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Abstract Software development is a very broad activity that captures
the entire life cycle of a software, which includes designing, programming,
maintenance and so on. In this study, we focus on the maintenance-related
concerns of the post-deployment of smart contracts. Smart contracts are self-
executed programs that run on a blockchain. They cannot be modified once
deployed and hence they bring unique maintenance challenges compared to
conventional software. According to the definition of ISO/IEC 14764, there are
four kinds of software maintenance, i.e., corrective, adaptive, perfective, and
preventive maintenance. This study aims to answer (i) What kinds of issues
will smart contract developers encounter for corrective, adaptive, perfective,
and preventive maintenance after they are deployed to the Ethereum? (ii)
What are the current maintenance-related methods used for smart contracts?
To obtain the answers to these research questions, we first conducted a
systematic literature review to analyze 131 smart contract related research
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papers published from 2014 to 2020. Since the Ethereum ecosystem is fast-
growing, some results from previous publications might be out-of-date and
there may be a gap between academia and industry. To address this, we
performed an online survey of smart contract developers on Github to validate
our findings and received 165 useful responses. Based on the survey feedback
and literature review, we present the first empirical study on smart contract
maintenance-related concerns. Our study can help smart contract developers
better maintain their smart contract-based projects, and we highlight some
key future research directions to improve the Ethereum ecosystem.

Keywords Empirical Study · Literature Review · Smart Contracts ·
Ethereum · Smart Contracts Maintenance

1 Introduction

With the great success of Bitcoin (Nakamoto, 2008), considerable attention
has been paid to the emerging concepts of blockchain technology (Blockchain,
Jan., 2019). However, the usage scenario of Bitcoin is limited, as the main
application of Bitcoin is storing and transferring monetary values (Efanov and
Roschin, 2018). The appearance of Ethereum (Ethereum, Jan., 2019) at the
end of 2015 removed many of the limitations of blockchain-based systems.
Ethereum leverages a technology named smart contracts, which are Turing-
complete programs that run on the blockchain (Wood, 2014). Blockchain
technology gives immutable, self-executed, and decentralized features to these
smart contracts. This in turn means that smart contracts cannot be modified
once deployed to the blockchain, and all of their execution depends on this
immutable code. Running these smart contracts across highly distributed
servers costs “gas”, which in turn costs money. These features ensure the
trustworthiness of smart contracts and make the technology attractive to
developers and users. By utilizing smart contracts, developers can easily
develop Decentralized Applications (DApps) (DApp, Apr., 2019), which
have been applied to different areas, such as IoT (Chen et al., 2018b),
financial (Fabian and Vitalik, Apr., 2018), gaming (Cryptokitties, Feb., 2019),
and data security domain (Velner et al., 2017).

Like all computer code, smart contracts may have errors or developers
might want to extend their features in the future. However, some features
of Ethereum – like the gas system and smart contract immutability – make
smart contracts much harder to maintain than conventional software (Bosu
et al., 2019). Ethereum is a permission-less network and sensitive information –
transactions, bytecode and balance of smart contracts – are visible to everyone,
and everyone can call the contract by sending transactions (Wood, 2014).
These features increase possible security threats and counter-actions needed.
Smart contracts on Ethereum have several other unique characteristics – the
use of the “gas” system to fund running of transactions; relatively few patterns
and standards for structuring smart contract code; lack of source code available
for most deployed smart contracts; and relative lack of tools to check smart
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contracts for errors, compared to conventional software. All of these features
increase the difficulty of smart contract maintenance.

In software engineering, the term software maintenance refers to the
modification of a software product after delivery to correct faults and to
improve performance or other attributes (Pigoski, 1996). It is a very broad
activity according to the definition of ISO/IEC 14764 (ISO/IEC, 2006). There
are four main kinds of maintenance, i.e., adaptive, perfective, corrective, and
preventive maintenance. In the context of the four categories of maintenance,
the following illustrate the potential impact of such factors on smart contract
maintenance:

• Adaptive maintenance aims to keep software usable in a changed
or changing environment. However, the running environment of smart
contracts is often unpredictable. For example, smart contracts usually call
other contracts. However, the callee contracts might crash and cannot
work anymore. Since the callee contracts are immutable, the crash of the
callee contract can lead to serious consequences of the caller contract.
The unpredictable environment makes it very difficult to conduct adaptive
maintenance for smart contracts.

• Perfective maintenance is used to improve the performance or
maintainability by adding new requirements and functionalities newly
elicited from users. However, the scalability issues and the gas system of
Ethereum make smart contracts difficult to add too many functionalities,
else they become very costly to run and unwieldy.

• Corrective maintenance focuses on fixing discovered bugs and errors in
a program. The lack of tools and community support due to the relative
newness of smart contracts makes it hard to detect and remove smart
contract bugs.

• Preventive maintenance aims to remove latent faults of programs before
they become operational faults. For example, a code smell is a characteristic
in the source code that possibly indicates a deeper problem (Fowler and
Beck, 1999). Refactoring the code to remove code smells to increase
software robustness is a typical preventive maintenance method. However,
due to the immature ecosystem of smart contracts, it is not easy to
find appropriate advanced methods to conduct preventive maintenance for
smart contracts.

In this paper, we focus on the maintenance-related concerns of post-
deployment smart contracts. Unlike traditional programs that can be upgraded
directly, to maintain a smart contract, developers usually need to
redeploy a smart contract and discard the old version. Although
maintaining smart contracts is not easy, it is still important to find methods to
maintain them. For example, in 2016, attackers found the DAO (Decentralized
Autonomous Organization) smart contract contains a vulnerability named
Reentrancy (Chen et al., 2020b; Luu et al., 2016). This vulnerability was then
utilized by attackers and led to the famous DAO attack (Siegel, Apr., 2018),
which made the DAO lose 3.6 million Ethers (about $20/Ether before the

3



attack happened). According to recent research (Kalra et al., 2018; Liu et al.,
2018a), a similar vulnerability is prevalent in Ethereum smart contracts; all of
these contracts can be attacked and lead to financial loss. Thus, it is important
to conduct corrective maintenance for these contracts to remove issues like the
Reentrancy vulnerability to ensure the contracts are bug-free and robust.

Many previous works (Zou et al., 2019; Parizi et al., 2018a; Bosu et al.,
2019; Chakraborty et al., 2018; Li et al., 2017) conduct empirical studies
to investigate the challenges to the entire software development life cycle of
smart contracts. This includes smart contract design, programming, security,
maintenance, documentation and so on. However, none focus exclusively on
smart contract maintenance. To fill this gap, we provide a comprehensive
empirical study on smart contract maintenance based on a systematic
literature review that covers 131 smart-contract-related papers selected from
a collection of 946 papers to find maintenance-related challenges, and methods
for smart contracts. Our study aims to answer the following two key research
questions:

RQ1: What kinds of maintenance issues will smart contract
developers encounter?

We identify 9 issues related to corrective, adaptive, perfective, and
preventive maintenance, and another 4 issues corresponding to the overall
maintenance process for smart contracts. These maintenance issues are
extracted from previous publications. Since Ethereum and smart contracts
are fast-evolving, some results from previous works might be outdated. There
might be a gap between academia and industry. For example, Zhou (Zou
et al., 2019) mentioned that smart contracts miss the support of exception
handling, e.g., the try...catch. However, Solidity adds the exception handling in
v6.0 (Solidity, Mar., 2020). To make our results more reliable, we use an online
survey to validate our findings. We sent the survey to 1,500 smart contract
developers on Github, and received 165 useful responses. The feedback from
the survey can also be a supplement to our findings. We analyze the reasons
for smart contract maintenance issues according to the survey results.

RQ2: What are the current maintenance methods for smart
contracts?

To help developers maintain smart contracts, we summarize four kinds of
current maintenance methods from 41 publications. 31 publications introduce
offline checking methods to help developers maintain smart contracts. They
can help maintain smart contracts before they are deployed/redeployed to
Ethereum. Seven publications introduced online checking methods, which
can help maintain deployed smart contracts by detecting malicious input
or automatically upgrading smart contracts. Two previous works suggested
developers to use the Selfdestruct function to undo contracts when emergencies
happen. Another work describes how smart contract can be upgraded by using
DELEGATECALL instruction.

The main contributions of this paper are:
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• To the best of our knowledge, this is the first in-depth empirical study that
focuses on the maintenance issues of smart contracts on Ethereum, and we
divide the issues into four categories.

• Our study identifies the key current maintenance methods used for smart
contracts, which gives guidance for smart contract developers to better
maintain their contracts.

• Our study highlights the limitations and possible future work related to
smart contracts on Ethereum. This gives directions for smart contract
developers and researchers to develop improved tools and focus future
research.

The remainder of this paper is organized as follows. In Section 2, we provide
background knowledge of smart contracts and Ethereum. In Section 3, we
introduce the methodology to conduct the literature reviews and the survey.
After that, we present the answers to the two research questions in Sections
4 and 5, respectively. In Section 6, we highlight key threats to validity. We
discuss what should be done in the future to improve the Ethereum ecosystem
in Section 7 and review related work in Section 8. Finally, we conclude the
whole study in Section 9.

2 Background

2.1 Ethereum

In 2008, the first blockchain-based cryptocurrency named Bitcoin was
introduced and demonstrated the enormous potential of blockchain to the
world. However, the biggest limitation of Bitcoin is that it only allows users
to encode non-Turing-complete scripts to process transactions, which greatly
limits its capability. To address this limitation, Ethereum was born at the
end of 2015 and brought a revolutionary technology named smart contracts.
Nowadays, Ethereum has become the second most popular blockchain system
and the most popular platform on which to run smart contracts. Similar to
Bitcoin, Ethereum also provides its cryptocurrency and names it as Ether.
In Jan. 2018, Ether reached its highest value to $1389 / Ether (Marketcap,
Apr., 2020). Unlike Bitcoin, which has a fixed number of coins (21 million in
total), 18 million Ethers are created every year (Wood, 2014) (and 72 million
Ether were generated at its launch). Currently, two new Ethers are created
with each block, and it requires about 14-15s to create a new block; the
average Ethereum block size is between 20 to 30 KB, and the biggest Ethereum
block size is around 2MB (Ethstates, Mar., 2020). Ethereum does not support
concurrency, and all transactions need to be executed by all nodes, which leads
to a low throughput of Ethereum. Ethereum only allows about 15 transactions
per second on average (EtherScan, Mar., 2018), which has become one of its
biggest limitations. At the end of 2017, there is a famous smart-contract-
based game named CryptoKitties (Cryptokitties, Feb., 2019) published in the
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blockchain system updates its protocol. The new protocol for hard fork is not backward-
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Fig. 2 An Example of Soft Fork. The blue block called divergence block, where the
blockchain system updates its protocol. The new protocol for soft fork is backward-
compatible.

Ethereum. However, the popularity of the game slowed down all transactions
as too many players sent transactions to the Ethereum blockchain.

2.2 Hard Fork and Soft Fork

Any software or operating system needs periodic upgrades to fix errors or
add new functionalities. For the blockchain system, those updates are called
a “fork”. There are two kinds of forks, i.e., hard fork and soft fork.

Hard Fork. Figure 1 shows an example of a hard fork. The blockchain system
is a decentralized network. All the nodes on the network need to follow the
same rules. The set of rules is known as the protocol. In Figure 1, the blue
block is called a divergence block, where the blockchain system updates its
protocol. When a protocol is updated, and the new protocol is not backwards-
compatible. Some nodes on the blockchain do not accept the new protocol,
and they choose to use the old version. Thus, the blockchain forks into 2
incompatible blockchains, which run the new and old protocol, respectively.

Soft Fork. Updates of protocols by soft fork are backwards-compatible. Nodes
that did not upgrade to the new version will still be able to participate in
validating and verifying transactions. In this case, there is only one chain on
the blockchain by using a soft fork. Noticed that the functionality of a node
with the old protocol is also affected. As the example shown in Figure 2,
the maximum block size allowed by the old protocol is 3MB, and the new
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protocol limits the block size to 2MB. The non-upgraded nodes can still process
transactions and push new blocks that are 2MB or less. However, if a non-
upgraded node tries to push a block that is greater than 2MB, the upgraded
nodes will reject to broadcast the block, which encourages the non-upgraded
nodes to update the new protocols.

2.3 Smart Contracts

Smart contracts can be regarded as Turing-complete programs that run on
the blockchain (Wood, 2014). They are usually developed in a high-level
language, e.g., Solidity, Vyper (Vyper, Mar., 2020). Solidity is the most
popular programming language with which to develop smart contracts on
Ethereum. Based on the immutable blockchain technology concept, smart
contracts cannot be modified once added to the blockchain. Once started, all
running of the contract is based on its code. No one can affect it, not even the
creator. Ethereum uses EVM (Ethereum Virtual Machine) to execute smart
contracts. When developers deploy a smart contract to Ethereum, the contract
will be compiled into EVM bytecode, and the bytecode will be stored on the
blockchain forever. The only way to remove the bytecode from Ethereum is
by using the Selfdestruct function (Solidity, Mar., 2020). There is a unique 40
bytes hexadecimal hash value to identify a contract address. Since Ethereum is
a permission-less network; every one can send a transaction to invoke contract
functions if they know the function signatures, which includes its function id
and parameter types (Solidity, Mar., 2020). Even worse, all the transactions,
bytecode, invocation parameters are visible to everyone, which makes smart
contracts face major security challenges.

2.4 The Gas System

In Ethereum, transactions are executed by miners. To incentivize the execution
of smart contracts by miners, transaction senders need to pay an amount of
Ether to the miner, which is so-called the gas mechanism. For each transaction,
the EVM will calculate its gas cost, and the transaction sender is required to
define a gas price, e.g., 20 Gwei / gas unit (1Ether = 109Gwei). The final
transaction fee is calculated by gas cost × gas price. Miners have the right
to decide whether or not execute a transaction. Thus, higher gas prices can
lead to faster execution, and lower gas prices can lead to a transaction that is
never added to a block. According to the ETH Gas Station (GasStation, Mar.,
2020), in May 2020, if the gas price is higher than 40 Gwei, the transaction
can be executed within 2 minutes. If the gas price is lower than 25 Gwei, the
execution time can exceed half an hour.

Another function the “gas” system is to ensure the execution of smart
contracts can be eventually terminated. In Ethereum, the transaction caller
is required to set a gas limit, which refers to the maximum gas cost of a
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Fig. 3 An Example of the upgradeable contract.

transaction. If the gas cost of a transaction exceeds the gas limit, the execution
will be terminated with an exception thrown by EVM named out-of-gas error.

The gas system ensures the normal running of the Ethereum. However,
it also increases the difficulty of smart contract development, as developers
should estimate the maximum gas cost of the contracts. Ethereum block has
a maximum size, which limits the amount of data that can be included. The
current maximum block size limits the maximum gas limit to 12.5 million gas
units (Ethstates, Mar., 2020). When the maximum gas cost of a transaction
exceeds the 12.5 million, it will be reverted forever.

2.5 Upgradeable Smart Contracts

Even though smart contracts cannot be changed once deployed to the
blockchain, there is a method to develop “upgradeable” contracts. Ethereum
provides a function named DelegateCall, which allows a contract to use
code in other contracts, and all storage changes are made in the caller’s
value. Specifically, DelegateCall can be implemented by addr.delegatecall(bytes
memory). addr is the address of the callee contract (The value of addr can
be changed by sending a transaction to the contract). The function selector
and input value are encoded as bytes memory, and will be sent to the callee
contract when DelegateCall is executed. Once the execution of the function
on the callee contract is finished, the return value will be transferred back to
the caller contracts. When bugs are found at the callee contract, the proxy
contract can redirect the addr to a new contract.

Figure 3 is an example of the upgradeable contract, which contains three
contracts. The proxy contract holds the data of a contract, and all the
storage changes are made in the proxy contract. The proxy contract uses
DelegateCall to call the functions f() and g(). These functions are implemented
in contract A and B, respectively. Once errors are found or new functionalities
need to be added, contract A and B can be discarded directly. The proxy
contract can call the code of the new contract by using DelegateCall. Based
on this approach, OpenZeppelin, a famous smart contract organization, has
provided a library (OpenZeppelin, Mar., 2020) to help developers develop
upgradeable smart contracts in just a few lines. EIP 2535 (Mudge, Jan., 2021)
(the Diamond Standard) also defines the standard to help developers design
upgradeable smart contracts.
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2.6 Software Development and Maintenance

Software development refers to a set of activities that throughout the entire life
cycle of software, which includes the process of designing, creating, deploying
and supporting software (Bourque et al., 2014). Thus, software maintenance
is an important and inevitable part of the software development life cycle.
According to previous work (Boehm and Basili, 2005), software maintenance
can lead to 60% of software cost. Besides, in many software development
models, e.g., Spiral model (Boehm, 1988), Agile development (?), it is not
easy to split the process of development and maintenance. For example, Agile
software development refers to software development methodologies based on
iterative development. In each iteration, new requirements and solutions will
be added to improve the software. According to the definition of ISO/IEC
14764 (ISO/IEC, 2006), there are four kinds of software maintenance, i.e.,
corrective, adaptive, perfective, and preventive maintenance. Among them,
Perfective maintenance is used to improve the performance or maintainability
by adding new requirements and functionalities newly elicited from users,
which is similar to the steps of Agile development. Thus, there are many
overlaps between the software maintenance and development.

2.7 Card Sorting

Card sorting is a method to organize data into logical groups (Spencer, 2009).
It is widely used to help users understand how a user would organize and
structure the data that they think is appropriate. To conduct a card sorting,
users first need to identify the key concepts and write them into labeled
cards. A card can be everything that helps the discussion, e.g., a piece of
paper or a virtual card on a laptop. After that, users are required to group
cards into different categories that make sense to them. Due to the low-tech
and inexpensive nature of card sorting, it is usually used to design workflow,
architecture, category tree, or folksonomy.

There are three kinds of card sorting, i.e., open card sorting, closed card
sorting, and hybrid card sorting. Open card sorting is used for organizing data
with no predefined groups. Specifically, each card will be clustered into a group
with a certain topic or meaning first. If there is no appropriate group, a new
group will be generated. All the groups are low-level subcategories and will be
evolved into high-level subcategories further. Closed card sorting is used for
organizing data with predefined groups. Each card is required to cluster into
one of the groups. Hybrid card sorting combines open card sorting and closed
card sorting. Hybrid card sorting has predefined groups but allows to create
new groups during the process.
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Fig. 4 Overview of methodology design

3 Methodology

Figure 4 shows the overview of our methodology, which contains two phases,
i.e., literature review and survey. In phase 1, we perform a systematic literature
review, which aims to find the answers to research questions from prior smart
contract related papers. After obtaining the answers, we use an online survey
to validate whether smart contract developers agree with our findings. In the
following subsections, we present the detailed steps of our literature review
and survey.

3.1 Literature Review

In this paper, we follow the method provided by Kitchenham et
al. (Kitchenham and Charters, 2007) to perform the literature review. There
are three steps in phase 1, i.e., literature search, literature selection, and data
analysis.

3.1.1 Literature Search

Guided by prior literature reviews (Conoscenti et al., 2016; Segura et al., 2016;
Huang et al., 2019), we select five search engines, i.e., ACM Digital Library,
IEEE Xplore Digital Library, Springer Online Library, Elsevier Science Direct,
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Table 1 Initial Number of Smart Contract Related Research Papers Returned by Each
Search Engine

Search Engine Papers
ACM Digital Library 73
IEEE Xplore Digital Library 177
Springer Online Library 54
Elsevier Science Direct 11
Google Scholar 631
Total 946

and Google Scholar. From these search engines, we can find peer reviewed
research papers published in journals, conferences, workshops, and symposia.

We used keyword search to obtain 946 initial smart contract related papers.
The detailed numbers of the research papers returned by different search
engines are shown in Table 1. (The duplicated papers are removed.) All of these
946 research papers contain at least one of the keywords “smart contracts” ,
“smart contract”, “Ethereum”, “blockchain”, “DApps” in their title. Since
there are many other blockchain platforms supporting smart contracts, and
our focus is Ethereum, all the selected papers should contain the keyword
”Ethereum” or “smart contract” in their abstract.

3.1.2 Literature Selection

Although all the papers that we find in our literature search contain the
keywords “smart contract” or “Ethereum” in their abstract, some of them
are still irrelevant to our study. For example, some research related to other
smart contract platforms might also contain the keyword “Ethereum” in their
abstracts. We applied the following five exclusion criteria to remove irrelevant
papers:

Exclusion Criteria
(1) Studies are not written in English.
(2) Master or Ph.D. theses.
(3) Keynote papers.
(4) Studies not related to Ethereum.
(5) Studies not related to smart contracts.
In this study we only focus on maintenance-related concerns for post-

deployed Ethereum smart contract development issues. Thus, research based
on underlying blockchain technology, e.g., consensus algorithms, are excluded.
We only focus on the following topics:

Inclusion Topics
(1) Smart contract empirical studies.
(2) Smart contract security / reliability Analysis.
(3) Smart contract standards.
(4) Smart contract optimization, e.g., gas optimization.
(5) Other smart contract technologies, e.g, smart contract generation,

decompilers.
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To reduce errors, we conducted close card sorting (Spencer, 2009) to check
the collected data. Card sorting is a common method used to evaluate and
derive categories from the data (Kim et al., 2016). There are three types of card
sort, i.e., open card sort, closed card sort, and hybrid card sorting. Among these
three kinds of card sort, closed card sort has predefined categories. We apply
closed card sort to select relevant papers, as there only two categories, e.g.,
relevant or irrelevant. For each card, it has a title (the name of the paper) and
description (abstract of the papers). Two experienced researchers with four-
year smart contract related experience (including a non-coauthor) carefully
read the abstract of the initial 946 research papers independently, and then
compare their results after finishing the reading. If there are some differences,
they discussed to decide the whether the papers should be excluded. Finally,
112 relevant papers are selected from initial 946 papers. After that, we followed
the prior study (Huang et al., 2019) to conduct a snowballing step to enlarge
the paper list. Specifically, we manually checked the references of the identified
112 papers and from these found another 19 papers that satisfy our selection
criteria. Thus, we finally selected 131 papers for analysis. The paper list can
be found at: https://github.com/Jiachi-Chen/Maintenance

3.1.3 Data Analysis

The Ethereum proposal was presented in late 2013, and the system went
live at the end of 2015. All the 131 selected papers were published between
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Table 2 Data Collection for Each RQ.

RQs Type of Data We Collected
RQ1 What are the challenges / issues of smart contract maintenance? The data is classified

by corrective, adaptive, perfective, and preventive maintenance.
RQ2 What are the used maintenance methods? e.g., off-line / on-line security checking

methods, other methods.

2014 to 2020 (details see Figure 5), and they were carefully read by the
same two researchers. Considering our study aims to find answers with
categories being unknown in advance (different kinds of maintenance issues
and methods), we decided to adopt an open card sorting approach to help
find the answers of these two RQs. The detailed steps are described in
Figure 6. The two researchers first read the paper carefully and were required
to collect the answers to the two RQs shown in Table 2, i.e., (1). What are
the challenges / issues of smart contract maintenance? (2). What are the
used maintenance methods? If we cannot find any answers from a paper, the
paper is omitted from our list. For the answers of (1), the data collected from
papers were first summarized into detailed maintenance issues. For example,
previous works (Chen et al., 2018a, 2020c) mentioned that “..over 90% of
real smart contracts suffer from gas-costly patterns in Ethereum...”, which
will be summarized into a detailed maintenance issue, i.e., The Difficulty
of Handling the Gas System. Then, the detailed maintenance issues were
clustered according to their maintenance types, e.g., corrective, adaptive,
perfective maintenance, and CMI. For the answers of (2), they were first
grouped according to the technique they used, e.g., programming analysis or
fuzzing. After that, they will be clustered into a higher level according to their
checking types, e.g., off-line / on-line checking.

3.2 Survey

3.2.1 Survey Design

Our smart contract developer survey contains three parts, i.e., demographic
questions, smart contract maintenance related questions, and suggestion
related questions. We follow the previous smart contract related work (Chen
et al., 2020b) to design the following five demographic questions in our survey.
Since our survey is based on Google Form, and Google cannot be accessed in
China, we also designed a Chinese version to receive responses from Chinese
developers. The translated version was double-checked to ensure consistence
with the English version.

Demographics:

• Professional smart contract developer? : Yes / No

• Involved in open source software development? : Smart Contract Projects
only / Traditional Projects Only / Both / None

• Main role in developing smart contract.
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Table 3 List of questions included in the survey.

ID Question
Q1 How do you obtain your required knowledge about smart contracts?
Q2 Do you believe smart contracts have higher security requirements than traditional,

centralized apps, e.g., mobile apps, web apps?
Q3 How do you test / debug your smart contracts for security and scalability?
Q4 How do you maintain smart contracts after deployment?
Q5-6 Have you developed an upgradeable smart contract before? If not, why?
Q7 Do you believe smart contracts are harder to maintain than traditional centralized

apps, e.g., mobile apps, web apps? Why?
Q8 What maintenance issues do your smart contracts have?
Q9 Which features / limitations of Ethereum can increase the difficulty of maintenance?
Q10 Are you satisfied with the current ecosystem for smart contracts, e.g., platforms for

sharing data?
Q11 Have you ever used the code of smart contracts from the following platforms, e.g.,

Github, Stack Overflow, Etherscan?
Q12 Give a score for IDE, testing tools, security audit tools, smart contract explorer, Q&A

site, Comments from Public (Github, DApp Store), community support, Solidity and
Ethereum document, respectively.

Q13 Do you think smart contracts are suitable for developing a large scale project?
Q14 Do you think it is necessary to have an app store like IOS Store for smart contracts?
Q15 Currently, there are many technologies that can improve the security of smart contracts.

Do you think it is important to merge them into EVM / Ethereum / IDE?

• Experience in years

• Current country of residence

These questions aim to understand the background and experience of the
respondents, which allows us to remove some feedback that we wish to exclude,
e.g., feedback provided by very inexperienced respondents.

In the second part of the survey, we designed 15 questions to help
provide answers to the same two research questions that we found from
the literature survey. The details of the survey can be found at: https:

//github.com/Jiachi-Chen/Maintenance. The list of the questions included
in our survey can be found in Table 3. For questions 1, 3-6, 8-9, 11, we give the
participants several choices that are obtained by literature review. Besides, for
these questions, we give a textbox to allow participants to write comments.
For questions 10 and 12, we follow the previous survey (Chen et al., 2020b)
to give five scores to participants from score 1 (lowest agreement) to score 5
(highest agreement), and score 3 refers to “neutral”.

In the third part of the survey, we give a text box to respondents to allow
them to give us final comments or questions.

3.2.2 Survey Validation

Guided by Kitchenham et al. (Kitchenham and Pfleeger, 2008), we utilized
an anonymous survey (Tyagi, 1989) to collect personal opinions. To increase
response rates, we offered a raffle to respondents so that they can choose to
leave an email to take part in the raffle to win two $50 Amazon gift cards. We
first sent our survey to our research partners to conduct a small scale test to
refine the survey. They were asked to tell us (1) Whether the expressions used
in the survey is clear and easy to understand, (2) How many minutes were
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needed to complete the whole survey. Finally, we modified our survey based
on their feedback thus limiting the time for completion of the survey to under
15 minutes.

3.2.3 Recruitment of Respondents

The ideal respondents of our survey are smart contract developers. We aimed
to send our survey to Github developers who contributed to smart contract
related projects. We first searched for projects on Github by using keywords
“Smart Contract”, “Ethereum”, “Blockchain”, and ranked the projects by the
most stars. Then, to increase the response rate and exclude non-smart-contract
developers, we manually selected relevant projects by reading the descriptions
of the projects. After that, we crawled the emails and names of contributors
of the selected projects by using Github Developer API1. We finally obtained
1,500 emails of developers and sent an email to invite them to participate
in our survey. We also have some industry partners working in well-known
companies, e.g, Alibaba, Facebook, and sent our survey to them (The number
of industry partners is 20). Since some developers might not be familiar with
“software maintenance”, we inform the concept in the email to reduce the
misleading.

3.2.4 Data Analysis

We received a total of 178 valid responses from 32 different countries (The
response rate is about 11.87%), which is a good response number and rate
compared to previous smart contract related surveys (Chen et al., 2020b;
Zou et al., 2019; Bosu et al., 2019; Chakraborty et al., 2018; Chen et al.,
2020a). Among these 178 respondents, 13 of them claim that they do not
have any experience in smart contract development. Thus, we removed them
from our dataset and used the remaining 165 for further analysis. The
top three countries in which respondents reside are China (35.76%), USA
(15.15%) and UK (9.09%). The average years of experience in developing smart
contracts of our respondents are 2.31 years. Among these respondents, 106
(64.24%) of them claim their main role is development, 42 (25.45%) indicate
testing/maintenance/evolution, 29 (17.58%) indicate project management, 6
(3.64%) indicate risk analysis, 4 (2.42%) indicate research. (Some respondents
have multiple job roles; thus the total number exceeds 165.)

4 RQ1: What are the maintenance issues of smart contracts?

There are four broad kinds of maintenance, i.e., corrective, adaptive,
perfective, and preventive maintenance. In this section, we identify the key
maintenance issues for smart contracts considering these four aspects. We

1 https://developer.github.com/v3/
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also introduce some common maintenance issues (CMI), which appear in all
kinds of maintenance. All the findings are obtained by literature reviews (the
source are cited), and we give survey results to cross-validate each finding. It
should be noted that software maintenance is a very broad activity. Some
kind of maintenance, e.g., perfective maintenance also requires developers
to develop new functionalities as well as change old. Thus, some of the
challenges we discuss can be encountered in both smart contract development
and maintenance phases. We use Table 4 and 5 to help readers better
understand the relation between the survey results and the findings collected
from literature. The first column of the tables is the survey ID (detailed
information can be found at Table 3). In the second column of the table, we
highlight the sections that use this survey question to validate related findings,
and the related survey results are shown in the third column.

4.1 Common Maintenance Issues

4.1.1 No Ideal Deployed Contract Modification Methods

Immutability is an important feature of smart contracts, which makes smart
contracts distinct from traditional apps in their stability. However, this feature
also leads – intentionally – to great difficulty for their modification.

From our survey, we received four answers 2 for the question “How do you
maintain your smart contracts” (Q4 in Table 3). The four answers are:

1. I never maintained a contract (18.79%)

2. I discard the old contract directly and deploy a new one (39.39%)

3. I use Selfdestruct function to destroy the old contract and deploy a new
one (38.79%)

4. I develop upgradeable contracts. (35.76%).

However, all of these four answers are imperfect and can lead to high
financial loss in some situations.

For answer (1), this method is very inadvisable as some bugs are usually
inevitable. Without maintenance, the usefulness life of the programs will be
much shortened and attackers can freely attack existing contracts that contain
vulnerabilities.

For answer (2), this method can lead to enormous financial loss for the
contract owners, as the Ethers cannot be transferred unless a specific code is
included in the contract. Although the contract owners find there is a bug like
the reentrancy (Liu et al., 2018a; Rodler et al., 2018) in their smart contracts,
there was no way to modify the contract, as the contract did not contain a
Selfdestruct function and was not develop as an upgradeable contract, which
might lead to an enormous financial loss for the organization.

2 The questions are multi-choice. Thus the sum of each options can exceed 100%. The
same with the other questions.
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Table 4 Part 1 - The mapping between survey questions and related sections with survey
results.

Survey
ID

Related Section Survey Result

Q1 S4.2.1 The Lack of Mature
Tools

52.1% respondents obtain knowledge from

journal and conference papers

Q2 S4.1.2 High Requirement
for Security

Smart contracts have higher security

requirements (78.18%)

Q3 S4.2.1 The Lack of Mature
Tools

Respondents use program analysis (28.48%),
formal verification(9.09% ), unit testing(80.61%),
code reviews(73.94%), functional and integration

testing (70.91%) to test smart contracts

Q4 S4.1.1 No Ideal Deployed
Contract Modification
Methods

Four methods to maintain a smart contract, and

all of them are imperfect.

Q5-6 S4.1.1 No Ideal Deployed
Contract Modification
Methods
(Answer 4 - Developing
upgradeable contracts to
maintain contracts)

Developing upgradeable contracts can increase
development cost and security risks. (32.17% and

33.04%)

Q7 S4.1.2 High Requirement
for Security

Smart contracts are harder to maintain compared

to traditional apps (64.85%)

Q8

S4.2.1 The Lack of Mature
Tools

Lack of tools / techniques to audit code. (66.2%)

S4.4.1 The Scalability
Issues

There are not enough useful libraries and APIs
(49.7%); not easy to handle the memory and

storage in Solidity programming (38.79%)

S4.4.2 The Difficulty of
Handling the Gas System

It is not easy to handle the gas system when

maintaining smart contracts (38.79%)

S4.5.2 The Lack of High
Quality Reference Code

Solidity lacks useful reference code. (38.18%)

S4.5.3 The Lack of
Standards

Ethereum lacks standards (49.7%)

Q9

S4.1.2 High Requirement
for Security - Financial
Attractiveness

There is more financially attractive for attacking

smart contracts (49.09%)

S4.1.2 High Requirement
for Security - Permission-
less Network

The permission-less feature could increase the

difficulty of maintenance. (55.76%)

S4.1.3 Low Readability 89.1% respondents use the source code of smart
contracts (Q11), and 57.14% of them said the
poor readability of smart contracts increases the

difficulty of code reuse.

S4.3.1 Unpredictable Fork
Problems

Ethereum might add new functions through hard
fork, which might affect the currents contracts

running on the blockchain. (50.3%)

S4.3.2 Unpredictable
Callee Contracts

It would make their contracts hard to be
maintained if the callee contracts crashed or be
destructed. (62.42%)
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Table 5 Part 2 - The mapping between survey questions and related sections with survey
results

Survey
ID

Related Section Survey Result

Q10 S4.5 Preventive
Maintenance Issues

Only 7.88% and 16.97% respondents said they
are very satisfied or satisfied with the current

ecosystems of smart contracts.

Q11 S4.1.3 Low Readability 89.1% respondents claimed that they use the
source code of smart contracts from open sourced

platforms

Q12 S4.2.2 The Lack of
Community Support

The community support receives an average score

of 3.03

Q13 S4.1.1 The Scalability
Issues

Only 14.55% respondents believe smart contracts

are suitable for developing a large scale project

Q14 S7.1 Improving the Smart
Contract Ecosystem -
DApp Store and Comment
System.

Having positive opinions about the need for a
DApp store like the Android Google Play Store

(84.24%)

Q15 S7.2 Improving Ethereum
and
Solidity - Merging Cutting-
Edge Technologies.

90.9% respondents hold positive opinions about
merging cutting-edge technologies into the EVM

and updated by nodes on Ethereum.

For answer (3), adding a Selfdestruct function can reduce the financial loss
when emergencies happen. Using the DAO attack as an example, if the DAO
contract had this function, the DAO organization could use it to destruct the
contract and transfer all the Ethers when the attack was detected. After fixing
the bugs, they can deploy a new contract, and transfer the Ethers to the new
contract. However, this method is still harmful to both contract owners and
users in some situations. Our previous work (Chen et al., 2020a) investigated
the reasons why developers do not add Selfdestruct functions in their contracts.
Developer feedback showed the following reasons. First, adding a Selfdestruct
function also opens an attack vector to the attackers. Thus, developers need to
pay more effort to test smart contract security and permissions. The testing
can add additional complexity to the development, which can increase the
development cost. Second, adding a Selfdestruct function can also lead to a
trust concern for the smart contract users. This is because many users trust
Ethereum because of the immutability of smart contracts. All the execution
of the contract depends on its code; even the owner cannot transfer Ethers on
the contract balance. This feature is important in financial applications as it
ensure the asset safety of contract users. However, the Selfdestruct function
breaks the immutability of the contracts. It gives power to the contract owners
to transfer all the Ethers of the contracts. Thus, this method can lead to the
reduction of the number of users of the smart contract using it. Finally, the
Selfdestruct function can also lead to a financial loss in some situations, as the
Ethers that were sent to the contract after destroying it will be lost. Thus,
this method is still not a perfect method to maintain smart contracts.
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For answer (4), still raises the same trust concern similar to answer (3),
as the smart contract immutability features are also be broken. According to
our survey (Q5-6 in Table 3), we found that only 29.70% of the respondents
have developed upgradeable smart contracts. There are three reasons why
developers do not develop upgradeable contracts. 41.74% of the respondents
claim that they do not know how to develop upgradeable smart contracts.
Thus, to develop upgradeable smart contracts, they need to pay a learning cost.
32.17% and 33.04% of the respondents said developing upgradeable contracts
can increase the development cost and security risks. Thus, this method still
incurs a high cost for maintenance.

To summarize, all of these four methods have disadvantages or limitations,
and can lead to a high cost of smart contract maintenance.

4.1.2 High Requirement for Security

Unlike traditional programs that can be upgraded directly, developers need
to redeploy a new smart contract to the blockchain. Ensuring the security
of the contract before redeploying it to the blockchain is important, as each
the modification can cost a lot (see 4.1.1). According to our survey (Q2 and
Q7), 129 (78.18%) respondents believe smart contracts have higher security
requirements. 107 (64.85%) respondents said smart contracts are harder to
maintain compared to traditional apps. The reasons introduced below lead to
the high-security requirement of the smart contracts.
1. The immutability Features. All the transactions and the code of smart
contracts are immutable, which means that developers need to ensure the
security of the code and each transaction. Once any bugs are detected, there
is no direct way to patch them. Attackers can utilize the errors / bugs to steal
Ethers or lock the balance maliciously (Atzei et al., 2017). Thus, immutability
raises a high security requirement for the smart contracts.
2. Financial Attractiveness. Financial profit is an important motivation
for attackers. According to our survey (Q9), about 81 (49.09%) respondents
believe that there is more financially attractive for attacking smart contracts
compared to traditional software, thus leading to more attack (Torres et al.,
2019). Since many contracts hold Ethers, attackers can earn profits through
their attacks. Even worse, the sensitive information of smart contracts are
visible to anyone, e.g., bytecode, Ethers on the balance. Attackers can launch
precision strikes to the vulnerable contracts. Thus, developers need to pay
more efforts to ensure the security of smart contracts.
3. Permission-less Network. Ethereum smart contracts run on a
permission-less network; everyone can execute the smart contracts by sending
a transaction. 92 (55.76%) respondents (Q9) mentioned that the permission-
less feature could increase the difficulty of the maintenance. They need to
pay more effort to test the permission of the contracts. Previous work (Chen
et al., 2020a) introduced a security issue named Limits of Permissions. Some
contracts do not check the permission of their sensitive functions. Attackers
can utilize the vulnerabilities of the permission check to steal Ethers.
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4.1.3 Low Readability

Readability is important to help developers understand the smart contracts
and maintain their smart contracts (Zou et al., 2019). According to our survey,
147 (89.1%) respondents (Q11) claim that they use the source code of other
smart contracts from open sourced platforms, e.g., Etherscan, Github to help
author and maintain their smart contracts. 57.14% of the respondents (Q9)
also said the poor readability of smart contracts increases the difficulty of code
reuse. Making smart contracts readable is a challenge, as developers need to
balance the readability with gas consumption. For example, optimizing code
is a common method to reduce gas consumption. The more gas-efficient code
usually corresponds to shorter code. However, this shorter code can lead to
poorer readability.

4.1.4 The Lack of Experienced Developers and Researchers.

Experienced developers and researchers are the main inventors of new
advanced SE methods to address the limitation of smart contracts, e.g.,
developing tools, improving ecosystem. However, our survey results and
literature review shows that less experienced people programming in Ethereum
compared to traditional development.

Ethereum is a young system, which was published in 2016. The most
experienced developers and researchers of the respondents of the survey
have 4 years experience (22 respondents) in smart contracts development,
the minimum, average, and median numbers are 0.2, 2.31, and 2.5 years,
respectively. Compared to the experiences of the respondents (including
developers and researchers) of previous works, e.g., in machine learning (Wan
et al., 2019) (min: 3, max: 16, median: 6, avg: 7.6 years), in desktop software
development (Wan et al., 2018) (min: 3, max: 12, avg: 6.5 years), the smart
contract developers and researchers seem less experienced.

4.2 Corrective Maintenance Issues

It is not easy to discover all potential bugs before deploying smart contracts
to the blockchain. Some bugs / errors of the contracts might be exposed to the
public under certain situations. Corrective maintenance is the modification of
a smart contract after deployment to the blockchain to correct discovered bugs
/ errors. Diagnosing errors of smart contracts is the major task in corrective
maintenance. However, it is painful and difficult to diagnose errors in a smart
contract. According to our survey, 96 (66.2%) respondents (Q8) complain that
debugging and testing is not easy. There are two main reasons that lead to the
difficulty of the diagnosing errors, i.e., the lack of mature tools and community
support.
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4.2.1 The Lack of Mature Tools

Many previous works (Zou et al., 2019; Norvill et al., 2017; Bosu et al.,
2019) mentioned that smart contract development lacks appropriate tools
/ techniques to verify code correctness. Thus, it is not easy to fix bugs in
smart contracts. A similar theme is also received in our survey. 96 (66.2%)
respondents (Q8) claim that they cannot find useful tools to debug / test
/ audit their contracts. However, with the development of smart contract
ecosystems, a large number of tools have been developed. For example, tools
based on static analysis (Luu et al., 2016; Liu et al., 2018a; Tikhomirov
et al., 2018) and formal verification (Bhargavan et al., 2016; Bigi et al., 2015;
Hildenbrandt et al., 2018) have been proposed. Some tools have excellent
performance and speed in detecting common security issues. Thus, “lack of
tools” seems to be addressed with the effort of researchers and developers.
There is a gap between academia and industry, as many tools developed in
academia are not yet known about and used in industry.

To find the reason, we asked how developers obtain their required
knowledge about smart contracts. The Solidity documentation, blogs, and
Q&A website are the top three most popular sources to acquire knowledge;
the numbers are 149 (90.3%), 114 (69.1%), and 88 (53.3%), respectively (Q1).
The state-of-art tools usually published in academic journal and conference
papers, and 86 (52.1%) respondents (Q1) said journal and conference papers
are an important approach to require knowledge. Thus, the methods to require
knowledge is not the main reason why developers think that there are not
enough tools.

We also investigated the usage conditions for different kinds of tools and
how developers test their contracts. We found that only 47 (28.48%) and
15 (9.09%) respondents (Q3) use static analysis tools and formal verification
tools to test their smart contracts. Unit testing, code reviews, functional and
integration testing are still the most popular methods to test smart contracts.
About 80.61%, 73.94%, and 70.91% of respondents (Q3) choose these methods
to test their contracts. Developer comments said that “although there are
many tools that can be chosen, most of them are hard to use and not user
friendly”. Thus, although there is a large number of tools that have been
developed, developers still complain there are only a few tools they think can
be used in practice.

4.2.2 The Lack of Community Support

Community support is a primary source of knowledge for blockchain software
projects (Chakraborty et al., 2018). Community support consists of many
parts. For example, when developers encounter technical problems, a Q&A
website such as Stack Overflow is an important source to help them address
the problems. Developers can open source their projects to Github. Other
developers can submit issue reports to help them polish the projects. The App
store is also an important place to receive reviews. Reviews might contain
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feature requests, user feedbacks, issue reports that can help developers upgrade
their software.

However, community support is not enough for smart contract developers.
Previous works (Zou et al., 2019; Hegedűs, 2019) found that smart contract
developers lack community support as the blockchain technology is new and
there are not enough smart contract developers to answer their questions.
Since more and more developers take part in smart contract development, we
used our survey to investigate whether community support is still lacking in
Ethereum.

In our survey, we asked respondents to give a score for the community
support (Q12). Score 1 refers to ‘very unsatisfied’, 3 refers to ‘neutrality’, and
5 means ‘very satisfied’. The community support receives an average score of
3.03, while the score for other comparative items e.g., Solidity document, and
Smart contract Explorer receive scores of 3.53 and 3.52, respectively. Thus
developers still believe that community support is not sufficient compared
to other resources. Surprisingly, the score for the Q&A website, e.g, Stack
Overflow, is 3.43, which can show that the Q&A website is not the culprit for
the lack of community support. We found that the score for the “Comments
from public (E.g., DApp, Github)” is only 2.57, which is the lowest score
among all the comparative items.

Previous works (Zou et al., 2019; Hegedűs, 2019) claimed that smart
contract developers lack community support because there are not enough
smart contract developers to answer technical questions. However, our survey
shows a different answer. The culprit for the lack of community support is not
the Q&A website, but the comments from the public, e.g., issue reports from
Github, comments from App Store.

4.3 Adaptive Maintenance Issues

Adaptive maintenance aims to keep a software product usable in a changed or
changing environment. In traditional software, the environment changes are
usually reflected in the upgrading of the operating systems, the hardware, or
software, e.g., database. Conducting adaptive maintenance for the traditional
environment changing is not difficult, as these kinds of environment changes
are predictable. For example, the updated operating systems usually will give
a specific date and detailed API documents.

However, the environment of smart contracts is more unpredictable. In this
subsection, we highlight two challenges, which makes it is not easy to conduct
adaptive maintenance for smart contracts.

4.3.1 Unpredictable Fork Problems

Ethereum uses soft forks and hard forks (See Section 2.2) to update the
blockchain system. Some forks are planned, while some are controversial
unpredictable forks, which might result in smart contract maintenance needs.
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In a planned fork, developers are informed in advance, and they usually
do not need to update the code of smart contracts. For example, in 2017, a
hard fork named “Byzantium” of Ethereum added a ‘REVERT’ opcode, which
permits error handling without consuming all gas (Mushegian, May., 2020).
The function revert() in smart contract code will refer to the new opcode
automatically. Thus, the planned forks are more likely to be accepted by miners
and developers.

However, unplanned forks are also common in Ethereum, which can
increase the difficulty of smart contract maintenance. The first unplanned
fork happened in July 2016 and was the result of the DAO attack (Siegel,
Apr., 2018). The DAO attack made the DAO (Decentralized Autonomous
Organization) lose 3.6 million Ethers. To retrieve the loss, the DAO appealed
for a hard fork. The hard fork reversed all the transactions to the block before
the attack. This hard fork is controversial, as many miners believe it breaks
the law of Ethereum. The opposition miners did not take part in the fork,
and a new blockchain was generated, named Ethereum Classic (ETC) (ETC,
Apr., 2018). After the hard fork, both ETC and Ethereum contain the same
smart contracts. Thus, which contracts to maintain might be a problem for
some developers. The same situation also happened to their callee contracts.
For example, contract A has two callee contracts, i.e., contract B and C.
Unfortunately, contract B chooses to maintain the contract on ETC, while
contract C chooses to maintain the contract on Ethereum. Thus, contract A
will always have a unmaintained callee contract.

In Oct. 2016 and Nov. 2016, two unpredictable hard forks were launched to
address different problems that have arisen from the DoS attacks. These two
hard forks named “EIP-150 Hard Fork” (EIP150, May., 2020) and “Spurious
Dragon” (SDHardFork, May., 2020), respectively. In “EIP-150 Hard Fork”,
Ethereum increased the gas cost of every type of call from 40 to 700 unit.
The “Spurious Dragon” also increases the gas cost of the “EXP” opcode. This
increased gas cost might increase the risk of “out-of-gas error”. Thus, some
contracts need to refactor their code to handle these gas cost changes.

According to our survey, 83 (50.30%) respondents (Q9) are afraid that the
forks of Ethereum might result in various potential problems for their smart
contracts. Moreover, the unpredictable forks make it difficult for developers to
perform adaptive maintenance.

4.3.2 Unpredictable Callee Contracts

Ethereum is a permission-less network; everyone can call the function of
the smart contract by sending a transaction. Michael et al. (Frowis and
Bohme, 2017) investigated the call relations of smart contracts on Ethereum
by checking the hard code address on their bytecode. They found that it is very
common for smart contracts to call each other in Ethereum. However, they
also found that many callee contracts on Ethereum contain vulnerabilities.
These vulnerabilities might lead to the crash and make the contracts cannot
work anymore. Beside, many callee contracts also contain selfdestruct function,
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which allow their contract owners to destruct the contracts. Once a contract
is destructed, the contract cannot be called anymore, and all the Ethers sent
to the destructed contract will be locked forever.

According to our survey (Q9), 103 (62.42%) respondents said it would
make their contracts hard to be maintained if the callee contracts crashed or
be destructed.

4.4 Perfective Maintenance Issues

As long-lived software (Lohr and Peldszus, 2020), users are likely to elicit
new requirements during the entire smart contract life cycle. Thus, adding
additional functionalities, performance enhancement, and efficiency and
maintainability improvements for smart contracts are necessary to respond
to the new requirements. This is called the perfective maintenance of smart
contracts. Thus, there is an overlap between perfective maintenance issues with
development issues, as some new functionalities are required to be developed
during this maintenance process.

However, due to the scalability issues of Solidity and EVM, it is not easy
to add too many functionalities to smart contract-based projects. The Gas
system also increases the difficulty of perfective maintenance. Due to these
issues, we find that only 24 (14.55%) of the respondents (Q13) of our survey
believe smart contracts are suitable for developing a large scale project.

4.4.1 The Scalability Issues

Solidity. Solidity is the most popular programming language for smart
contract development, which is an object-oriented language and a bit like
JavaScript. However, the grammar of Solidity is too simple to support large
projects, which lead to the scalability issues of smart contracts (Zou et al.,
2019). First, 82 (49.70%) respondents (Q8) to our survey said there are not
enough useful libraries and APIs. Thus, developers need to develop various
kinds of APIs and libraries which increases the difficulty of implementing
new requirements. Besides, 62 (37.58%) and 64 (38.79%) respondents (Q8)
also said it is also not easy to handle the memory and storage in Solidity
programming, respectively. For example, Solidity only allows creating 16 local
variables in a function. Thus, developers have to use storage variables instead
of local variables. Peter et al. (Hegedűs, 2019) investigated more than 40,000
smart contracts on Ethereum using 16 metrics, e.g., LOC, nesting level. They
found the smart contracts are neither overly complex nor coupled much,
and do not rely heavily on inheritance. Their results also prove that real-
world smart contracts are small-scale programs and do not contain too many
functionalities.
EVM. The Ethereum Virtual Machine (EVM) is the runtime environment
for smart contracts in Ethereum. Some features of EVM make it scale poorly
to support large-scale projects. First, EVM does not support multi-thread
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execution, which makes the execution of smart contracts inefficient. In some
large-scale projects, it is important to execute multiple functionalities in
parallel to increase execution speed (Zou et al., 2019). Second, EVM limits
the maximum size of stack to 1024 items with 256 bits for each item. The
limited stack sizes can easily lead to vulnerabilities and increase the difficulty
of developing complex applications (Luu et al., 2016). Finally, EVM uses
a key-value store, which is a very simplistic database and can lead to low
efficiency (Grech et al., 2019).
Ethereum. Ethereum does not support concurrency. To construct the
blockchain and ensure security, each node on Ethereum stores the entire
transaction history and current state of Ethereum, e.g., account balance,
contract variables. Thus, all transactions must be executed and verified by
all the nodes. This mechanism makes Ethereum support only around 15
transactions per second, leading to serious scalability issues of smart contract
applications. (Bez et al., 2019)

4.4.2 The Difficulty of Handling the Gas System

Ethereum adopts a unique gas system to execute the computational cost of
each transaction. The gas system ensures the normal running of the Ethereum
system, e.g., giving rewards for miners, avoiding DoS Attack. However, this
gas system is also not easy to use, especially when the scale of the project
becomes larger. According to our survey, 64 (38.79%) respondents (Q8) claim
that it is not easy to handle the gas system when maintaining their smart
contracts.

First, users need to pay Ethers for the gas cost, and the gas cost depends
on the computational cost of the code. Thus, it is important for developers
to reduce the gas cost. As we discussed in Section 4.1.3, there is a trade-off
between the gas cost and the readability, and readability is very important
for maintenance and large-scale projects. According to previous works (Chen
et al., 2018a, 2020c), over 90% of real smart contracts suffer from gas-costly
patterns in Ethereum. However, fixing these gas-costly patterns reduce the
readability of smart contracts.

4.5 Preventive Maintenance Issues

Preventive maintenance aims to lessen the likelihood of a sudden breakdown
of the programs (Tai and Alkalai, 1998). Guided by advanced software
engineering theories, preventive maintenance usually involves some form of
redesign or refactor of a smart contract to remove latent faults / errors/
bugs. For example, a code smell is not a bug but are any characteristics in
the source code that possibly indicates a deeper problem (Fowler and Beck,
1999). Refactoring the code to remove code smells in software to increase its
robustness is a typical preventive maintenance method. However, due to the
immature ecosystem of smart contracts, it is not easy to find appropriate
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advanced software engineering (SE) methods, e.g., code smells for smart
contracts, to perform preventive maintenance. According to our survey (Q15),
only 13 (7.88%) and 28 (16.97%) respondents said they are very satisfied or
satisfied with the current ecosystems of smart contracts.

4.5.1 The Lack of Advanced SE Approach and Research Data

During our literature review, we found that there are only a small number
of works that propose advanced SE methods to help conduct the preventive
maintenance of smart contracts. Most of these works aim to improve the
reliability of smart contracts, e.g., security check tools (detailed introduced
in Section 5). Compared to traditional software, the maintenance methods
of smart contracts to remove latent errors are much less, e.g., code smell
removal (Fontana et al., 2016), bug prediction (Giger et al., 2012), self-
admitted technical debt determination (Yan et al., 2018). The lack of research
data is an important issue.

In traditional software maintenance, a large number of MSR (Mining
Software Repository) methods have been developed to help conduct preventive
maintenance. For example, history bug reports can be utilized to predict
whether a source code file contains latent errors (Zhang et al., 2019).
User reviewers can provide feature requests to help developers improve the
programs (Maalej and Nabil, 2015; Grano et al., 2017). Comments in source
code can be used to detect self-admitted technical debate, which can be used
to signal future errors (Yan et al., 2018). Privacy policies, Stack Overflow
(SO) posts, error messages, and commit messages are wildly used to help
maintain traditional apps. These methods are not difficult to be applied to
smart contract projects. However, the lack of related research data makes it
is not easy to develop advanced SE methods for smart contracts.

4.5.2 The Lack of High Quality Reference Code

High-quality reference source code can be a good example when developers
conduct preventive maintenance. However, the qualities of open-source smart
contracts are poor in Ethereum, and 63 (38.18%) respondents (Q8) of our
survey mentioned that Solidity lacks useful reference code.

He et al. (He et al., 2019) found that the copy-paste vulnerabilities were
prevalent in Ethereum, and over 96% of smart contracts have duplicates, which
means the ecosystem of smart contracts on Ethereum is highly homogeneous.
Among these contracts, 9.7% of them have similar vulnerabilities. Similar
findings are reported by Kiffer et al. (Kiffer et al., 2018); they investigated
1.2 million contracts, and they can be reduced to 5,877 contract “clusters”
that have highly-similar bytecode. The highly homogeneous nature of smart
contracts show that only a limited number of contracts can be referenced
during maintenance and development.

Kiffer et al. (Kiffer et al., 2018) also found that more than 60% of smart
contracts are never actually called. Most of these contracts are useless and hard
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to be reused. Similar findings were also reported by (Di Angelo and Salzer,
2019). They analyzed the bytecode of smart contracts on Ethereum and found
44,883 are useless and hard to be reused. Only 0.6% of the contracts have more
than 1,000 transactions, while most of the active contracts are similar ERC20
contracts (Fabian and Vitalik, Apr., 2018), which are used to make tokens.
Thus, the active contracts also cannot provide too much reference value.

Hegedűs et al. (Hegedűs, 2019) analyzed more than 40 thousand Solidity
source files. They found that the open sourced smart contract code either quite
well-commented or not commented at all. Without comments in the source
code, it is not easy for developers to understand and reuse the reference code.

4.5.3 The Lack of Standards

Standards can give guidance for developers to increase the maintainability and
reliability of their smart contracts, which is the main motivation for preventive
maintenance. For example, the ERC 20 (Fabian and Vitalik, Apr., 2018)
standard defines some rules for token-related contracts. The rules contain
9 functions (3 are optional) and 2 events. This standard allows any tokens
on Ethereum to be re-used by other applications, e.g., wallets, decentralized
exchanges. At the end of 2017, the CryptoKitties (Cryptokitties, Feb., 2019)
was published and swept the globe. To help other developers develop similar
applications, ERC 721 was published in Jan. 2018. ERC 721 is a standard
that describes how to build non-fungible tokens (NFTs) on Ethereum, and a
NFT is a unit of data on blockchain that represents an unique digital asset,
e.g., a photo or a game. Developers can conduct preventive maintenance to
make their contracts follow the ERC 721 standard. Thus, their applications
can much more easily interact with other similar applications.

However, there are only limited numbers of smart contract related
standards (EIP, Apr., 2020). According to our survey (Q8), 82 (49.70%)
respondents said Ethereum lacks standards, which increases the difficulty of
the maintenance of smart contracts.

5 RQ2: What are the current maintenance methods for smart
contracts?

We discuss answers found for our second Research Question, and introduce
the current smart contract maintenance methods identified from 41 analysed
research papers.

5.1 Distribution

Among our 131 smart contract selected papers, 41 papers proposed methods
that can be used to maintain smart contracts. Unlike traditional software
where programs can be upgraded directly, smart contracts need to redeploy
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new versions to the blockchain and discard old versions. Most maintenance
methods check security issues of smart contracts before redeploying them to
the blockchain, which are so-called offline checking methods. There are 31
papers related to this topic. 7 research papers propose methods that can
help maintain a deployed smart contracts. This kind of method is called an
online checking method. The final three papers introduce a method that uses
DELEGATECALL to upgrade a smart contract, and a method that redeploys
smart contracts by using Selfdestruct function, respectively. The distribution
of these methods is shown in Figure 7.

5.2 Offline Checking Methods

Table 6 summarises the 31 publications which use offline checking methods to
help maintain smart contracts. Developers can use the proposed methods to
check for security vulnerabilities to help them to maintain smart contracts.
For example, using the proposed methods to locate bugs during corrective
maintenance, and checking for vulnerabilities of the update versions before
redeploying them to Ethereum. We divide the methods presented in these
papers into five categories – program analysis, fuzzing, formal verification,
machine learning, and others. In the following subsections, we discuss some
key examples.

5.2.1 Program Analysis

CFG (Control Flow Graph) Based Tools. In 2016, Luu et al. (Luu
et al., 2016) identified four kinds of new security issues of smart contracts
and proposed the first tool, named Oyente, to detect them through Ethereum
bytecode. Although EVM is a stack-based machine, similar to JVM, Ethereum
bytecode has many differences compared to the Java bytecode. For example,
Java bytecode has a clearly-defined set of targets for every jump, but the
jump position of Ethereum bytecode needs to be calculated during symbolic
execution. Thus, Oyente first splits opcodes into several blocks and then uses
symbolic execution to build CFG (Control Flow Graph). CFG stores the
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Table 6 Literature of Offline Checking Methods

Category Name of Publications Years

Program Analysis

OSIRIS: Hunting for Integer Bugs in Ethereum Smart
Contracts (Torres et al., 2018)

2018

The art of the scam: Demystifying honeypots in
Ethereum smart contracts (Torres et al., 2019)

2019

Security Assurance for Smart Contract (Zhou et al., 2018) 2018

Vandal: A Scalable Security Analysis Framework for
Smart Contracts (Brent et al., 2018)

2018

MadMax: surviving out-of-gas conditions in Ethereum
smart contracts (Grech et al., 2018)

2018

Finding The Greedy, Prodigal, and Suicidal Contracts at
Scale (Nikolić et al., 2018)

2018

sCompile: Critical Path Identification and Analysis for
Smart Contracts (Chang et al., 2019)

2019

teether: Gnawing at Ethereum to Automatically Exploit
Smart Contracts (Krupp and Rossow, 2018)

2018

Making Smart Contracts Smarter (Luu et al., 2016) 2016

Manticore: A User-Friendly Symbolic Execution
Framework for Binaries and Smart Contract (Mossberg
et al., 2019)

2019

SmartCheck: Static Analysis of Ethereum Smart
Contracts (Tikhomirov et al., 2018)

2018

TokenScope: Automatically Detecting Inconsistent
Behaviors of Cryptocurrency Tokens in Ethereum (Chen
et al., 2019a)

2019

Towards saving money in using smart contracts (Chen
et al., 2018a)

2018

GasChecker: Scalable Analysis for Discovering Gas-
Inefficient Smart Contracts (Chen et al., 2020c)

2020

Securify: Practical Security Analysis of Smart
Contracts (Tsankov et al., 2018)

2018

Formal Verification

Formal Verification of Smart Contracts (Bhargavan et al.,
2016)

2016

A formal verification tool for Ethereum VM
bytecode (Park et al., 2018)

2018

Kevm: A complete formal semantics of the Ethereum
virtual machine (Hildenbrandt et al., 2018)

2018

Towards verifying Ethereum smart contract bytecode in
Isabelle/HOL (Amani et al., 2018)

2018

ZEUS: Analyzing Safety of Smart Contracts (Kalra et al.,
2018)

2018

Fuzzing

ContractFuzzer: fuzzing smart contracts for vulnerability
detection (Jiang et al., 2018)

2018

ReGuard: Finding Reentrancy Bugs in Smart
Contracts (Liu et al., 2018a)

2018

EVMFuzz: Differential Fuzz Testing of Ethereum Virtual
Machine (Fu et al., 2019)

2019

sFuzz: An Efficient Adaptive Fuzzer for Solidity Smart
Contracts (Nguyen et al., 2020)

2020

Exploiting the Laws of Order in Smart Contracts (Kolluri
et al., 2019)

2019

Machine Learning

S-gram: Towards Semantic-Aware Security Auditing for
Ethereum Smart Contracts (Liu et al., 2018b)

2018

Hunting the Ethereum Smart Contract: Color-inspired
Inspection of Potential Attacks (Huang, 2018)

2018

Towards Safer Smart Contracts: A Sequence Learning
Approach to Detecting Security Threats (Tann et al.,
2018)

2019

Checking Smart Contracts with Structural Code
Embedding (Gao et al., 2020)

2020

Others

Designing Secure Ethereum Smart Contracts: A Finite
State Machine Based Approach (Mavridou and Laszka,
2018)

2018

Mutation Testing for Ethereum Smart Contract (Li et al.,
2019)

2019
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Table 7 Literatures of Online Checking Methods.

Methodology Name of Publications Years
Bytecode
Rewriting

Smart Contract Defense through Bytecode
Rewriting (Ayoade et al., 2019)

2019

Bytecode
Rewriting

Monitoring smart contracts: ContractLarva and open
challenges beyond (Azzopardi et al., 2018)

2018

Input Detection Town Crier: An Authenticated Data Feed for Smart
Contracts (Zhang et al., 2016)

2016

Input Detection FSFC: An input filter-based secure framework for smart
contract (Wang et al., 2020)

2020

Transactions
Detection

ÆGIS: Smart Shielding of Smart
Contracts (Ferreira Torres et al., 2019)

2019

Transactions
Detection

VULTRON: Catching Vulnerable Smart Contracts Once
and for All (Wang et al., 2019a)

2019

State Detection Sereum: Protecting Existing Smart Contracts Against
Re-Entrancy Attacks (Rodler et al., 2018)

2018

Intrusion
Detection

ContractGuard: Defend Ethereum Smart Contracts with
Embedded Intrusion Detection (Wang et al., 2019b)

2019

relationship between blocks, e.g., jump, conditional jump. Based on the CFG,
Oyente defines several rules to detect related security issues.

A similar method to that of Oyente has been widely applied by other
tools. For instance, GasReducer (Chen et al., 2018a) and GasChecker (Chen
et al., 2020c) are tools used to detect some gas-inefficient patterns. They
use the CFG generated by Oyente, and design patterns to detect related
security vulnerability patterns. Besides, Torres et al. (Torres et al., 2019),
Chang (Chang et al., 2019), Nikolic et al. (Nikolić et al., 2018), Zhou et
al. (Zhou et al., 2018), Krupp et al. (Krupp and Rossow, 2018), Mossberg
et al. (Mossberg et al., 2019) also use similar methods that design rules based
on the CFG to detect other smart contract vulnerabilities.

Some works make optimizations, e.g., Maian (Nikolić et al., 2018) validate
the results of the symbolic execution by using a concrete validation step. In
the concrete validation, they create a private fork of Ethereum and then run
the result generated by the symbolic execution to check its correctness. Since
the results are generated by symbolic execution, and concrete validation is
used to increase performance, we also classify Maian in this category.

Decompilers. Vandal (Brent et al., 2018) is a decompiler for smart contract
bytecode. Its output includes a control-flow graph, three-address code for
all operations, and function boundaries. Based on Vandal, developers and
researchers can develop other tools to maintain their smart contracts. For
example, MadMax (Grech et al., 2018) uses logic-based specifications to
detect gas-focused vulnerabilities of smart contracts based on the output of
Vandal. Tsankov et al. (Tsankov et al., 2018) proposed a tool named Securify,
which uses semantic information to detect vulnerabilities of smart contracts
bytecode. Securify first decompiles the EVM bytecode. It then analyzes the
data flow and control flow dependencies. Finally, it uses several patterns to
check related vulnerabilities.
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Transaction-based Tools. TokenScope (Chen et al., 2019a) is the first tool
that uses transaction histories to detect inconsistent behaviors of ERC20
Tokens. By using the stored Ethereum transaction records, TokenScope
identifies three key information of contract bytecode, i.e., core data structures,
standard interfaces, and standard events. It then compares the key information
with the standard to find any inconsistent tokens.
Source Code Level Static Analysis. Detecting vulnerabilities through
bytecode is not easy as EVM removes some key information while compiles
source code to bytecode. SmartCheck (Tikhomirov et al., 2018) takes smart
contract source code as input, and converts the code to the AST (abstract
syntax tree) (AST, Mar., 2020). Based on the AST, SmartCheck uses several
patterns to detect 21 kinds of smart contract issues.

5.2.2 Formal Verification

Formal verification is a method that uses formal methods of mathematics to
prove or disprove the correctness of a system (Drechsler et al., 2004). This
method usually uses a formal proof on an abstract mathematical model to
make the verification.

Bhargavan et al. (Bhargavan et al., 2016) proposed the first formal
verification tool for smart contracts based on the F* proof assistant (Swamy
et al., 2016), and Amani et al. (Amani et al., 2018) presented a tool based
on Isabelle/HOL (Nipkow et al., 2002). However, both of these the tools only
use incomplete semantics of EVM, which might lead to errors. Thus, Park et
al. (Park et al., 2018) use a complete and thoroughly tested formal semantics
of EVM to enhance the efficacy of their tool.

Kalra et al. (Kalra et al., 2018) introduced 11 kinds of vulnerabilities of
smart contracts and proposed a tool named Zeus to detect seven of them. Zeus
takes source code as input and translates the Solidity source code to LLVM
bytecode (LLVM, Jan., 2021). Based on the LLVM bytecode, Zeus designs
several policy violations and uses a verifier to determine assertion violations.

5.2.3 Fuzzing

Fuzzing for smart contracts is an automated testing technique which uses
random, unexpected, or invalid data as the input to the contract. Such input
data is expected to lead to detecting some unwanted behaviors, e.g., crashes,
failure of some functions, permission errors.

Jiang et al. (Jiang et al., 2018) proposed the first fuzzing tool named
ContractFuzzer, which applies fuzzing to detect seven kinds of security issues.
ContractFuzzer utilizes smart contract ABI (Solidity, Mar., 2020) to generate
fuzzing inputs. Then, they define test oracles and use static analysis to log
smart contracts runtime behaviors. Finally, ContractFuzzer analyzes the logs
to find security issues. The following works make some optimization. For
example, sFuzz (Nguyen et al., 2020) can cover more branches to find more
security issues. EthRacer (Kolluri et al., 2019) can run directly on Ethereum
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bytecode and without the need of ABI, which enlarges the usage scenario.
ReGuard (Liu et al., 2018a) provides a web service for developers to make it
is easy to use. EVMFuzz (Fu et al., 2019) designs a differential fuzz testing
framework, which supports different programming languages for EVM smart
contracts.

5.2.4 Machine Learning

With the development of the Ethereum ecosystem, some developers have used
machine learning to help maintain smart contracts. Machine learning related
methods need a ground truth to train the model. S-gram (Liu et al., 2018b)
uses Oyente to obtain the ground truth and utilizes a combination of N-gram
language modeling and lightweight static semantic labeling to predict potential
vulnerabilities. SmartEmbed (Gao et al., 2020) uses SmartCheck to label the
vulnerabilities and utilizes deep-learning to train the model to predict smart
contract vulnerabilities. Tann et al. (Tann et al., 2018) use MAIAN to label the
security issues and use LSTM to predict potential issues. Huang et al. (Huang,
2018) first translate the bytecode into RGB color. Based on a manually labeled
dataset, they use a convolutional neural network to train the model and predict
the security issues.

5.2.5 Other Approaches

Mavridou et al. (Mavridou and Laszka, 2018) proposed a tool, named FSolidM,
to automatically generate smart contracts. They claim that the generated
contracts are bug-free and can reduce development efforts. FSolidM regards
smart contracts as finite state machines (FSMs). Based on FSMs, they provide
a set of plugins that contain common contract design patterns and a graphical
interface. Developers can add plugins to the contracts to improve security and
functionalities.

Wu et al. (Li et al., 2019) use mutation testing to enhance the security
of smart contracts. Mutation testing is a type of white-box software testing
technique that changes some statements of the code and check if the test cases
can find some errors. This method is based on well-defined mutation operators,
and the mutation operators only make minor changes to the programs. Wu
et al. designed 15 mutation operators, e.g., variable units, keywords, and use
them to find bugs on smart contracts.

5.3 Online Checking Methods

Online checking methods can help smart contract developers defend their
contracts against attacks even after they have been deployed. Table 7
introduces seven publications that use online checking methods to help
maintain smart contracts. However, most of the online checking methods
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cannot be used directly and need to be merged into the EVM if an EIP3 (EIP,
Apr., 2020) adopts any of those in a new version.

Ayoade et al. (Ayoade et al., 2019) proposed a method that can
automatically detect vulnerable EVM bytecode segments and uses a guarded
bytecode segment to replace it. Their tool is based on predefined policy
rules and can only support a limited number of simple rules. Similarly,
ContractLarva (Azzopardi et al., 2018) insert protection code into the source
code of smart contracts. This updated bytecode can defend against related
attacks.

TownCrier (Zhang et al., 2016) and FSFC (Wang et al., 2020) provide
approaches to detect malicious input to protect smart contracts. TownCrier
can be regarded as a bridge between the smart contracts and front-end
programs, e.g., websites. When a frond-end program sends transactions
to smart contracts, TownCrier uses a combination of Software Guard
Extensions (Costan and Devadas, 2016) and Intel’s recently released trusted
hardware capability (Intel, Feb., 2015) to check whether the input data can
be trusted. FSFC is a filter-based security framework for smart contracts. It
uses several firewall rules and uses a monitor to identify malicious input.

ÆGIS (Ferreira Torres et al., 2019) and VULTRON (Wang et al.,
2019a) detect and reverse malicious transactions to protect smart contracts.
ÆGIS uses predefined patters to identify malicious transactions. VULTRON
compares the actual transferred Ethers and the normal transfered Ethers to
find malicious transactions.

Sereum (Rodler et al., 2018) monitors state updates of smart contracts,
such as changes to storage variables, to detect re-entrancy attacks. There are
two components of Sereum, i.e., a taint engine and an attack detector. Sereum
focuses on conditional jumps and the data that influences the conditional
jumps. The taint engine is used to detect the change of state update, which
loads to conditional jumps. When a re-entrancy attack happens, the state will
be updated multiple times. Once the attack detector detects such malicious
behaviors, the transaction will be reversed.

ContractGuard (Wang et al., 2019b) is the first intrusion detection system
for smart contracts against attacks. It monitors the network for abnormal
behaviors. To detect abnormal behaviors, ContractGuard deploys smart
contracts on a testbed and trains a model. When malicious activities are
detected, ContractGuard will reverse the transactions to recover the contract
states and raise an alarm to the contract owner.

5.4 Other Methods

Colombo et al. (Colombo et al., 2018) introduced a specification-driven method
that uses the DELEGATECALL instruction to upgrade smart contracts
when unwanted behaviors are detected. To detect unwanted behaviors, they

3 Ethereum Improvement Proposals (EIPs) describe standards for the Ethereum platform,
including core protocol specifications, client APIs, and contract standards.
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predefined several checkpoints for smart contracts. The checkpoints monitor
the important state of smart contracts, e.g., its balance. When an unexpected
behavior is detected, the checkpoints will revert the transactions to ensure the
safety of the contracts. Finally, developers are required to upgrade contracts
by using the DELEGATECALL instruction.

Marino et al. (Marino and Juels, 2016) defined several standards for
smart contracts and suggested developers add a Selfdestruct function in
the contracts. When the contract is attacked, the developers can undo the
contracts. A similar suggestion is given by Chen et al. (Chen et al., 2020b).
They suggest developers add an interrupter in the contracts. Interrupter is a
mechanism to stop the contract when unwanted behaviors are detected, and
Selfdestruct function is an easy way to stop the contract.

6 Threats To Validity

6.1 Internal Validity

In this paper, we answered two research questions by performing a literature
review. Most of the papers (74.05%) are published between 2017 to 2019, and
their findings and studies may be outdated as the Ethereum ecosystem is fast-
evolving. For example, Solidity, the most popular programming language for
smart contracts, has 80 versions from Jan. 2016 to Jun. 2020 (Solidity, Jun.,
2020). Thus, it is likely that some findings and results in the publications are
out-of-date. To reduce this threat, we used an online survey to collect the
opinion from many real-world smart contract developers. We compared our
literature review findings with the feedback from developers to help ensure
the overall validity of our findings.

It is possible that the respondents to our survey may provide some
dishonest or unprofessional answers. To reduce this influence, we first informed
developers that we will not collect personal information when sending the
invitation emails. The survey is anonymous and we cannot trace their
information if they do not leave their email address. All questions are optional,
which means developers can choose to answer a part of the questions.
According to Ong et al.’s (Ong and Weiss, 2000) work, confidentiality and
anonymity are useful to obtain un-biased data from survey respondents.

To collect more responses, we translated our survey into a Chinese version
to address the language barrier and as Google cannot be visited in China.
There might be inconsistency between the Chinese and English versions of
our surveys. Besides, all the respondents are written in Chinese, which needs
to translate to English when analyzing the data. This process also might lead
to some errors. To reduce this risk, two Chinese authors with good English
skills read the survey and responded several times to ensure the correctness of
the translation.
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6.2 External Validity

We collected responses to our survey by sending emails to Github developers.
However, we might have missed some other developers who might have
different opinions. Fortunately, the survey results show that the respondents
to our survey have a wide variety of backgrounds in terms of experience in
developing smart contracts, job roles, and open source projects they contribute
to. Thus, the diversity of backgrounds help us to trust the survey results and
can reflect real-world situations of Ethereum smart contract development.

In the future, new functionalities will be added to Ethereum and Solidity.
They might also be updated to help better address some smart contract
maintenance issues. Thus, some findings and results in this paper might be
out-of-date in the future. This is an inevitable trend for smart contract related
empirical studies. While the methods we have identified are still working, our
findings can help developers and researchers.

7 Discussion

In this section, we discuss some future research directions and give suggestions
for both developers and researchers according to our RQ1 and RQ2 findings
presented in Section 4 and 5.

7.1 Improving the Smart Contract Ecosystem

DApp Store and Comment System. Although there are some DApp
stores for smart contracts, none of them have a smart contract verification
system. They neither reject cloned contracts, nor have a rating system. As
we discussed in RQ1, many copy-paste vulnerabilities are prevalent in the
Ethereum blockchain’s deployed smart contracts. There are also many useless
smart contracts i.e. “dead” contracts in Ethereum. These contracts are the
noisy data on the blockchain and increase the difficulty of finding useful smart
contracts. According to our survey, 139 (84.24%, Q14) developers have positive
opinions about the need for a DApp store like the Android Google Play
Store. Such a DApp store could regulate the behaviors of smart contracts.
For example, rejecting copied contracts, rating useful contracts, giving various
classifications for contracts. Thus, developers could more easily find high
quality contracts for reference or for use as callee contracts. A review system
would allow smart contract users to submit reviews when they find bugs or
suggest features that need to be improved. Such comments can help developers
better maintain their contracts. It could also be a valuable research dataset.
Based on such a dataset, many traditional MSR methods can be applied to
help improve and maintain smart contracts. For example, as we introduced in
the previous section, there are five machine learning-based methods to help
maintain smart contracts. However, four of them use other tools to label the
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ground truth, and there are many false positives / negatives of the tools were
used to label the ground truths. Thus, the performance of these tools is not very
good. Real-world produced data, e.g., review comments, could substantially
improve the performance of these machine learning tools, just as it has for
many traditional software maintenance activities and tools.
Call for High-Quality Standards, Libraries and Reference Code.
Although Ethereum has had a rapid improvement in its ecosystem, developers
still claim there is a lack of standards, libraries, and useful reference
code. Currently, most of the standards are published on EIPs (EIP,
Apr., 2020), and many teams provide libraries and referee code, e.g.,
OpenZepplelin Contracts (Openzepplelin, Feb., 2020), Smart contract best
practice (ConsenSys, Feb., 2020). However, the number is still small and not
enough for the vast Ethereum ecosystem.
More User Friendly Tools. In previous sections, we introduced 41 works
which can help maintain smart contracts. However, according to our survey, 96
(66.2%, Q8) respondents claim they cannot find useful tools to debug / test /
audit their contracts, or such tools are too hard to use or deploy in real-world
smart contract development. An important reason for this inconsistency is that
most current tools are not easy to use for practitioners. Thus, making these
tools easier to deploy and use is an important task for the future. For example,
merging some tools into smart contract IDEs, or adding a user interface to the
tools.

7.2 Improving Ethereum and Solidity

Merging Cutting-Edge Technologies. The previous section introduced
eight online checking methods that can improve the security and
maintainability of smart contracts after they have been deployed. However,
most of the online checking methods cannot be used directly. Specifically,
transaction detection methods can revert malicious transactions only if they
were merged into the EVM and updated by nodes on Ethereum. Then, a node
(minor) could revert malicious transactions instead of broadcasting to the
whole Ethereum network. Similar to bytecode rewritten tools, these methods
can fix a buggy bytecode snippet after they are deployed. However, this kind
of method requires modification of the code stored on the blockchain, which
cannot be worked directly. To use such a method, there should be a well-
thought-out plan to ensure the correctness of smart contracts and the concerns
of breaking the immutability (discussed in Section 4.1.1). For example, there
could be a DAO (Decentralized Autonomous Organization) responsible for
updating code every a certain time by using the bytecode rewritten tools.
When the DAO detects a smart contract needs to modify its bytecode, the
DAO should inform the contract users / owners and allow them to vote to
decide whether the code should be updated. According to our survey (Q15),
150 (90.9%) respondents hold positive opinions about merging cutting-edge
technologies into the EVM and updated by nodes on Ethereum.
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Mitigating Scalability Issues. The scalability issue is one of the main
challenges for smart contract maintenance. Several methods have been
proposed to help redesign Ethereum to mitigate this issue. First, the sharding
technology is a future direction for Ethereum to address the scalability issues.
Currently, all the nodes on Ethereum need to process every transaction, which
leads to low throughput. By applying sharding to Ethereum, the whole network
can be split into several smaller parts, called shards. A subset of the total miner
nodes would only process transactions on a certain shard. Thus, it can improve
the throughput of Ethereum multiple times. Such sharding technology can also
enable a smart contract to be executed by multiple threads. A contract could
then be split into several parts and executed by different nodes. Enlarging the
maximum stack sizes and reduce the gas cost of the storage can also mitigate
the scalability issues. This mechanism aims to reduce the bulky problems
of Ethereum, where all the nodes store the whole blockchain data. If the
bulky problem is addressed, it is not difficult to make an optimization for
stack size, database performance, and price for storage. Bruce et al. (Bruce,
2014) proposed a new data structure named an account tree. The account tree
holds the balance of all non-empty addresses, which enables us to remove old
transactions. Thus, new nodes do not need to store all transactions and can
reduce the total bulk of the blockchain.

Trusted Modification Methods. In Section 4.1.1, we introduced four
modification methods for smart contracts. Among them, using the Selfdestruct
function and developing upgradeable contracts cost the least. However, these
two methods can lead to a major trust concern from the users and other
security issues. Previous work (Chen et al., 2020a) introduced a method to
reduce the trust and security concern for the usage of the Selfdestruct function,
which can also be applied to upgradeable contracts. This method suggests that
developers should distribute the rights to the users of the contracts. They could
vote to decide whether the contracts should be destructed or upgraded. Using
consensus protocols, such as PoS (PoS, Sept., 2019), DPoS (DPoS, Sept., 2019)
are examples of such voting. For example, if a user invests 100 Ethers to the
contract, the user has 100 score to vote. The more Ethers users invest contracts,
the more rights they have. When the voting process finished, users who do not
agree can transfer their Ethers to other accounts. Also, the delay can reduce
the risk of the Ethers locking, as Ethers transferred to the destructed address
will be locked forever. During the voting and delaying steps, developers should
suspend the function of the contracts to prevent attacks or other unwanted
behaviors.

8 Related Work

We review previous key empirical studies on smart contracts, and highlight
the difference between our work at the end of the section.
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8.1 Survey Based Smart Contract Empirical Studies

Bosu et al. (Bosu et al., 2019) pre-designed some questions and used an
online survey to collect the opinions from developers on Github. Their work
aimed to answer who contributes to smart contracts and their motivation
for development, what is the difference between smart contract development
and traditional software development, the challenges of smart contract
development, and what kinds of tools that developers feel they need.

Chakraborty et al. (Chakraborty et al., 2018) sent an online survey to
1,604 developers on Github and received 145 responses. Their survey aimed
to find the best current software development practices for smart contracts.
Their findings suggest that some traditional software engineering practices are
still working for blockchain projects. They identified that the smart contract
ecosystem is immature and needs more SE methods, resources, and tools.

Chen et al. (Chen et al., 2020b) defined 20 contract defects by analyzing
posts on Stack Exchange. They divided the defects into five categories, i.e.,
security, availability, performance, maintainability, and reusability defects.
They claimed that removing these contract defects can improve the robustness
and enhance development efficiency. To validate whether real-world developers
regard these contracts as harmful, they use an online survey to collect
developers’ opinions. The results show that all the 20 contract defects are
potential harmful to smart contracts.

Our Novelty and Difference: Both our work and Bosu et al.’s work (Bosu
et al., 2019) investigated the challenges of smart contracts development.
Our work investigated the maintenance-related challenges for post-deployed
Ethereum Smart Contract development, which is much more comprehensive
than Bosu et al.’s work. The only similarity between two works is that we
both reported the lack of tools is one of the challenges for smart contract
development / maintenance, while our work has a deeper analysis for the
reasons why the academia proposed many tools with excellent performance
but the smart contract developers also feel they lack tools to check smart
contract security. (See Section 4.2.1).

There is a big difference between Chakraborty et al.’s work (Chakraborty
et al., 2018) and our work. Their work aims to understand the software
development practices of smart contract projects. For example, how smart
contract developers test their code; what’s the requirement during the
development, while our work focuses on the challenges during smart contract
development. Both of our works used surveys to collect developers’ opinions;
their work used surveys to find the answers of pre-defined research questions,
while our survey aimed to validate the findings that we collected from literature
reviews.

Chen et al.’s work (Chen et al., 2020b) reported detailed patterns / code
that are harmful for smart contract development / maintenance, while our
work stood at a higher level that reports the challenges of smart contract
maintenance instead of detailed code patterns.
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8.2 Literature Review Based Smart Contract Empirical Studies.

Conoscenti et al. (Conoscenti et al., 2016) proposed an empirical study to help
developers understand how to use smart contracts and blockchain technology
to build a decentralized and private-by-design IoT system. To obtain key
related information they conducted a systematic literature review based on
18 publications. Their work introduced several use cases of blockchain in the
IoT domain and the factors affect integrity, anonymity, and adaptability of
blockchain technology.

Udokwu et al. (Udokwu et al., 2018) selected 48 publications from 496
papers. Based on the selected papers, they described the key current usages
of smart contract technology and challenges in adopting smart contracts to
other applications. Their analysis showed that the most popular applications of
smart contracts are supply chain management, finance, healthcare, information
security, smart city, and IoT. They also identified 18 limitations of blockchain
technology that affects the adoption of smart contracts for other applications.

Macrinici et al. (Macrinici et al., 2018) pre-defined seven research questions
and selected 64 publications to find answers. Their results show that the most
popular topic in smart contract research is offering solutions to address related
problems, e.g, developing tools, proof-of-concepts, and designing protocols.
They also summarized 16 smart contract related problems and divided them
into three categories, i.e., blockchain mechanism, contract source code, and
EVM problems.
Our Novelty and Difference: Our work is the most comprehensive
literature review based on smart contract empirical study (our 131 publications
v.s. Conoscenti et al. ’s 18 publications v.s. Udokwu et al. ’s 48 publications
v.s. Macrinici et al. ’s 64 publications). Besides, this is the only work that uses
an online survey to validate our findings from the literature review. There
might be a gap between academia and industry knowledge, usage, practices,
and desired outcomes. Also, the fast-growing ecosystem of Ethereum can also
create errors for some even recent findings. Thus, the findings based exclusively
on literature reviews might not be reliable. For example, Zhou et al. (Zou et al.,
2019) mention that Solidity lacks the support of try-catch, which increases the
difficulty of the development. However, Solidity adds this support from version
0.6.0 (Solidity, Mar., 2020). Also, this work is the only one that focuses on
smart contract maintenance issues, while the mentioned three works focus on
IoT, adopting smart contracts to other applications, and the most popular
topic in smart contract research, respectively.

8.3 Security Related Smart Contract Empirical Studies.

Li et al. (Li et al., 2017) reviewed security issues for the blockchain systems
from 2015 to 2017. They classified these issues into nine categories and
introduced the related causes. For example, one of the categories is the “51%
vulnerability” and the cause is the consensus mechanism. To help developers
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understand such attacks better, they also gave example real attacks as case
studies and analyzed the vulnerabilities utilized by the attackers.

Bartoletti (Bartoletti et al., 2020) found that the infamous Ponzi scheme
has migrated to Ethereum. Misbehaving developers use smart contracts to
design a Ponzi scheme to make money. Bartoletti et al. manually checked real-
world smart contracts and summarized four kinds of Ponzi smart contracts,
i.e., tree-shaped, chain-shaped, waterfall, handover Ponzi scheme. To help
further research on Ponzi scheme detection, they manually labeled a dataset
that contains 184 schemes. A follow-up work (Weili et al., 2018; Chen et al.,
2019b) used this dataset to design machine learning methods to detect Ponzi
smart contracts.

Delmolino et al. (Delmolino et al., 2016) are the lectures of a university
who teach smart contract programming. They documented the pitfalls of smart
contracts according to their teaching experiences. The pitfalls include errors
in encoding state machines, failing to use cryptography, misaligned incentives,
and Ethereum-specific mistakes.

Atzei et al. (Atzei et al., 2017) studied attacks on smart contracts on
Ethereum between 2015 to 2017, and provided a classification of programming
pitfalls which might lead to the security issues of smart contracts. Their work
introduced six vulnerabilities in the Solidity level, three vulnerabilities in the
EVM level, and three vulnerabilities in the blockchain level. For most of the
vulnerabilities introduced in the paper, a detailed introduction, code examples,
and attack examples are given to help readers better understand.
Our Novelty and Difference: The motivation between our work and these
security-related smart contract empirical studies have big differences. Our
work aims to highlight the maintenance-related concerns for post-deployed
Ethereum smart contract development, and security concerns is only a very
small part of our work. These works focus on exactly security issues with more
detailed information, e.g., the detailed code patterns and attack examples.

8.4 Other Smart Contract Empirical Studies.

Zheng et al. (Zheng et al., 2020) described the challenges of developing smart
contracts in the whole life cycle, including creation challenges, deployment
challenges, execution challenges, and completion challenges. Their work not
only focused on the Ethereum platform, but is also more narrow in other
ways. Thus, they also analysed some differences between six smart contract
platforms. Another work (Zheng et al., 2018) discussed the challenges of
the blockchain system, and the opportunities of blockchain technology. For
the challenge, they mainly focused on the architecture of blockchain and
consensus algorithms. For the opportunities, they introduced the applications
of blockchain, e.g., IoT, Finance. Reyna et al. (Reyna et al., 2018) investigated
the challenges of applying blockchain technology to the IoT to increase the
security and reliability. Mohanta (Mohanta et al., 2018) introduced seven
uses cases for smart contracts, including supply chain, IoT, and healthcare
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systems. Many empirical studies also focus on the performance of smart
contract tools (Perez and Livshits, 2019; Parizi et al., 2018a), programming
languages (Harz and Knottenbelt, 2018; Schrans et al., 2018; Parizi et al.,
2018b), ecosystem (Kiffer et al., 2018; He et al., 2019; Hegedűs, 2019),
permissions (Vukolić, 2017), design patterns (Bartoletti and Pompianu, 2017),
life cycle (Di Angelo and Salzer, 2019), call relations (Bistarelli et al., 2019).
Durieux et al. (Durieux et al., 2020) presented an empirical study of 9 state-
of-art smart contract vulnerability analysis tools. To evaluate the tools, they
use two datasets, i.e., a small-scale dataset consists of 69 vulnerable smart
contracts and a large-scale dataset with all verified smart contracts (47, 518
contracts) on Etherscan. They found that only 42% of vulnerable smart
contracts in small-scale dataset can be detected by all the 9 tools. About 97%
of smart contracts are labeled as vulnerable by at least one tool. According to
their analysis result, Mythril (Software, Aug., 2019) has the highest accuracy
(27%) in detecting smart contract vulnerabilities.

Our Novelty and Difference: In this paper, we summarized the key
maintenance issues and current maintenance methods for smart contracts as
evidence from our literature review, which has a different topic with the smart
contract empirical studies mentioned above. This is also the only work to
date that has conducted a literature review to collect maintenance issues of
smart contracts and used an online survey to validate these findings with
practitioners.

9 Conclusion

In this paper, we conducted the first empirical study on the Ethereum smart
contract maintenance issues. We performed a systematic literature review to
obtain related information and used an online survey to validate our findings
with practitioners. Our study contains two research questions. In RQ1, we
identified 9 kinds of issues related to corrective, adaptive, perfective, and
preventive maintenance of smart contacts, and another 4 issues corresponding
to the overall maintenance process for smart contracts. In RQ2, we summarized
current maintenance methods used for smart contracts from 41 publications
and divided them into three categories, offline checking methods, online
checking methods, and other methods. We also highlighted two kinds of future
research directions and discussed some suggestions for both smart contract
developers and researchers according to the previous RQ answers and our
survey results.
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