
Contextual Anomaly Detection for a Critical
Industrial System based on Logs and Metrics

Mostafa Farshchi∗†, Ingo Weber†∗, Raffaele Della Corte‡, Antonio Pecchia‡, Marcello Cinque‡,
Jean-Guy Schneider∗†, John Grundy§,

∗Swinburne University of Technology, Melbourne, Australia. {mfarshchi, jschneider}@swin.edu.au
†Data61, CSIRO, Sydney, Australia. {firstname.lastname}@data61.csiro.au

‡Federico II University of Naples, Italy. {raffaele.dellacorte2, antonio.pecchia, macinque}@unina.it
§Monash University, Melbourne, Australia. john.grundy@monash.edu.au

Abstract—Recent advances in contextual anomaly detection
attempt to combine resource metrics and event logs to uncover
unexpected system behaviors at run-time. This is highly relevant
for critical software systems, where monitoring is often mandated
by international standards and guidelines. In this paper, we
analyze the effectiveness of a metrics-logs contextual anomaly de-
tection technique in a middleware for Air Traffic Control systems.
Our study addresses the challenges of applying such techniques
to a new case study with a dense volume of logs, and finer
monitoring sampling rate. Guided by our experimental results,
we propose and evaluate several actionable improvements, which
include a change detection algorithm and the use of time windows
on contextual anomaly detection.

Index Terms—Anomaly detection, contextual anomaly, system
monitoring, log analysis, change detection.

I. INTRODUCTION

Anomaly detection is a core concern for dependability
practitioners. Research trends in this area propose the detection
of contextual anomalies (as opposed to point anomalies) [1],
[2], [3], [4]. These combine resource utilization metrics (e.g.,
CPU and memory utilization, network traffic) and additional
contextual data with the aim of pinpointing unexpected system
behaviors and malfunctions. Recent work attempts to com-
bine resource metrics and event logs [5], [6] for contextual
anomaly detection. This paper explores the use of contextual
anomaly detection in a critical industrial system; we base the
analysis on our previously proposed approach [6], [7], which
is non-intrusive and unsupervised. The aim of this paper
is twofold: (i) experimenting with a metrics-logs contextual
anomaly detection method in a new compelling domain, and
(ii) contributing real-world case study experience for this
technique. The system is a middleware for the integration
of Air Traffic Control (ATC) applications by a world-leading
company in electronic and information technologies.

The key contributions of this work are: 1. An automated
abstraction method to infer system activities from logs. We
adopt an automatic method to extract regular expressions and
find unique event types across the logs of the reference system.
Particularly, this addresses the limitation of applying the previ-
ous method [6] on dense logs of common application operation
environments. 2. An assessment of the limitations of metrics-
logs contextual anomaly detection. We use a fault-injection
approach to collect data records during system failures and

to elicit stressful operations. Experiments reveal that a large
difference between the predicted and actual resource utilization
causes sporadic false positives. 3. Means for improving
contextual anomaly detection. Based on the results of our ex-
perimental analysis, we proposed, implemented, and evaluated
means for improving anomaly detection, which include a (i)
change detection algorithm for reducing false positives, and
(ii) time-window-based approach to enlarge the observation
period and increase detection accuracy.

A long version of this paper is available as a technical
report [8], which provides additional details and discussions.
The rest of the paper is organized as follows: we introduce
our case study in Section II, followed by Section III that
provides an overview of the approach. Assessments methods
and improvement results are presented in Sections IV and V.

II. CASE STUDY SYSTEM

We use a middleware platform for the integration of
mission-critical applications in the Air Traffic Control (ATC)
domain [9]. The high-level architecture is shown in Fig. 1.
It consists of the middleware and two ATC applications:
(i) a Flight Data Processor (FDP), which generates/updates
flight data and (ii) a web-based Controller Working Position
(CWP), which receives the data from the middleware and
presents it on a web console. The middleware consists of
transport and adaptation layers. The transport layer ensures
the communication between the FDP and CWP, according to
the publish-subscribe paradigm. The adaptation layers allow
applications to use the middleware and its services. The
monitoring layer uses a Linux loadable kernel module (LKM)
to collect resources usage data (e.g., CPU and RAM).

OS processes running the FDP and the middleware are
monitored with a 100-millisecond sampling rate. The middle-
ware generates dense and large volume of logs: for example,
it can generate around 2700 lines during five minutes of
operations and up to 240 lines per second. It should be
noted that – although we deployed a controlled testbed for
experimental purposes – the ATC middleware, applications
and test suite consist of the real-world software made available
by the industry provider. Log-events from the middleware and
usage metrics from monitoring layer are used for our anomaly
detection experiments.

1

Fig. 1: High-level architecture of the reference system.

III. OVERVIEW OF ANALYSIS METHOD

The contextual anomaly detection technique proposed in [6]
that we are building upon extracts a regression-based model
that exploits correlation between events (as captured in system
logs – e.g., logs) and resource metrics (collected by monitoring
services – e.g., CPU usage).

The technique requires (i) a stream of time-stamped events,
such as events recorded by log lines, representing the behav-
ioral context of a system’s operation, and (ii) at least one
(preferably more) resource metric, representing the run-time
“state” of a system. At a high-level view the approach requires
to extract event types from log events and represent clusters
of log event types as a set of quantitative metric. Once a
quantitative metric of log events is available, an events-metric
correlation model is derived using a suitable regression model
(with event type occurrences as independent variables and
a monitoring metric as dependent variable) for each of the
monitoring metrics. This lead to identifying the predictability
power for each of the generated events-metric correlation
models and select the one(s) with the best “sensitivity” with
regards to detecting changes in system metrics. Having the
regression model, we derive the assertion specification from
regression analysis, which we use for runtime monitoring.

Above steps are explained in details in our technical re-
port [8] and further informtion can be found in [6].

IV. ANOMALY DETECTION WITH INITIAL APPROACH

We identify the most sensitive metric, i.e., CPU usage in
this study, by means of the regression model and derive the
following assertion equation to predict CPU usage from logs:

yi = 1.462 + 4.606 ∗A06i + ...+ 3.557 ∗A17i (1)

We leverage this obtained model for our contextual anomaly
detection approach: at each time ti, the actual CPU usage value
is expected to be predicted by the equation with an error of
estimate of ±6.059; otherwise, it is raised an anomaly.

It is important to note that we performed our analysis based
on four separate runs of the target system. In the normal run
(without any fault injection), we learned the model of the
normative system behavior; we then validate the accuracy of
the learned model with three further runs.

(a) Experiments setup

(b) Data record collection

Fig. 2: Fault injection setup and records collection

A. Data collection and evaluation metrics

Data are collected by running the reference system with
three failure settings independently: Active hang: the system
appears to be running, but its services are perceived as
unresponsive. Passive hang: the system appears to be running;
its services are perceived as unresponsive because the system
is indefinitely waiting for an event to occur. Crash: the system
terminates unexpectedly and no service is provided at all.
The above-mentioned failures are based on a widely-accepted
taxonomy in dependability research [10]. It should be noted
that these failure settings are not meant to be exhaustive,
but aim to elicit a number of stressful conditions requiring
improvements for contextual anomaly detection.

Failures are induced by means of fault injection. To achieve
this, the source code of the ATC middleware is arranged
in order to allow an external component, called Injector in
the following, to activate and deactivate software faults on
demand, during the progression of the system execution.

Fig. 2a shows the experimental setup. Fig. 2b depicts the
timing of the experiments. For each run, the ATC middleware
and applications (FDP, CWP) are initialized and then the appli-
cations run the workload by the industry provider. The system
is run regularly for several workload cycles until the Injector
activates a software fault (i.e. fault activation switches from
OFF to ON in Fig. 2b). Injection stays ON for one minute,
which causes the system to deliver an incorrect service. In case
of active/passive hang, the regular system function resumes
after the injection (i.e. fault activation switches from ON to
OFF); in case of crash, the system goes out of service a few
seconds after the injection.

We collected data records throughout the system execution.
Each data record contains the information of 1-second time
windows: (i) the actual value of CPU usage, (ii) the predicted
value of CPU usage based on the assertion Equation (1), (iii)
the outcome of the detector based on the comparison of actual-
predicted metric, and (iv) the label of the record. The label is
positive (P) if the record is collected under incorrect service;
negative (N) otherwise (Fig. 2b). We use the label as ground
truth, or oracle, to assess the outcome of the anomaly detector
based on the metrics of precision, recall and accuracy.

2

(a) Normal run (b) Active Hang

(c) Passive Hang (d) Crash

Fig. 3: Actual versus predicted CPU usage with highlighted fault activation periods.

TABLE I: Initial anomaly detection results

Active Hang Passive Hang Crash

Total Records 513 519 387

True Negatives 443 448 372
False Negatives 0 60 0
True Positives 62 0 4
False Positives 8 11 11

Precision 0.886 0.000 0.267
Recall 1.000 0.000 1.000
Accuracy 0.984 0.863 0.972

B. Results

Fig. 3 shows the actual metric value and the one predicted
by the model in Equation (1). Time series are shown by
failure setting. Fig. 3 includes time series from the Normal run
(Fig. 3a), i.e., no fault injected. Table I provides an overview
of the detection outcome.

Active Hang. Fig. 3b shows that the predicted values
closely mimic the actual values in fault-free records; on the
top, the model can also predict abrupt increases on CPU usage.
Nevertheless, we noted that in some records (e.g., 92-94, 137-
138), although the presence of spikes in CPU utilization was
correctly predicted, the magnitude (or height) of the spikes
was not predicted precisely. Around record 334 – when the
active hang fault injection is started – it can be seen a sudden
significant gap between the actual value of CPU the predicted
value. Because of the gap, anomalies are detected with fairly
good accuracy throughout the duration of the fault injection.

Passive Hang. Similar patterns can be observed in Fig. 3c
where predicted values mimic actual values. Interestingly,
there is no gap between predicted and actual value when
injection is started around record 342. Having no TPs (mean-
ing zero detection of anomalies) led us to an important
observation. During a passive hang, the system goes into
an indefinite waiting state for resources, causing a pause
on operation activities; moreover, the passive hang did not
affect CPU usage. This experiment highlights the existence of

anomalies, which turn out to be asymptomatic in the relation
of logs and metrics. We state that the detection technique
assessed in this paper is ineffective for those errors which
simultaneously suppress the normative system activity and
metric changes. Asymptomatic anomalies can be reasonably
addressed by complementing metrics-logs contextual detection
with existing log-based failure analysis techniques.

Crash. Prediction fairly resembles the actual values before
the injection; execution is aborted a few seconds after the
injection around record 383 – see Fig. 3d. Noteworthy, the
anomaly was detected as soon as the fault was injected,
however the system crashed few seconds after the injection.

Although the approach detected all the positive records,
precision appeared to be low. This indicates the existence of
too many false positives.

V. IMPROVEMENTS

A. Change Detection

Above-presented experiments highlight that the predicted
CPU values mimic the pattern of actual values when the
records are failure-free. However, in some cases, it did not
correctly predict the magnitude of the spikes. For example,
in Fig. 3c (Passive Hang) record 160 shows a peak in CPU
usage in both predicted and actual values. However, the
difference between these two values is fairly large: the actual
value indicates 76.16% CPU usage while the predicted one is
40.14%; moreover, both values are far bigger than the mean
value of CPU usage, that is, 2.05%. Such big differences cause
the detector to raise false anomalies.

This observation inspired us to investigate whether we can
improve the accuracy of the anomaly detection approach from
the perspective of change detection along with the prediction
from the assertion equation. We then used a new threshold
policy for detecting anomalies. This checks whether both
predicted and actual values indicate a significant change from
the mean. The proposed policy is described in Algorithm 1,
where the actual value is denoted by ac, the predicted value by

3

Algorithm 1 - Change Detection
- Anomaly Detection:

1: if (|ac− pr| < ε) then
2: anomaly ← false
3: else if (|ac −m| < σ AND |pr −m| < σ) OR (ac > m + σ

AND pr > m+ σ) OR (ac < m− σ AND pr < m− σ) then
4: anomaly ← false
5: else
6: anomaly ← true
7: end if

TABLE II: Anomaly detection results (Change Detection)

Active Hang Passive Hang Crash

Total Records 513 519 387

True Negatives 447 451 377
False Negatives 0 60 0
True Positives 62 0 4
False Positives 4 8 6

Precision 0.939 0.000 0.400
Recall 1.000 0.000 1.000
Accuracy 0.992 0.869 0.984

pr, standard deviation by σ, and standard error of estimate by
ε. Table II shows the results obtained with the change detection
policy. It can be noted that there was a reduction of the false
positives for all three experiments with respect to the ones
obtained without change detection (Table I).

B. Adaption of Time Windows

In our system, we note potential delay between an operation
action and its effect(s) becoming observable, which may not
be reflected into 1-second time windows. We investigated if
a further improvement in terms of accuracy can be obtained
by enlarging the observation period. We expanded the time
window to a total of 3 seconds (±1 second from current time
window) and re-ran our anomaly detection analysis. Table III
shows the results obtained for both the original technique, i.e.,
no CD, and the one with the change detection algorithm, i.e.,
w/ CD. It can be noted that false positives reduced in all three
failure settings for both no CD and w/ CD cases with respect
to the ones obtained with the default time window (Table I and
Table II). Noteworthy, a further increase of the time window
did not lead to improvements of the results.

The obtained results suggest the larger time-window as
another enhancement for the original technique. In addition,
the results in Table III highlight again that the use of the
change detection algorithm is beneficial in terms of false
positives reduction.

VI. CONCLUSION

In this paper we analyzed the effectiveness of an anomaly
detection approach based on log-metrics correlation from the
literature [6] for an air traffic control system. Our initial
evaluation revealed several weaknesses of using the approach
in our setting, specifically the inability to detect asymptomatic
anomalies like passive hangs, imprecision in predicting the

TABLE III: Anomaly detection results (3-seconds Time Win-
dow; with (w/) or without (no) Change Detection (CD))

Active Hang Passive Hang Crash

Total Records 513 519 387

no CD w/ CD no CD w/ CD no CD w/ CD

True Negatives 446 451 449 459 375 382
False Negatives 0 0 61 60 0 0
True Positives 62 62 0 0 4 4
False Positives 5 0 9 0 8 1

Precision 0.925 1.000 0.000 0.000 0.333 0.800
Recall 1.000 1.000 0.000 0.000 1.000 1.000
Accuracy 0.990 1.000 0.865 0.884 0.979 0.997

magnitude of spikes, and overly localized view of 1sec time
windows. We addressed these with suggested improvements,
specifically change detection and 3sec time windows.The final
evaluation detects anomalies with high accuracy and low
delay. In the future, we plan to experiment with more types
of anomalies to have better assessment of applicability of
the approach. Many additional details can be found in our
technical report [8].

ACKNOWLEDGMENT

This research has been partially supported by the MINI-
MINDS PON Project (n. B21C12000710005) funded by the
Italian Ministry of Education, University and Research, and
by Programme STAR, financially supported by UniNA and
Compagnia di San Paolo under Project “Towards Cognitive
Security Information and Event Management” (COSIEM).

REFERENCES

[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Computing Surveys (CSUR), vol. 41, no. 3, pp. 15:1–15:54, 2009.

[2] L. Cherkasova, K. Ozonat, N. Mi, J. Symons, and E. Smirni, “Anomaly?
Application change? Or workload change? Towards automated detection
of application performance anomaly and change,” in Proc. Intl. Conf.
on Dependable Systems and Networks (DSN), Jun. 2008, pp. 452–461.

[3] T. Wang, J. Wei, W. Zhang, H. Zhong, and T. Huang, “Workload-
aware anomaly detection for web applications,” Journal of Systems and
Software, vol. 89, pp. 19–32, Mar. 2014.

[4] O. Ibidunmoye, F. Hernandez-Rodriguez, and E. Elmroth, “Performance
anomaly detection and bottleneck identification,” ACM Computing Sur-
veys (CSUR), vol. 48, no. 4, pp. 1–35, 2015.

[5] N. Gurumdimma, A. Jhumka, M. Liakata, E. Chuah, and J. Browne,
“CRUDE: combining resource usage data and error logs for accurate
error detection in large-scale distributed systems,” in Proc. IEEE Sym-
posium on Reliable Distributed Systems (SRDS), Sep. 2016, pp. 51–60.

[6] M. Farshchi, J.-G. Schneider, I. Weber, and J. Grundy, “Metric selection
and anomaly detection for cloud operations using log and metric
correlation analysis,” Journal of Systems and Software, 2017.

[7] ——, “Experience report: Anomaly detection of cloud application
operations using log and cloud metric correlation analysis,” in Proc.
IEEE Intl. Symp. on Software Reliability Engineering (ISSRE), Nov.
2015, pp. 24–34.

[8] M. Farshchi, I. Weber, R. Della Corte, A. Pecchia, M. Cinque,
Jean-Guy, and J. Grundy, “Technical report: Anomaly detection
for a critical industrial system using context, logs and metrics,”
Universit di Napoli Federico II, Tech. Rep., 2018. [Online]. Available:
http://www.fedoa.unina.it/id/eprint/11969

[9] M. Cinque, D. Cotroneo, R. Della Corte, and A. Pecchia, “Characterizing
direct monitoring techniques in software systems,” IEEE Transactions
on Reliability, vol. 65, no. 4, pp. 1665–1681, Dec. 2016.

[10] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Trans. on
Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, Jan. 2004.

4

http://www.fedoa.unina.it/id/eprint/11969

	Introduction
	Case Study System
	Overview of Analysis Method
	Anomaly Detection with Initial Approach
	Data collection and evaluation metrics
	Results

	Improvements
	Change Detection
	Adaption of Time Windows

	Conclusion
	References

