitive integration

identifies that the information from separate diagrams

should be assembled into a coherent mental

representation of a system; and it should be as simple

as possible to navigate between diagrams. All the

diagrams in BiDaML have a hierarchical tree-based

structure relationship as shown in Figure 5.

Visual expressiveness defines a range of visual

variables to be used, resulting in a perceptually

enriched representation that exploits multiple visual

communication channels and maximizes

computational offloading. Various visual variables,

such as shape, color, orientation, texture, etc are used

in designing BiDaML visual symbols. Dual coding

means that textual encoding should also be used, as it

is most effective when used in a supporting role. In

BiDaML, all visual symbols have a textual

annotation. Graphic economy discusses that the

number of different visual symbols should be

cognitively manageable. As few visual symbols as

possible are used in BiDaML. Cognitive fit means

that the diagram needs to have different visual

dialects for different tasks or users. All the symbols

in BiDaML are usable for different users and tasks.

However, in the future, we will provide different

views for different users in our BiDaML support tool,

and users will be able to navigate between views

based on their requirements.

Figure 13: An example of BiDaML tool for creating brainstorming diagram for the traffic data analysis problem

4.2 Cognitive walkthrough

We asked 3 data scientists and 2 software engineers

(all experienced in big data analytics) to carry out a

task-based end-user evaluation of BiDaML. The

objective was to assess how easy it is to learn to use

the visual models and how efficiently it can solve the

diagram complexity problem. BiDaML diagrams

were briefly introduced to the participants who were

then asked to perform three predefined modeling

tasks. The first was to design BusinessOps, DataOps,

AIOps, or DevOps part of a brainstorming diagram

for a data analytics problem of their choice from

scratch. In the second, the subject was given a process

diagram and asked to explain it, comment on the

information represented and provide suggestions to

improve it. The third involved subjects designing a

technique diagram related to a specific task of the data

analytics problem they chose for the first part of the

evaluation. Figure 15 shows (a) devOps part of one of

the brainstorming diagrams and (b and c) two of the

technique diagrams that the data scientists/software

engineers drew to help explain their current work

tasks of (a) automated testcase generation (b) data

wrangling and (c) data augmentation.

Overall, users’ feedback indicated that BiDaML

is very straightforward to use and understand. Users

felt they could easily communicate with other team

members and managers and present their ideas,

techniques, expected outcomes and progress in a

common language during the project before the final

solution. They liked how different layers and

operations are differentiated. Moreover, they could

capture and understand business requirements and

expectations and make agreements on requirements,

outcomes, and results through the project. These

could then be linked clearly to lower-level data,

technique and output diagrams. Using this feedback

we have made some minor changes to our diagrams

such as the shape and order of some notations, and the

relationships between different objects.

However, several limitations and potential

improvements have also been identified in our

evaluations. Some users prefer to see technique and

data diagrams components altogether in a single

diagram, while some others prefer to have these

separate. Moreover, in the process diagram, some

users prefer to only see the operations related to their

tasks and directly related tasks. Finally, one of the

users wanted to differentiate between

tasks/operations that are done by humans versus a

tool. In future tool updates, we will provide different

views for different users and will allow users to

hide/unhide different components of the diagrams

based on their preference. Moreover, in our future

code generation plan, we will separate different tasks

based on whether they are conducted by humans or

tools. We will run a larger user evaluation with

business and domain expert end-users. The future

user study will be conducted in a more structured

manner, and the feedback will be collected

anonymously. Moreover, in order to evaluate the

usability of the current interface for new users of the

BiDaML tool, the participants will be given more

independent tasks. Finally, BiDaML will be

compared with the existing solutions, such as UML.

Figure 15: Example brainstorming and technique diagrams from our evaluators.

5 RELATED WORK

There are many data analytics tools available, such as

Azure ML Studio , Amazon AWS ML , Google Cloud

ML , and BigMl as reviewed in (Khalajzadeh,

2019b). However, these tools only cover a few phases

of DataOps, AIOps, and DevOps and none cover

business problem description, requirements analysis

and design. Moreover, since most end-users have

limited technical data science and programming

knowledge, they usually struggle using these tools.

Some DSVLs have been developed for supporting

enterprise service modeling and generation using

end-user friendly metaphors. An integrated visual

notation for business process modeling is presented

and developed in (Li, 2014) using a novel tree-based

overlay structure that effectively mitigates

complexity problems. MaramaAIC (Kamalrudin,

2017) provides end-to-end support between

requirements engineers and their clients for the

validation and improvement of the requirements

inconsistencies. SDLTool (Kim, 2015) provides

statistician end-users with a visual language

environment for complex statistical survey

design/implementation. These tools provide

environments supporting end-users in different

domains. However, they do not support data analytics

processes, techniques, data and requirements, and do

not target end-users for such applications.

Scientific workflows are widely recognized as

useful models to describe, manage, and share

complex scientific analyses and tools have been

designed and developed for designing, reusing, and

sharing such workflows. Kepler ("Kepler,") and

Taverna ("Apache Taverna,") are Java-based open

source software systems for designing, executing,

reusing, evolving, archiving, and sharing scientific

workflows to help scientists, analysts, and computer

programmers. VisTrails ("VisTrails,") is a Python/Qt-

based open-source scientific workflow and

provenance management system supporting

simulation, data exploration and visualization. It can

be combined with existing systems and libraries as

well as your own packages/modules. Finally,

Workspace ("Workspace,"), built on the Qt toolkit, is

a powerful, cross-platform scientific workflow

framework enabling collaboration and software reuse

and streamlining delivery of software for commercial

and research purposes. Users can easily create,

collaborate and reproduce scientific workflows,

develop custom user interfaces for different

customers, write their own specialized plug-ins, and

scale their computation using Workspace’s

remote/parallel task scheduling engine. Different

projects can be built on top of these drag and drop

based graphical tools and these tools are used in a

variety of applications and domains. However, they

only offer a limited number of data analysis steps and

no data analytics and ML capabilities and libraries.

Finally, some software tools implement

algorithms specific to a given graphical model such

as Infer.NET (Minka, 2010). This approach for

implementing data analytics techniques is called a

model-based approach to ML (Bishop, 2012). An

initial conceptualization of a domain specific

modeling language supporting code generation from

visual representations of probabilistic models for big

data analytics is presented in (Breuker, 2014) by

extending the analysis of the Infer.NET. However, it

is in very early stages and does not cover many of the

data analytics steps in real-world problems.

4 CONCLUSIONS

We have described a set of visual notations for

specifying data analytics project software

requirements and solutions. Our DSVLs, namely

BiDaML, are aimed at providing a similar modeling

framework for data analytics solution design as UML

does for software requirements and design. It is

comprised of six high- and low-level diagrammatic

types. These diagrams represent both data- and

technique-oriented components of a data analytics

solution design. A physics of notations analysis and a

cognitive walkthrough with several end-users were

undertaken to evaluate the usability of BiDaML. We

have also used our diagrams to model several

complex big data analytics problems.

Our future work includes providing multiple

view/elision support for large diagrams in our

BiDaML modeling tool. In addition, we see

considerable scope for providing back end integration

with other data analytics tools, such as Azure ML

Studio, Our tool can be used at an abstract level

during requirements analysis and design, and then

connected to different tools at a low level from say

Google, Microsoft or Amazon. Therefore, our DSVLs

can be used to design, implement and control a data

analytics solution. Our tool will support modeling and

code generation, together with collaborative work

support in the future. Since big data analysis has the

same steps, the code generation feature of our tool

will provide a set of templates for handling different

classes of systems in data analytics projects. These

will be leveraged to integrate our BiDaML tool with

other data analytics packages.

ACKNOWLEDGMENTS

Support from ARC Discovery Project DP170101932

and ARC Laureate Program FL190100035 is

gratefully acknowledged. We would also like to

acknowledge Prof. Hai Vu and Dr. Nam Hoang from

the Monash Institute of Transport Studies for their

collaboration, and thank the Department of Transport

(VicRoads) for sharing the transport data.

REFERENCES

Aalst, W. v. d., & Damiani, E. (2015). Processes Meet Big

Data: Connecting Data Science with Process

Science. IEEE Transactions on Services

Computing, 8(6), 810-819.

Ambler, S. (2004). The Object Primer: Agile Model-Driven

Development With Uml 2.0 3rd Edition: Cambridge

University Press

Apache Taverna. Retrieved from

https://taverna.incubator.apache.org/

Bishop, C. M. (2012). Model-based Machine Learning.

Philosophical Transactions of the Royal Society A,

Mathematical, Physical and Engineering Sciences,

371(1984).

Breuker, D. (2014). Towards Model-Driven Engineering

for Big Data Analytics – An Exploratory Analysis

of Domain-Specific Languages for Machine

Learning. Paper presented at the 47th Hawaii

International Conference on System Science.

Business Process Model And Notation (BPMN). Retrieved

from https://www.omg.org/spec/BPMN/2.0/

Kamalrudin, M., Hosking, J., & Grundy, J. (2017).

MaramaAIC: Tool Support for Consistency

Management and Validation of Requirements.

Automated Software Engineering, 24(1), 1-45.

Kepler. Retrieved from https://kepler-project.org/

Khalajzadeh, H., Abdelrazek, M., Grundy, J., Hosking, J.,

& He, Q. (2019a). BiDaML: A Suite of Visual

Languages for Supporting End-user Data

Analytics. Paper presented at the IEEE Big Data

Congress, Milan, Italy.

Khalajzadeh, H., Abdelrazek, M., Grundy, J., Hosking, J.,

& He, Q. (2019b). Survey and Analysis of Current

End-user Data Analytics Tool Support. IEEE

Transactions on Big Data, 5.

doi:10.1109/TBDATA.2019.2921774

Kim, C. H., Grundy, J., & Hosking, J. (2015). A Suite of

Visual Languages for Model-Driven Development

of Statistical Surveys and Services. Journal of

Visual Languages and Computing, 26(C), 99-125.

Landset, S., Khoshgoftaar, T. M., Richter, A. N., &

Hasanin, T. (2015). A Survey of Open Source Tools

for Machine Learning with Big Data in the Hadoop

Ecosystem. Journal of Big Data, 2(24).

doi:https://doi.org/10.1186/s40537-015-0032-1

Li, L., Grundy, J., & Hosking, J. (2014). A Visual Language

and Environment for Enterprise System Modelling

and Automation. Journal of Visual Languages &

Computing, 25(4), 253-277.

MetaEdit+ Domain-Specific Modeling tools – MetaCase.

Retrieved from

https://www.metacase.com/products.html

Minka, T., Winn, J., Guiver, J., & Knowles, D. (2010). Infer

.NET 2.4, 2010. Microsoft Research Cambridge.

Moody, D. (2009). Theory Development in Visual

Language Research: Beyond the Cognitive

Dimensions of Notations. Paper presented at the

IEEE Symposium on Visual Languages and

Human-Centric Computing (VL/HCC), Corvallis,

OR, USA.

NeCTAR. (2019). ARDC’s Nectar Research Cloud.

Retrieved from https://nectar.org.au/cloudpage/

Portugal, I., Alencar, P., & Cowan, D. (2016). A

Preliminary Survey on Domain-Specific Languages

for Machine Learning in Big Data. Paper presented

at the IEEE International Conference on Software

Science, Technology and Engineering (SWSTE),

Beer-Sheva, Israel.

Rollins, J. B. (2015). Foundational Methodology for Data

Science. Retrieved from IBM Analytics:

Sapp, C. E. (2017). Preparing and Architecting for

Machine Learning. Retrieved from Gartner

Technical Professional Advice:

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips,

T., Ebner, D., . . . Dennison, D. (2015). Hidden

Technical Debt in Machine Learning Systems.

Paper presented at the 28th International

Conference on Neural Information Processing

Systems (NIPS), Montreal, Canada.

VicRoads. (2018). SCATS. Retrieved from

https://www.vicroads.vic.gov.au/traffic-and-road-

use/traffic-management/traffic-signals/scats

VisTrails. Retrieved from

https://www.vistrails.org/index.php/Main_Page

Workspace. Retrieved from

https://research.csiro.au/workspace/

https://taverna.incubator.apache.org/
https://www.omg.org/spec/BPMN/2.0/
https://kepler-project.org/
https://doi.org/10.1186/s40537-015-0032-1
https://www.metacase.com/products.html
https://nectar.org.au/cloudpage/
https://www.vicroads.vic.gov.au/traffic-and-road-use/traffic-management/traffic-signals/scats
https://www.vicroads.vic.gov.au/traffic-and-road-use/traffic-management/traffic-signals/scats
https://www.vistrails.org/index.php/Main_Page
https://research.csiro.au/workspace/

