

External Requirements of Groupware Development
Tools
Workshop Report

T.C. Nicholas Graham and John Grundy
Department of Computing and Information Science, Queen’s University, Kingston, Ontario,
Canada, K7L 3N6, graham@qucis.queensu.ca
Department of Computer Science, University of Waikato, Private Bag 3105, Hamilton, New
Zealand, jgrundy@cs.waikato.ac.nz

Abstract: The EHCI’98 Workshop on Requirements of Groupware Development Tools
examined six groupware applications in order to derive requirements for tools
for developing groupware. We hope that these requirements will be useful to
designers of new tools in motivating what features their tools should have.

Key words: Groupware Development Tools, Requirements

1. INTRODUCTION

Recent research in tools supporting the development of groupware applications
has concentrated on two directions – making groupware easier to build by providing
higher level programming abstractions, and increasing the range of applications that
can be supported by groupware development tools. As examples, significant
advances have been made in:
– Support for flexible coupling, allowing users to configure the granularity of their

interaction with other users (Dewan, 1992; Grundy in this volume);
– Support for versioning/merging, allowing users to dynamically migrate between

shared and private work (Munson, 1994; Edwards, 1997);
– Support for group awareness, such as the provision of awareness widgets in a

toolkit (Gutwin, 1998);
– Support for combining synchronous and asynchronous styles, such as providing

persistent rooms in which synchronous collaboration can occur, or combining
web browsing with synchronous applications (Roseman, 1996; Graham, 1997);

– Support for making existing applications into groupware, recognizing that many
existing applications cannot be rewritten as custom groupware (Begole, 1997);

jgrundy
Engineering for Human-Computer Interaction, Chatty, S. and Dewan, P. Eds, February 1999, © Kluwer Academic Publishers.

 T.C. Nicholas Graham and John Grundy

– Support for sound and video, to allow multimedia to be used in a multiuser

context (Dewan, 1992; Graham, 1997);
– Support for workflow, to aid in the coordination of groups (Grundy, 1998).

While significant advances have been made in the range of interaction styles
supported by groupware development tools, little effort has been made to
systematically relate this support to the requirements of actual groupware
applications. The goal of this workshop was therefore to examine a representative
set of groupware applications and to draw from them a set of requirements that
groupware development tools should support. We have concentrated on the external
requirements of groupware development tools, exploring the application
functionality that the tools should support. An interesting further problem would be
to consider the internal requirements of tools, considering how the tools support the
development process.

 In order to explore the external requirements of groupware development tools,
we first described a set of six example groupware applications. These applications
provide a wide range of interaction styles. From the applications, we drew a set of
generic application features that groupware development tools should support. These
features are structured using the Clover model (Calvary, 1997).

The report is organized as follows. Section 2 describes the six example
groupware applications intended to motivate features of groupware. Section 3
summarizes the Clover model. Section 4 then presents the requirements of
groupware development tools synthesized from the features of the six groupware
applications.

2. APPLICATIONS

This section describes six applications illustrating features of modern groupware
systems: a mediaspace, a visualization system, a virtual university, a metaCASE
tool, a chess tutoring system and a software inspection tool. These applications
cover a wide range of communication, coordination and media styles. Four of the six
applications have been implemented while two are speculative, allowing features
found in current groupware to be contrasted with features of future groupware
systems.

2.1 CoMedi

CoMedi is a prototype mediaspace developed for exploring computer-mediated
communication between the fifty members of a research laboratory (Coutaz et al. in
this volume). The design of CoMedi is grounded on technical, functional and
interaction requirements. CoMedi is implemented in Java to accommodate a wide
range of hardware. The functional requirements were driven by a desire to support
awareness, privacy, and scalability. The interaction requirements include that users
should be able to perform frequent tasks with a minimum of explicit actions.

The functional and the interaction requirements result in a user interface based
on the porthole metaphor enriched with an optional fisheye facility. To support
privacy, CoMedi uses two orthogonal mechanisms: an accessibility matrix and the

External Requirements of Groupware Development Tools

published observability of private state variables. These variables express, for
example, the user’s level of availability and the video scene. The user can export
private state variables to the members of his/her choice. If exported, private state
variables can optionally be filtered. CoMedi provides filters for video scenes such as
Venetian blinds, the shadow, temporal difference images, replacing one’s image
with a poster, and the eigen space filter. The accessibility matrix allows users to
specify permissions, such as allowing a user to authorize every member of the
mediaspace to contact him/her using the V-Phone or the Chat facilities. In addition,
the published observability mechanism allows the user to export his/her private
video scene to selected friends, possibly filtered through one of the privacy filters.

Although perceptual bandwidth may be unimportant for loosely coupled
activities, it becomes vital for real time communication such as V-phone
connections and tele-explorations. CoMedi proposes Fovea and a face tracker as two
interaction techniques to alleviate visual discontinuity. The video image presented to
the distant user is a composition of a high resolution fovea and a low resolution
periphery. The fovea is provided by a high resolution steerable camera, while the
periphery is given by a low resolution fixed camera. The fovea can be zoomed to
provide the required level of detail.

2.2 The Manicoral Cooperative Visualization Tool

Manicoral is a prototype distributed cooperative visualization (DCV) tool. It
allows geoscientists to work together on visualizations without having to share the
same machine. The following scenario (Duce, 1998) illustrates use of the tool:

 A geoscientist (A) is examining a dataset of sea surface height readings from a
satellite-borne altimeter. He is interested in a specific part of the Mediterranean.
The original track data has now been gridded and this is what A is visualizing. The
visualization mapping method could be quite straightforward - a set of solid
contours with some parameters controlling the range of data values with an active
colour mapping. He has experience of other more widely known data and something
does not look right.

 He phones or emails a colleague (B) elsewhere in Europe and proposes that
they engage in a computer mediated cooperative session. A informs B at the start of
the session how to find the data and the visualization processing network. A sets the
scene for B showing some pregenerated visualizations on the shared whiteboard.
Now that each participant has the visualization system and all the software
necessary for cooperation, A guides B through his reasoning with the help of shared
control of colour maps via the DCV. B then begins to have some ideas about the
cause of the problem and guides A through these in turn, reversing the roles.

 B then explains to A that the problem is the choice of dataset and explains
where an alternative can be found. At this stage both need to see both datasets in
order to compare them. Ideally, the shared control parameters would govern the
visualization of both datasets. This does not require additional shared control
capability per se, but does require flexibility in how each shared parameter is linked
to the visualization system - a flexibility which a dataflow system is able to provide.

 B guides A through his reasoning and demonstrates that the new dataset
solves the problem. As a result of the discussion a better understanding of the data
has been obtained and an opportunity to publish a joint paper has been generated!

 T.C. Nicholas Graham and John Grundy

In the scenario a shared whiteboard is used to present prepared material, in this
case snapshots of visualizations. The shared whiteboard can be used both as a
presentation tool, where the presenter controls what "images" are shown, and as a
workspace where non-standardized material can be shared. Interaction devices like
telepointers and annotations are also available.

Geoscientists can share data at any point in the visualization pipeline, ranging
from the raw data, the pre-processed data, the analyzed data, and the visualization
itself, including the attributes controlling the visualization. The DCV tool, similarly
to the whiteboard, allows the use of telepointers and annotations.

The work with the visualization tool needs to be supplemented by some kind of
communication device (in the scenario phone/e-mail, but in the prototype this was
achieved by using an existing audio and video communication tool).

Working with the visualization it is important to allow the sharing of existing
data and the use of existing software. It is also important that the tools support
flexible transition between local and collaborative work. In the DCV prototype,
values may be local or shared in the session. Users may switch between local and
shared values, and introduce new values or data sets that might later be shared.

Each researcher runs a copy of the visualization tool on his/her own machine.
This can lead to problems if a researcher with a powerful machine experiments
heavily with a shared value, causing slower machines to spend all available
resources on keeping up with redrawing.

2.3 Virtual University

The Virtual University is a proposal to support remote real-time lectures
(Cockton, 1998). Students attend class by opening a set of windows allowing them
to view a lecture in progress. A video window may show the lecturer or other
physical materials the lecturer chooses to show. Normally, video is broadcast in real
time. However, students may enter a lecture up to ten minutes late, and review the
video they missed in condensed form.

An application window contains prepared materials such as lecture slides.
Students may view these materials in slaved mode, automatically following the
lecturer, or may skip forwards or backwards privately. The application is pluggable,
meaning that any existing application can be used.

Students may communicate with the lecturer by posing questions. Questions are
typed off-line and sent to the lecturer, who may pause and respond at any time.

A set of gestalt views gives students an overview of the virtual lecture room. A
question queue shows how many people wish to pose a question to the lecturer.
Students may indicate their current level of comprehension. A mood view
synthesizes the general level of comprehension in the room into a single image. A
position view shows what point the lecturer has reached in his/her materials,
allowing students to retain context when they are privately reviewing the materials.

The virtual university is flexible with respect to the students’ hardware. As
networking or machine performance degrades, the presentation of the lecture also
degrades. For example, video images may be replaced with portholes, and
eventually with still images. Live sound may be replaced with chat windows.

External Requirements of Groupware Development Tools

2.4 JComposer

The JComposer Object-Oriented Analysis and Design metaCASE tool (Grundy
1998 in this volume) supports flexible collaborative editing for OOA/D diagram
views. JComposer has been built and used in an industrial setting. JComposer
supports a wide range of collaborative editing styles. A collaboration menu allows
users to specify which other users can collaboratively edit their views and the
coupling level of these other users, ranging from asynchronous to fully synchronous
editing. Asynchronous view editing allows users to independently modify private
versions of a view, then exchange and incrementally merge sets of view edits.
Presentation-level view editing distributes view edits to collaborators as they are
made, and presents them as human-readable descriptions. Users can choose to
incrementally merge selected changes into their version of the view. Synchronous
view editing broadcasts edits as they are made and automatically merges them into
the views of collaborators.

JComposer provides a range of awareness, coordination and communication
facilities. Colouring of OOA/D iconic components indicates who last modified parts
of a view. Human-readable change descriptions are annotated to indicate who made
each view edit. Audio and/or chat facilities help to coordinate editing, especially
when using the synchronous editing level. Email helps coordinate asynchronous
editing. A workflow tool, Serendipity-II (Grundy et al 1998b), can be used with
JComposer to coordinate or automate editing level usage, to automate notification of
view edits, and to annotate change descriptions with workflow stage information.

2.5 Chess Collaborative Teaching Application

The Group for Interactive Tools and Applications (GHIA) at the Universidad
Autónonoma de Madrid has specified a Chess tutoring application to motivate the
requirements of teaching applications. The Chess application has not yet been built.

A chess tutoring application should allow interactive collaborative learning,
reviewing, and analysis of chess rules and strategy. The application should allow
one person to create a chess game or to review an existing one. When reviewing a
game, a user should be able to explore alternative scenarios, by adding alternative
moves and possible continuations from these moves. The resulting analysis would
include attached notes and graphical comments, such as indications of weak and
strong points and threatening aspects for the players. Both textual and graphical
information could be created by authorized users and by an agent that has
knowledge about relevant aspects of chess positions. Analysis would be available
for other players to consult or further analyze, either individually or synchronously
with others. Attached notes could become discussion threads on game issues. Users
could show attached notes and graphical comments to other users while participating
in a discussion.

In addition to discussions, the application should permit two players to play a
game on distant screens or to continue an existing game where they left off. At any
time they should be able to go back and analyze the game, either individually or
collaboratively. The application should permit strong and weak synchronization.

 T.C. Nicholas Graham and John Grundy

Finally, a chess teacher should be able to access games as they are played or
following their completion, analyze their history, and discuss them with any of the
players. Agents may be used to advise the teacher of appropriate times to enter a
game.

Users should also be able to filter chess analysis. Filtered analysis could be
generated either by direct selection of the relevant snapshots or by automatic
checking of positions and moves by agents that locate hot spots. Filtered analysis
could be the basis for individual and synchronized review of chess games, and for
interactive teaching.

2.6 Collaborative Software Inspector (CSI)

John Riedl's group at Minnesota (Mashayekhi, 1993) has developed several
versions of a tool for supporting collaborative inspection. The first version supported
Humphrey's inspection process, where a group of reviewers asynchronously inspects
a document, preparing a list of faults. These are handed to a producer, who
correlates the faults into an integrated list. A moderator then guides a synchronous
meeting in discussing the integrated fault list. A recorder takes minutes of the
meeting. Thus, the meeting consists of an asynchronous fault detection phase and a
synchronous fault discussion phase.

The first version supported both the asynchronous and synchronous phases of
the meeting. During the asynchronous phase, users made annotations to the lines in
which they found faults, incrementally publicising their annotations. During the
synchronous phase, they used the same tool, but this time coupled the scrollbars,
mouse positions and all other aspects of their user interface so that they could have a
shared discussion thread. Consensus was reached through a talk window and audio
conferencing.

Their experiments showed that users wished to work asynchronously during the
fault discussion phase. In particular, they wished to privately review the faults made
by them or others, and to enter new faults. The tool supported private reviewing by
allowing users to dynamically uncouple their windows from the moderator’s
window. To support asynchronous addition of new faults, the tool was extended to
permit asynchronous voting and to provide discussion threads allowing parallel
groups to discuss unrelated faults (Stein, 1997).

3. DEFINITIONS

The requirements presented in the next section are structured using the Clover
model (Calvary, 1997). This model partitions the features of groupware applications
into functions supporting production, coordination and communication.

The production space denotes shared artifacts that are collaboratively
manipulated to perform some task. Example objects in the production space might
include shared documents or drawings. Functions related to the production space
include the viewing and manipulation of these shared artifacts.

The coordination space codifies the protocols governing how tasks are carried
out by groups of people. Such protocols may be purely social (e.g., social rules

External Requirements of Groupware Development Tools

specify that only one person should talk at a time) or may be formally specified
through a workflow system.

The communication space supports person-to-person communication. Email and
mediaspaces are examples of systems designed for supporting computer-mediated
communication, either asynchronously or synchronously.

4. EXTERNAL REQUIREMENTS

The example CSCW applications in section 2 have a range of "external", or end
user requirements, in terms of the general groupware facilities these environments
need to support. Thus any 4th generation groupware architecture should provide
appropriate abstractions for building applications with these kinds of groupware
features. In this section we summarise the wide variety of external requirements a 4th
Generation groupware architecture should satisfy, using the Clover taxonomy. In
addition, some extra technological requirements of groupware were determined
relating to adaptability, integration and hardware issues.

4.1 Production Space Requirements

All groupware applications have some notion of data or information that has to
be shared, exchanged and/or modified, as illustrated in Figure 1. The applications
outlined in section 2 have a variety of requirements in how information is shared,
viewed and edited, including flexible coupling of participants’ views, flexible
configuration of views and privacy settings, and support for production history.

Figure 1. Production space continuum to be supported for groupware applications

4.1.1 Support for Flexible Coupling

The applications show that people work together at the same time or at different
times, and that people smoothly move between these forms of work. For example, in
the Virtual University, students may decouple from the lecture presentation, review
material that was presented earlier in the lecture, and then later rejoin the

 T.C. Nicholas Graham and John Grundy

presentation. In CSI, JComposer and Manicoral, users may at any time make a
version of shared data for private use, work alone on the private data, and later
merge their results with the shared data. In the Chess application, players smoothly
move between reviewing and playing games A groupware development tool is
required to support the creation of applications where users can seamlessly move
between synchronous and asynchronous work, and where users have control over
the degree of coupling of views. More specifically, a groupware development tool
should provide support for:
– Seamless transition from shared to private use of data: CoMedi, Manicoral,

JComposer and CSI, require that information be shared to various degrees. For
example, in Manicoral some physics data is local while other is shared, while
some shared data is updateable, and some read-only. In CoMedi and Manicoral,
users need to be able to dynamically control the degree of sharing.

– Versioning and merging: As asynchronous editing must be supported by some
views, and some view data may be copied, edited independently and then
merged with old data, versioning and merging of views and data must be
supported by groupware development tools. For example, JComposer allows
users to control versioning and merging of views. Manicoral also requires such
dynamic versioning and merging, but for both views and viewed data. The chess
learning program requires versioning of game play histories.

– Support for conflict resolution: JComposer and Manicoral require conflict
detection and resolution during version merging. This should be integrated with
both the merging system supported by a groupware development tool and the
general syntactic/semantic constraint system used by the application.

4.1.2 Support for User Configurability

The applications show that it is important for users to be able to configure the
behaviour of groupware. The last section discussed the importance of user control
over coupling. In addition, users should be able to customize the appearance of their
views of shared artifacts, and control how much private information they reveal to
others. Groupware development tools should support:
– Customizable views. JComposer and Manicoral support multiple views of shared

(and local) information. In Manicoral, viewing filters and display mechanisms
can be defined by users rather than being hard-coded into the environment; in
JComposer, users control what information is placed in views and how the
information is laid out. View filtering, rendering, composition and layout
information should itself be sharable, as well as the data actually being viewed.

– Customizable access control. Some users may have the ability to edit some data
and/or views, while others may only view information or not have access to it at
all. CoMedi, Manicoral, and the Virtual University have such requirements, and
CoMedi and Manicoral require users to have some control over access control
rights. Access control rights may be applied to kinds of data, subsets of data,
views and/or parts of views. All should be supported by groupware development
tools, with appropriate end user control mechanisms.

External Requirements of Groupware Development Tools

4.1.3 Support for History

Many groupware applications require a history of work and/or discussions to be
maintained, including JComposer (history of view edits), CSI (history of
discussion), and Chess (history of game play). History items should be treated in
much the same way as other sharable data, as the histories in all of these
environments may be edited and revised, annotated, undone/redone, filtered and
versioned.

4.2 Coordination Space Requirements

There is a strong need in groupware systems to coordinate work, so that tasks
done by different people are done in the correct order, peoples’ work doesn't
conflict, and negotiation and agreement is achieved in appropriate ways. The
applications from section 2 support coordination in a wide variety of ways.

Figure 2. Coordination approaches to be supported for groupware applications.

For example, in CoMedi and Manicoral, users coordinate the degree of coupling

between their views and plan transitions between them using social protocols. In
JComposer, users may coordinate coupling and sharing using social protocols, or via
an integrated workflow system which guides or enforces work. The workflow views
and artifacts can be treated as elements in the production space, and thus provide
different access rights, coupling levels and histories. In the chess learning system,
coordination may be guided by agents which watch the progress of the students’
games. Figure 2 illustrates the various kinds of coordination present in the
applications of section 2.

Groupware development tools should support:
– Role-based coordination. Participants in groupware applications may have

different capabilities depending on the roles they fill. The Virtual University has
a strong distinction between lecturers and students, with these different classes
of user having very different sets of views, view editing ability, access control

 T.C. Nicholas Graham and John Grundy

rights, and communication support. CSI differentiates between a moderator and
reviewers, with the former having control over advancement of line inspection,
controlling the overall inspection process. Chess differentiates between students
and tutor, with the later able to review games, version the game history and
suggest move changes.

– Floor control. Floor control coordinates production and communication aspects
of groupware, giving one or more users control of audio/video channels,
messaging, viewing and editing mechanisms, and coordination facilities. The
Virtual University uses floor control to enable structured questions.

– Task automation. While cooperating users carry out many tasks, there is often a
need for some automation in groupware environments. The Chess learning
system requires the tutor to be able to specify a variety of notification and
automatic annotation tasks, such as informing them when checkmate moves are
missed via messaging and/or annotation. Agents may help in these tasks, and in
notifying the instructor when students may require his/her attention. JComposer
allows users to specify notification and simple task automation agents using a
visual language, which can be enabled on the fly.

– Published observability. CoMedi allows users to view and hear other users and
their offices. Users need control over what parts can be viewed and in what
ways. Manicoral also needs to coordinate viewing of data, with some views at
times invisible to others and at other times visible. In CoMedi, users publish the
actions that they permit other users to perform. This published observability
information allows users to coordinate what actions they may perform on
another users data.

– Voting. Some applications require a formalised mechanism for reaching
agreement. CSI uses voting to reach a consensus on whether or not a line has
errors and on what action to take. Development tools should support facilities for
negotiation and reaching agreement.

4.3 Communication and Awareness Requirements

In addition to the communication that is inherent through the manipulation of
shared artifacts, groupware applications need to facilitate direct communication
between distributed people. Communication techniques range over synchronous
channels such as sound and video to asynchronous channels such notes and
annotations. Figure 3 illustrates these communication mechanisms. Groupware
development tools need to support communication through person-to-person
messaging, annotations, and specialized awareness views.

External Requirements of Groupware Development Tools

Figure 3. Communication approaches to be supported for groupware applications.

4.3.1 Synchronous and Asynchronous Messaging

The most fundamental form of communication is through messages sent from one
person to one or more others. E-mail asynchronous messaging and IRC-style
synchronous messaging are two of the most common text-based messaging facilities
available in groupware applications. All of the applications in section 2 make use of
such messaging facilities, and some, such as Manicoral, JComposer and CSI assume
users can easily switch from one mode to the other. In addition to these traditional
mechanisms, groupware development tools should support:
– Controllable video views. Communication via video may not only include

people's faces, but also views on whiteboards, office space, etc. For example,
CoMedi provides a variety of video communications, including portholes
indicating the presence of others, fovea views, and automated camera tracking
based on blink detection.

– Audio communication. Many applications utilise audio communication,
providing a synchronous, real-time chat system. Audio can also be used in voice-
mail systems to provide asynchronous messages. CoMedi, the Virtual
University, Manicoral and JComposer all utilize synchronous audio
communications. The Virtual University can also use recorded speech for
replying in lectures and voice-based annotation of slides for students.

4.3.2 Annotation

Annotation is a useful asynchronous communication system which may take the
form of textual "sticky notes", graphical items overlaying artefact views and history
and message item textual annotation. Manicoral uses textual annotation of data
views; the Virtual University textual and graphical annotations of slides and
messages; JComposer uses textual annotation of editing histories and graphical and
textual annotation of diagram views; CSI annotation of discussion threads and code

 T.C. Nicholas Graham and John Grundy

lines; and Chess annotation of game histories. Tools for developing groupware
should support annotation of all media and artifacts.

4.3.3 Gestalt Views

To collaborate effectively with a group, people require knowledge of the
activities of other group members. A number of the applications made use of views
synthesizing information about the group or its members to aid in communication.
The virtual university uses several of these gestalt views: a timeline view showing
the current location in the lecture, a question queue showing how many questions
have been posed, and a mood view showing the general level of understanding of the
class. CSI provides a view showing the results of the voting so far. Gestalt views
synthesize information, both to provide a quick mechanism for summarizing
information useful to group interaction, and as a mechanism for abstracting
information that may be private. For example, the virtual university’s mood view
does not reveal the mood of individual students; CSI’s voting view need not reveal
the individual people’s votes. A groupware development tool should support the
easy creation of gestalt views summarizing information.

CoMedi provides synthesized views based on sophisticated image processing,
leading to more demanding requirements. For example, CoMedi provides gestalt
views showing who is available in their office, synthesized facial images filtering
out non-facial data.

4.4 Technological Requirements

In addition to the requirements relating strictly to the functionality of groupware,
the applications suggested a variety of technological requirements related to the use
of available hardware, networks and software available to groupware applications.
Groupware development tools should support:

– Resource adaptivity: At times groupware applications can be run by users with

very different hardware and resources available. For example, it would be useful
for CoMedi to be used with one user with a high-end workstation and high-
resolution video camera, and another user with a Palm-top with limited CPU
power and I/O devices. The Virtual University has a lecturer with high-end
workstation and I/O devices, some students with similar hardware and
networking, and others with low-end PCs and modem connections. JComposer is
often used by groups with one user on a PC with a fast LAN, and another a slow
modem connection. Thus groupware toolkits should facilitate applications
adapting to variable hardware in graceful ways.

– User preferences: Often users have different preferences as to what hardware
resources should be used. For example, some Virtual University students want
full-motion video and rich audio, while others just want low-resolution audio
and sampled video stills. Groupware tools should allow such user requirements
to be handled in seamless ways, and to be easily configured by end users.

– Reusability of existing applications: It is often far too difficult to replicate
commercial software applications in order to make them group aware. Most

External Requirements of Groupware Development Tools

groupware systems require existing applications to be integrated with their
capabilities in appropriate ways. For example, Manicoral should use existing
database, spreadsheet and visualisation software; the Virtual University uses an
existing pluggable application; JComposer uses existing workflow and
programming environments; and CSI uses existing compilers and debuggers.

– Network state reporting: Often it is important for users to be aware of whether or
not others are seeing/hearing them and/or their modifications of work artifacts or
messages and annotations. The Virtual University lecturer wants to be aware of
the number of students engaged in the lecture and when students arrive/leave.
JComposer users need to be informed when collaborators loose their connections
or log onto a session.

– Fault-tolerance: All groupware systems leverage network connections and
computer hardware which can fail unpredictably. Thus all need mechanisms for
recovery from people going off-line or rejoining cooperative work sessions.
Manicoral needs shared data being modified to be kept "safe" from failure-
induced corruption; the Virtual University needs to accommodate students who
loose their connection during a lecture and rejoin, or who arrive late or leave
early; and JComposer needs to support "lost" view edits and rejoining of users in
asynchronous editing mode.

5. CONCLUSION

This report has summarized the conclusions of the EHCI Workshop on
Requirements of Groupware Development Tools. We have outlined the general
external requirements of groupware development tools, as driven by the features of
the applications surveyed in section 2. We do not claim to have a complete coverage
of all possible external requirements of groupware systems, but as illustrated above,
many applications exhibit common requirements. Thus the workshop participants
believe that developers of new CSCW architectures should endeavour to address all
of the requirements outlined in this section, or at least ensure their architectures and
implementations can be extended to accommodate them.

ACKNOWLEDGMENTS

This report is the result of a workshop held at EHCI’98. The report was edited
from written contributions by Joëlle Coutaz, Prasun Dewan, Morten Borup Harning,
Roberto Moriyon and the authors. Other participants contributing to the report were
Remi Bastide, Patrick Girard, Jocelyne Nanard, Philippe Palanque, Fabio Paterno,
Franck Tarpin-Bernard and Claus Unger.

 T.C. Nicholas Graham and John Grundy

REFERENCES

Begole, J., Struble, C.A., Shaffer, C.A. and Smith, R.B. Transparent Sharing of Java Applets:
A Replicated Approach. In Proc. ACM UIST '97, pages 55-64. ACM Press, 1997.

Calvary, G., Coutaz, J. and Nigay, L., From Single-User Architectural Design to PAC*: a
Generic Software Architecture Model for CSCW. In Proc. CHI '97, pages 242-249, 1997.

Cockton, G. IFIP Virtual University Case Study.
http://osiris.sund.ac.uk/~cs0gco/IFIP/ifip_index.htm, 1998.

P. Dewan and R. Choudhary. A High-Level and Flexible Framework for Implementing
Multiuser User Interfaces. ACM TOIS, 10(4):345-380, October 1992.

Duce, D.A., Gallop, J.R., Johnson, I.J., Robinson, K., Seelig, C.D., and Cooper, C.S.
Distributed Cooperative Visualization - The MANICORAL Approach. In Proc.
Eurographics UK, pp. 69-85, 1998.

T.C.N. Graham. GroupScape: Integrating Synchronous Groupware and the World Wide Web.
In Proc. INTERACT '97, pages 547-554. Chapman and Hall, 1997.

T.C.N. Graham and T. Urnes. Integrating Support for Temporal Media into an Architecture
for Graphical User Interfaces. In Proc. ICSE '97. IEEE Computer Society Press, 1997.

Grundy, J.C., Hosking, J.G., and Mugridge, W.B., Visual Specification of Multi-View Visual
Environments, In Proc. VL’98, Halifax, Canada, Sept 4-7, IEEE CS Press, 1998.

Grundy, J.C., Hosking, J.G., Mugridge, W.B., Apperley, M.D. An architecture and
environment for decentralised, internet-wide software process modelling and enactment.
IEEE Internet Computing 2(5), IEEE CS Press, September/November, 1998.

Gutwin, C. and Greenberg, S. Effects of Awareness Support on Groupware Usability. In
 Proc. CHI'98, ACM Press, pp. 511-518, 1998.
Mashayekhi, V., Drake, J., Tsai, W.T. and Riedl, J. Distributed Collaborative Software

Inspection. IEEE Software, pp. 66-75, Sept. 1993.
Munson, J., Dewan, P. A Flexible Object Merging Framework, ACM CSCW, pp. 231-242,

Oct. 1994.
Roseman, M. and Greenberg, S. TeamRooms: Network Places for Collaboration. In Proc.

ACM CSCW, pp. 325-333, 1996.
M. V. Stein, J. T. Riedl, S. J. Harner, and V. Mashayekhi, A Case Study of Distributed,

Asynchronous Software Inspection, In Proc. ICSE'97, May 1997.

