In Economics-Driven Software Architecture © Elsevier 2013

Foreword - Economics-Driven Software Architecting

John Grundy

Swinburne University of Technology

Software architecting has become a critical part of most software systems
development projects. However, as popularised in the seminal papers by Shaw
and Garlan (1996) and Kruchten (1995), most software architecture research
and practice has historically been focused on the technical aspects of the task,
not value-driven or value-creation aspects (Boehm & Sullivan, 2000; Bahsoon, &
Emmerich, 2008). Given the huge impact software architecture choices have on
system performance, scalability and maintainability, not to mention the actual
adoption and deployment of systems, it has become accepted that software
architecting can no longer ignore economics-driven imperatives (Bass et al,
2003; Kruchten et al, 2006).

So saying, there is a need to both incorporate an economics-driven perspective
into the software architecting of systems and to balance this with continuing to
solve increasingly challenging technical problems. I see several major areas for
incorporating a software economics perspective in the architecting process:

* Requirements Constraints (particularly Quality of Service on software
architecture) on architecture - requirements are increasingly challenging
to meet with increased demand on scaling, reliability, robustness, and
security. Most if not all of these constrain the architectural solution space,
sometimes in conflicting ways. Meeting some implies more costly, less
flexible and less extensible architectural solutions. Expected or
unanticipated changing QoS can have dramatic impact on architecture,
including rendering a particular architecture choice no longer tenable.

* Technical Constraints on architecture - technical choices may be
constrained by a range of issues, not limited to cost of solution platform
(software, hardware, network, 34 party applications); availability; open
vs proprietary; and likely future technological change e.g. the emergence
of the cloud computing paradigm. Once commitment has been made to
one set of technical solutions, change is almost invariably expensive.

* Deployment environment constraints - architectural solutions make heavy
use of other applications and components in their deployment
environment, as well as platform hardware and networks. With the
advent of cloud computing, a variety of platform-as-a-service and
infrastructure-as-a-service, with elastic availability, has complicated this
aspect further. Different platforms offer different technical and QoS
constraints, but also come with differing cost models.

* Process constraints greatly impact software architecting - the advent of
agile methods with the concept of the “emergent” architecture has some
strong cost incentives - implement only as much as you have to and no
more. Unfortunately, as applications and user requirements evolve,



In Economics-Driven Software Architecture © Elsevier 2013

sometimes dramatic re-architecting and re-engineering becomes
necessary, with attendant cost implications.

* Team constraints are an interestingly interesting area. Sometimes many of
the above decisions are actually made due to team - or organisational -
preferences, biases, and prior experiences. Sometimes dominant
individuals or politically or economically powerful lobbies hold sway over
key architectural solution decisions, disregarding some of the factors
above and including cost and longer term software economic implications.
Sometimes architecture choices are driven by the concept of “value” to
the team e.g. a reason for exploring interesting new technologies and
solving interesting technical problems, instead of value to business,
stakeholders or even the maximising of the actual value of the software
itself.

* Finally, business constraints must be taken into account. These include
limitations on purchase or usage of hardware and software, desire to
leverage value in the future if not the present, balancing cost vs
opportunity, and potentially increasing attractiveness of product due to
architectural decisions that appeal to likely or potential stakeholders.
Simply choosing the “cheapest” options often turns out to be a false
economy. Similarly, massively over-engineering applications and
consequence of cost and loss of time-to-market edge can have severe
economic and value implications.

The concept of economics needs to be incorporated into the software
architecting process itself. Traditionally, most if not all of the practice of software
architecture has been technical in focus. However, many constraints impacting
on architectural decision making have major implications on platform and
software costs, team costs, enhancement of software value, enhancement of
company value and capability, and positioning of product and organisation for
(un)anticipated future demand. Below I suggest some ways in each area above
that this might be advanced.

Requirements Impact on Architecture Economics

Architectures must realise functional and non-functional requirements set for
them. As several recent works have identified (Avgeriou et al, 2011), many now
think software architecting and requirements engineering must proceed hand-
in-hand rather than the former rigidly follow the later. In fact, architectural
choices often constrain the requirements as often as not (Tang et al, 2011,
Woods & Rozanski, 2011). Quality of Service (QoS) constraints have a major
impact on the economics of a software architecture, both in terms of the expense
of its solution but also the value inherent to the solution.

Typically, the higher the QoS expectations e.g. greater the throughput, reliability,
security, and scalability needed by stakeholders for their application, greater the
complexity, implementation and cost required. However, a simple, cheap, quick-
to-build web application that is intended to manage highly mission-critical or
sensitive data is going to have much less - if any - value, than one demonstrably
safe, secure, robust and clearly meeting the QoS requirements set for it. Similarly,
an over-engineered solution that will never be required to scale, be as secure,



In Economics-Driven Software Architecture © Elsevier 2013

manage highly private data, or face a range of difficult deployment environment
conditions, will waste design, development, testing and deployment resources to
little or no added value.

Balancing the current QoS needs against architectural decisions that meet these,
but do not greatly exceed them, is challenging. In particular, as many QoS
constraints and suitable architectural solutions conflict, trade-off analysis can be
very challenging. Factoring in cost in terms of development time, testing,
required platform support and business value needs to be a part of decision
making, not just technical solutions (Bahsoon and Emmerick, 2011).

A major difficulty is changing requirements. Adding or modifying functionality is
hard, but incorporating potentially massive QoS constraint changes is usually a
much greater challenge. With the complexity and connectedness of today’s
applications this is probably going to get even more difficult. Architectural
solutions allowing for more flexible QoS changes are likely to be ever more
necessary (Allen et al, 1998).

Technology Impact on Architecture Economics

Different technical solutions for software architectures come with different
inherent costs: some are free e.g. open source vs bought solutions. Some are
easily modified and configurable whereas others are very constrained, saving
expense if built-in functionality is required but incurring cost if extension is
needed. Some require expensive hardware or third party software investment,
whereas others allow for elastic, demand-driven pay-as-you-go infrastructure.
Some are widely used and thus embody well-known and supported approaches.
Others are bespoke solutions, possibly optimised but potentially with poorly
known or undiscovered weaknesses.

Technology choice will hence impact dramatically on architectural economics in
terms of both cost (both to build and to maintain), and value (e.g. is the solution
able to be deployed with a wide range of off-the-shelf components or require
purchase of expensive, third party components, putting off potential buyers).
Some technology choices are more costly upfront e.g. cost to purchase, more
difficult to use, more time-consuming for team, require more costly deployment
environment support. However, they enable an architecture to be more “robust”
under requirements change e.g. provide dynamic load balancing, run-time
component switching, enable elastic resource management etc. As with
requirements change, anticipating future technology demands is difficult in
many situations but may enable both more cost-effective (in the long run)
architecture choices to be made and may maximise software value.

Environment Impact on Architecture Economics

Software doesn’t run in isolation - it is deployed on hardware, networks and
with other 3rd party applications and services. These may well impact
architecture choices and themselves impact cost-effectiveness of solutions and
value of the system as a whole. A major traditional cost has been over-
engineering solutions, not just the software architecture itself but its deployment
environment e.g. massively over-allocation of compute nodes, data storage,



In Economics-Driven Software Architecture © Elsevier 2013

network capacity. Sometimes this “over-allocation” is actually capacity that is
needed very rarely e.g. once a day/month/year peak processing.

The advent of the cloud computing model has gone some way to addressing this
by enabling elastic provisioning and multi-tenant solutions, incorporated into
the engineering of software systems (Grundy et al, 2011). However, variable cost
models, immaturity of the platforms and development methods, and other issues
such as legislative constraints on data location can impact the usefulness of this
solution in terms of software economics. Understanding of different platforms
implications on running costs, ability to scale up/down resource demand,
robustness on failure, loss of control over security and load balancing, and other
concerns makes impact on software architecting still very unclear.

Process Impact on Architecture Economics

Traditionally architecting has largely been performed before large scale
implementation and testing, and re-architecting has only been attempted when
major problems (scale and performance being the most common). However the
advent of agile development processes, and the concept of “agile architecting”
has gained prominence. Originally, architectural spikes and an “emergent”
architecture was the result. However, emergent architecture is a bit like
emergent behaviour or constraints for a software system: unpredictable, hard to
control, hard to plan and manage, and hard to cost.

Any development process for a software system needs to factor in architecture
design, analysis and - often - evolution. As many technologies and deployment
environments themselves greatly constrain architectural solutions, so they will
constrain architecting in the development process. Software cost estimation and
management have become well-recognised areas of software engineering [Refs].
A development process that makes architecture cost estimation difficult - if not
impossible - we be problematic.

Team Impact on Architecture Economics

Team dynamics, organisational context and constraints, and socio-technical
aspects of software development may all play an overly-large role in architecture
choices and hence cost and value implications. Developers may prefer
architectural solutions and technologies they are familiar with. Conversely, they
may prefer “new” or “interesting” options whose value to them is in their
technical attractiveness but economically may have sub-optimal value to the
software project, application, stakeholders and organisation. Architectural
choices may be constrained by organisational and/or stakeholder preferences,
that have little basis in sound technical - or economic - rationale. Attempting a
project with a new technology the team, organisation and stakeholder has little
or no experience with is a classic high risk strategy.

By far the major cost for most software projects is personnel - developer time
and related overheads. Hence software architecture decisions that have positive,
or negative, impact on developer time have great potential to impact a project
economically. Factoring in impact on team into architectural decision making
would seem an important area for research and practice.



In Economics-Driven Software Architecture © Elsevier 2013

Business Impact on Architecture Economics

Finally, software is normally developed for a purpose: to assist people (and
increasingly, machines) in carrying out their activities more effectively,
efficiently and in a satisfying way. Business constraints relating to software
economics are of course myriad: constraints on investment in developing the
software itself; constraints on platform capabilities to host the software; short-
term development vs long-term maintenance costs; time-to-market challenges;
changing business models; and changing legislative context. Value offered by
software is also multi-faceted: improving efficient use of resources; reducing
costs; enabling quick response to market demand; opening up previously
unavailable business opportunities; and even enabling future software and
business development by improved team skill set, system integration, and
solidity of underlying software architecture. Software architecting incorporating
business context and need is thus likely to better meet these needs and live
within necessary constraints. Equally, software economics carefully considering
architecture as a fundamental software value enabler is necessary.

References

Allen, R, Douence, R., & Garlan, D. (1998). Specifying and analyzing dynamic software
architectures. Fundamental Approaches to Software Engineering, 21-37.

Avgeriou, P., Grundy, J., Hall, ].G., Lago, P., Mistrik, I. (2011), Relating Software Requirements and
Architectures, Springer.

Bahsoon, R., & Emmerich, W. (2008). An economics-driven approach for valuing scalability in
distributed architectures. In Software Architecture, 2008. WICSA 2008. Seventh Working
IEEE/IFIP Conference on (pp. 9-18). IEEE.

Bahsoon, R., & Emmerich, W. (2011). Economics-Driven Architecting for Non Functional
Requirements in the Presence of Middleware, Chapter 20 in Relating Software Requirements
and Architectures, Springer.

Bass, L., Clements, P., Kazman, R. (2003). Software architecture in Practice, Addison-Wesley.

Boehm, B. W., & Sullivan, K. ]. (2000). Software economics: a roadmap. In Proceedings of the
conference on The future of Software engineering (pp. 319-343). ACM.

Grundy, ., Kaefer, G., Keong, J., & Liu, A. (2012). Software Engineering for the Cloud. Software,
IEEE, 29(2), 26-29.

Kruchten, P. B. (1995). The 4+ 1 view model of architecture. Software, IEEE, 12(6), 42-50.

Kruchten, P., Obbink, H., & Stafford, J. (2006). The past, present, and future for software
architecture. Software, IEEE, 23(2), 22-30.

Shaw, M., & Garlan, D. (1996). Software architecture: perspectives on an emerging discipline.

Tang, A, Liang, P., Clerc, V., and van Vliet, H. (2011). Traceability in the Co-evolution of
Architectural Requirements and Design, Chapter 4 in Relating Software Requirements and
Architectures, Springer.

Woods, E., and Rozanski, N. (2011). How Software Architecture can Frame, Constrain and Inspire
System Requirements, Chapter 19 in Relating Software Requirements and Architectures,
Springer.



