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Abstract

With the popularising of generative Al the existence of Al-based
programming assistants for developers is no surprise. Developers
increasingly use them for their work, including generating code to
fulfil the data protection requirements (privacy) of the apps they
build. We wanted to know if the reality is the same as expectations
of Al-based programming assistants when trying to fulfil software
privacy requirements, and the challenges developers face when
using Al-based programming assistants and how these can be im-
proved. To this end, we conducted a survey with 51 professional
developers worldwide. We found that Al-based programming assis-
tants need to be improved in order for developers to better trust
them with generating code that ensures privacy. In this paper, we
provide some recommendations including model and system-level
improvements and some key further research directions to improve
Al-based programming assistants for developing secure code.
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« Software and its engineering — Software notations and
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1 Introduction

Given the capacity of generating human-like text using the large
corpus of data the large language models (LLMs) were trained on,
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the popularity of using LLMs in applications of different domains is
rising exponentially. Codex — OpenAI's LLM model used to generate
code in GitHub’s Copilot - claims that it is “proficient in more than
a dozen programming languages, Codex can now interpret simple
commands in natural language and execute them on the user’s
behalf—making it possible to build a natural language interface to
existing applications”!. Similar to Copilot, other LLM-driven code
generators (Al-based programming assistants) such as Amazon
Q Developer (Amazon Code Whisperer), Tabnine, Kite etc., are
widely available for the developer community to use. These Al-
based programming assistants claim that they enhance productivity,
which is key in software development? and some research has
found the same results [12, 21]. However, Al-based programming
assistants struggle with complex tasks [29], the accuracy of the
code of these Al-based programming assistants depends on the
programming language and the task [15, 17, 31], with longer details
resulting in poor results [4], and developers may spend more time
reviewing the code that Al-based programming assistants produced
[3]. The developers also face challenges with understanding, editing,
and debugging the code generated by the tools [14, 30], resulting
in inefficiency [16].

GDPR defines data protection (“privacy" as used in this paper),
as “keeping data safe from unauthorised access” [9]. Privacy engi-
neering encourages embedding privacy into systems. For example,
designing clear privacy controls (on the user-facing side), determin-
ing the best methods for anonymisation, and inspecting code before
deployment to assess privacy risks. Proactive measures of privacy
engineering include data minimisation and retention [25]. For a
business to leverage the data it has while ensuring the privacy of
its users’ personal data, privacy-enhancing technologies (PETs) can
be used. PETs are important due to the necessity of following data
protection laws such as GDPR and CCPA, requirements of testing
data by third parties, and protecting the business from tarnishing
its reputation from privacy breaches. However, developers struggle
with embedding privacy into software systems [1, 7, 18]. They find
it difficult to relate privacy requirements to privacy techniques, they
see privacy in contradiction with system requirements, developers
personal and peers’ opinions affect how they design, and they lack
privacy knowledge [24]. When developers are asked to consider
privacy in application designs, developers intuitively focus on tech-
nical aspects, but not user privacy expectations. Developers are
also observed to have a reduced level of privacy expectations com-
pared to users [26]. This leads to several critical issues. For example,

!https://openai.com/index/openai-codex/
Zhttps://aws.amazon.com/q/developer/, https://github.com/features/copilot
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permission-related issues frequently happen in Android apps [23].
Having tools such as Al-based programming assistants comes in
handy for developers in all the above-mentioned cases. Therefore,
the developers may want to use Al-based programming assistants
to generate code to meet their software’s privacy requirements.

Nevertheless, the widespread uptake of Al-based programming
assistants to implement systems — including data privacy-related
code - raises the potential of their use for more secure code con-
struction but, on the other hand, also introduces unexpected and
unintended code vulnerabilities [10]. To better understand the
practical experience of using Al-based programming assistants
for privacy-related code generation, we carried out a survey> of
51 software developers worldwide. We asked the developers about
their experience with Al-based programming assistants for privacy-
related code generation. Our research yielded knowledge and in-
sights on Al-based programming assistants, including the difference
between the expectation and reality of Al-based programming vis-
a-vis meeting privacy-related requirements in Al-generated code
and the critical need for improvements in the Al-based program-
ming assistants for developers to trust them with generating code
for ensuring privacy.

2 Research Questions
We wanted to answer the following research questions in this work:

RQ1 Is the reality the same as the expectation of Al-based
programming assistants when it comes to ensuring
privacy requirements are met in the code? Privacy is a
crucial non-functional requirement in software development.
We deep-dived into this aspect on the subject of the code
generated by Al-based programming assistants. As the first
step, we evaluated if the reality is similar or different to
developers’ expectations (Section 4.2).

RQ2 What are the challenges with generating Al-based
programming assistants to ensure meeting privacy re-
quirements? We wanted to explore the challenges concern-
ing privacy-ensuring code as identifying the challenges is
essential for improving the Al-based programming assistants
(Section 4.3).

RQ3 How can Al-based programming assistants be improved?
Developers are the users of Al-based programming assis-
tants. It is critical to get their feedback on improvements to
these programming assistants based on their experiences.
We used this question to investigate potential improvements
in Al-based programming assistants (Section 4.4).

3 Our Approach — The Developer Survey

Survey Questionnaire Development. To answer the research
questions, we conducted a developer survey. We designed our sur-
vey with both open-ended and closed-ended questions with a map-
ping against our research questions. For example, to answer RQ1,
we used both open-ended and closed-ended questions. For the com-
plete survey questionnaire (this includes questions beyond the
scope of this paper), please check our online replication package*
The questions used to collect data on company size, developers’

3approved by the institute. Anonymised for review
4anonymised for review
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roles, and employment status reported in this paper were adapted
from the Stack Overflow developer survey®. After we developed
the questionnaire, we piloted it with the help of two postdoctoral
researchers who worked in the software industry in the past at the
[anonymised for review]They gave feedback on completion time,
and the flow of the questions. Upon their feedback, we moved the
demographic questions to the end of the questionnaire, which were
at the beginning earlier.

Data Collection and Analysis. After finalising the question-
naire, we hosted the survey on Qualtrics and recruited developers
who work in the IT industry via the recruitment platform Prolific.
We spent 6 Sterling Pounds on each participant. The participant
spent around 15-20 minutes to fill out the questionnaire. We re-
cruited 51 participants and we were able to generate rich insights
from the data we collected. The details of the participants are given
in the next section. To analyse the data we collected through open-
ended (qualitative) and closed-ended (quantitative) questions, we
used open coding and constant comparison [27] - interpreting the
data using small chunks of words (codes) and categorising them by
comparison, and with descriptive statistics.

4 Findings
4.1 Survey Participants

4.1.1 Demographics of the Participants. The majority of the de-
velopers who participated in our study were men (76.47%; n=39)
and the participants resided around the world. Most participants
were from companies with 101-500 employees (17.65%; n=9). The
majority were from the IT industry (78.43%; n=40). Most of our
participants were full-time employees (88.84%; n=45) and the ma-
jority worked hybrid — some remote and some in-person (52.94%;
n=27). The participants had a median of 9 years of experience in
the software industry, 7 years of professional coding experience,
and 6 years of agile experience.

4.1.2  Who Used Al-based Programming Assistants the Most and
Who Used Them the Least. While our participants played multiple
roles in their jobs, the majority were full-stack developers (37.25%;
n=19). The majority of the developers used Al-based programming
assistants 1-2 times a day (54.90%; n=28). From that, most were full-
stack developers (21.57%; n=11). Out of the participants who never
used Al-based programming assistants (19.61%; n=10) were the back-
end developers (7.84%; n=4). ChatGPT was the most commonly used
(61.54%; n=32) Al-based programming assistant by our developers.

4.2 ROQ1 - Expectation vs Reality of Al-based
Programming Assistants for Privacy-related
Code Generation

When first using an Al-based programming assistant (tool), the ma-
jority of the developers (64.71%; n=33) expected that the tool will
generate code ensuring that key data privacy requirements are met
(Fig. 1). However, as they moved forward with using the tool, reality
became somewhat different from what they had expected. The ma-
jority (39.22%; n=20) found that Al-based programming assistants
sometimes generate code ensuring privacy requirements without

Shttps://survey.stackoverflow.co/2022
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requesting it to meet the requirement (Fig. 2). However, they had
to always (52.94%; n=27) put extra effort into double-checking the
generated code to see if privacy requirements were met (Fig. 3).
Therefore, unsurprisingly, a large number of the developers (43.14%;
n=22) never used Al-based programming assistants to generate code
for privacy requirements (Fig. 5), and many of them (41.18%, n=21)
wrote code manually most of the time to meet privacy requirements
(Fig. 4), even though they used Al-based programming assistants
during software development.

4.3 RQ2 - Key Challenges in Generating Code
Ensuring Privacy using Al-based
Programming Assistants

We dug deeper into insights that our surveyed developers shared
Key issues reported included not generating privacy-preserving
code, poor output quality, distrust and use of alternative approaches
to ensure data privacy, and extra effort needed.

At the first instance of using the code-generating Al tool,
| expected it to ensure privacy requirements are met in
the code it generated.

Yes 33 I o7 1%
No 18 35.29%

0% 20% 40% 60% 80%
% of Participants

Figure 1: Developers expected that the Al-based programming
assistant will ensure meeting the privacy requirements.

According to my experience, even without asking
the code-generating Al tool, the code it generates
ensures privacy requirements.

Always 5 9.80%
Most of the time 10 [ 1961%
About half the time 8 15.69%
Sometimes 20 I 39-22%
Never 8 15.69%

0% 20% 40%
% of Participants

Figure 2: Developers found that Al-based programming assis-
tants sometimes generate code meeting privacy requirements.

| put extra effort into double-checking the code generated
by the Al tool to ensure the privacy requirements are met.

Always 27 I 555

Most of the time 9 17.65%
About half the time 6 11.76%
Sometimes 3 588%
Never 6 11.76%

0% 20% 40% 60%
% of Participants

Figure 3: Developers always put extra effort to double-check
the code generated by the AI tool to ensure the privacy re-
quirements were met.

4.3.1 Unfulfilled task - not generating privacy-preserving code (19.61%;
n=10). Our developers mentioned that current Al-based program-
ming assistants lack deep comprehension of and code generation
meeting diverse privacy regulations. They said that Al-based pro-
gramming assistants may not be able to keep up with changing
privacy policies, they may not fully understand privacy rules or
specific needs. Hence, the Al-based programming assistants may
struggle to implement customised privacy controls: “When I use
Al-code generators to ensure privacy in the software I create, I face
some challenges. One challenge is that these tools may not fully un-
derstand privacy rules or the specific needs of the software. Privacy
requirements can be complex, and the tools may struggle to implement
customized privacy controls” — P39 (Developer, full-stack, 6 years exp.)

4.3.2  Poor output quality (9.80%; n=5). Many developers experi-
enced generation of buggy code, code which had discrepancies,
and ended up with code that did not work properly. They also said
that they found that the coding style is different from humans: T
have encountered some challenges thus far - incorporating nuances of
different privacy regulations across jurisdictions (different states and
territories across Australia) can lead to discrepancies in the generated
code” — P28 (Developer, back-end, desktop or enterprise applications,
20 years exp.)

4.3.3  Lack of trustworthiness - Distrust and use of alternatives to
ensure privacy (64.71%; n=33). Most of our surveyed developers said
they do not trust Al-based programming assistants with sensitive
data, and it is crucial to use them for this task very cautiously.
They said that Al is not self-sufficient for privacy requirements,
therefore, human intervention is necessary. Therefore, apart from
writing manual code they also use other means such as generating

Even though | use code-generating Al tools, | write code
manually to ensure privacy requirements are met.

Always 16 I 3137%
Most of the time 21 I - - 18%
About half the time 7 13.73%
Sometimes 3 5.88%
Never 4 7.84%

0% 20% 40%
% of Participants

Figure 4: Most of the time, the majority of the developers
wrote code manually to ensure privacy requirements were
met.

| use code-generating Al tools specifically to generate code
to meet the privacy requirements of the software | develop.

Always 2 392%
Most of the time 6 11.76%
About half the time 6 11.76%
Sometimes 15 I 294 1%
Never 22 I 3 14%

0%  20% 40%  60%
% of Participants

Figure 5: Majority of the developers never used Al-based
programming assistants to generate code to meet privacy
requirements.
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code using example data and then amending it or relying on more
reliable sources or colleagues: “At the moment I still don’t blindly
trust using these systems to write sensitive parts of the software, I
prefer to rely on more reliable sources or the experience of colleagues
who know better than me how to manage confidential information in
the software we produce” — P19 (Developer, front-end, 4 years exp.)

4.3.4  Extra effort required (35.29%; n=18). Many developers said
they had to double-check privacy-related code more carefully than
other generated code and that the amount of time they had to spend
on quality assurance tasks was increased. “Needing to double check
to make sure privacy needs are meet. In doing so, sometimes it
takes up valuable time which can be used for other productivity” -
P39 (Developer, full-stack, 6 years exp.)

However, many of these developers did believe that it was their
responsibility to ensure that privacy requirements are met. There-
fore, it is necessary to thoroughly review the code and perform
necessities such as impact assessments: “..developers still bear the
responsibility for ensuring privacy requirements are met. It is essential
to review and test the generated code thoroughly, conduct privacy
impact assessments, and have appropriate mechanisms in place to
address any privacy concerns or issues that may arise” — P1 (Developer,
full-stack, 3 years exp.)

Summary: Current Al tools are only partially useful for generat-
ing code ensuring data privacy. The task characteristics and the
technology characteristics misalign, hence in actual use many de-
velopers tend not to trust Al-based programming assistants for
ensuring data privacy. The ones who do use it put extra effort into
double-checking the code, which impacts their performance. Oth-
ers use alternative methods to avoid using Al-based programming
assistants.

4.4 RQ3 - Suggestions for Improvements to
Al-based Programming Assistants for
Privacy-related Code Generation

Our developers shared what they thought could be improved in
current Al-based programming assistants to produce more useful
and secure privacy-preserving code. The suggestions included un-
derstanding of diverse data privacy laws, self testing, explainable
output, improving transparency, following standards, compliance,
ease of use, recommendations for data protection, and improving
interpretability.

4.4.1 Understand Diverse Data Privacy Laws (24.75%; n=14). The
most common suggestion from our developers is to train the Al to
better ensure data protection in generated code. They mentioned
that regular and more complete training and testing are necessary.
They said that this training needs to be done using reliable and
verified code: “Perhaps these tools should be trained on reliable and
verified code to make them generate code of a high enough quality
to be used in corporate contexts when it comes to meeting privacy
standards” — P17 (Developer, full-stack, 3 years exp.). Further, they
mentioned that Al needs to have bigger contextual thinking and
robust algorithms that understand data privacy laws in different
countries and regions which are significantly different [2].
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4.4.2  Self Testing (7.84%; n=4). Even experienced developers make
mistakes with privacy-related code [19]. Our developers suggested
Al-based programming assistants should be more responsible and
“self-test” the code provided. This would include checking that all
privacy requirements are met by it before providing developers
with the final code. This is important to generate better code which
again will increase the safety of the code and usage of the tools:
‘I think the generated code should undergo a test after generating to
ensure the privacy requirements are met” — P39 (Developer, full-stack,
6 years exp.)

4.4.3 Explainable Output (3.92%; n=2). Current Al-based program-
ming assistants fail to clearly explain rationale behind code pro-
duced. They should generate code with attention mechanisms and
comments that explain to privacy-related code produced, including
the list of the resources it has used: “Techniques such as attention
mechanisms or explainable AI methods can help developers identify
potential privacy risks or vulnerabilities in the generated code” — P45
(Developer, back-end, front-end, mobile, 12 years exp.)

4.4.4 Improve Transparency (11.76%; n=6). Our developers said that
the transparency of the owning company’s privacy policies and
practices including data usage need to be improved. This is highly
beneficial for Al code gen SaaS companies as building trust with the
users will help in increasing the usage: “We need better guarantee
about the security of the tool itself, and the use of data by the company
that owns it” — P25 (Developer, back-end, 10 years exp.)

4.4.5 Follow Standards (7.84%; n=4). From a governance point of
view, some developers said that it is necessary to define a set of
privacy requirements for the Al to follow. They said that following
a set of lawful guidelines is necessary [8]: “The world needs to
decide on what privacy requirements we are supposed to follow for
current Al to work for it” — P12 (Developer, back-end, 3 years exp.)

4.4.6 Compliance (1.96%; n=1). One important suggestion was that
Al-based programming assistants should show that they meet var-
ious compliance requirements [13]. The companies should audit
their Al tools by an external party to certify them. Such certifica-
tions will bring better trustworthiness to the tools and hence to the
code they generate and the software solutions they help to produce:
“Unfortunately there is no way from Al tool user to ensure at 100%
that privacy requirements are met by Al tool, so users needs to trust
the company that releases the Al tool. One way for having a certain
level of "privacy requirement ensuring" is to audit the Al tool by an
external company, who certifies that privacy requirements are met” —
Pé6 (Developer, full-stack, 10 years exp.)

4.4.7 Ease of Use (13.74%; n=7). Al code gen tools should provide
more user control over the level of compliance with specific privacy
regulations, kind of code generated, use of APIs in the code, etc
[11]. The developers said that Al-based programming assistants
should generate code that is abstract, extensible, and also sample
code: “Generate not that specific code, and then the programmer can
extend it” — P44 (Developer, front-end, 6 years exp.)

4.4.8 Recommendations for Data Protection (17.65%; n=9). Al-based
programming assistants need to be able to detect that user-sensitive
data are being processed within the target code and be able to han-
dle them properly [10]. Our developers said that the Al code gens
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should notify and warn the user (i.e., the developer) about possible
risks and provide recommendations to the users about ensuring data
protection. They further said that Al-based programming assistants
should introduce privacy verification checks. But, one developer
said that human errors are the main problem source, so the devel-
opers need to be well aware of data privacy requirements: “Well,
it could detect that user sensitive data are being processed with the
code and ensure that they are handled properly (e.g. inserting into the
database). It could also notify the programmer and give him/her rec-
ommendations about how to use the generated code to ensure sensitive
data safety” — P34 (Developer, mobile, 10 years exp.)

4.4.9 Improve Interpretability (3.92%; n=2). As an Ul improvement,
a few developers suggested improving interpretability including
visual aspects such as highlighting areas where privacy require-
ments are violated in generated code: “The tools (<AI code gens>)
can highlight areas that it thinks can violate privacy requirements.
Otherwise, it should be the duty of the programmer to ensure privacy
requirements are met” — P41 (Developer, full-stack, 30 years exp.)

5 Discussion

Our surveyed developers said that Al-based programming assis-
tants are still not mature enough to be used extensively for privacy-
preserving code. Al-based programming assistants do not generate
code compliant with all privacy requirements and laws. Therefore,
relying completely on Al-based programming assistants to gener-
ate privacy-related code is not a wise decision. Our developers had
concerns about using Al-based programming assistants because of
the distrust they have regarding both their training data and their
provided code context data. Developers want more information
about generated code explanation, source, and compliance to differ-
ent privacy-related requirements. They recommend not to use real
data when generating code for the app in production, but rather
use examples to generate code. Key priorities for improvement in-
clude improving model training and introducing robust algorithms
that understand data privacy laws, self-testing the generated code,
generating explainable outputs, improving transparency, follow-
ing standards, having compliance, improving ease of use, recom-
mendations for privacy-preserving requirements, and improving
interpretability.

5.1 Implications for Practice

Model and system-level improvements. Better model train-
ing and introducing robust algorithms that understand multiple
data privacy laws, code that follows standards, generating more
explainable output, and running self-tests before providing code
to developers. Calibrating the Al-based programming assistants
against industry-standard trustworthy AI checks will help mitigate
unnecessary threats and disadvantages for Al-based programming
assistants to survive in the market.

Human-Al interaction improvements. Ease of use in prompt-
ing and including generated code, interpretability, highlighting sen-
sitive data, highlighting non-compliant code, and notifying/providing
recommendations for privacy approaches can enhance human-Al
interaction.

Organisational improvements. Organisations owning Al-
based programming assistants need to provide better compliance

and improve transparency about their models and how data is gath-
ered, processed and models trained. This is extremely important to
gain trust from users, both code developers and code end users.

5.2 Limitations and Implications for Research

Al-based programming assistants might have changed in various
ways, hence the experience with them could be different from what
our participants experienced, and what we experienced. Therefore,
as a next step, researchers may continue conducting research on
these tools/ replicating our study to see the progress of the Al-based
programming assistants (if they have made any). How the Al-based
programming assistants behave may differ from case to case. In
this paper, we have focused on generating code for privacy. How-
ever, the results may be different in other cases, for example when
generating code for other functional/non-functional requirements.
In the future, researchers may consider conducting research to see
how Al-based programming assistants behave across various use
cases. The number of participants who participated in our study
was limited, and we did not have the chance to ask follow-up ques-
tions. To gain a more in-depth understanding of the developers’
experience with Al-based programming assistants, further research
can be conducted using other data collection methods such as inter-
views. Conducting experiments with professional developers will
help in further understanding their expectations and their interac-
tions with Al-based programming assistants. In future, experiments
with professional developers can be conducted to better understand
human (developer)-Al interaction.

5.3 Related Work

Even though the experiment the authors of [29] ran were not re-
lated to privacy, they used medium and hard problems on Leetcode.
The authors found that ChatGPT struggles to generate code for new
and unseen problems. [6] states that Stack Overflow slightly outper-
forms ChatGPT when answering privacy questions, but ChatGPT
generated code can be used as alternatives. [20] found cases where
insecure code was generated by GitHub Copilot. According to [28],
when GitHub Copilot generated large chunks of code, the partici-
pants in their study stated that the code was cumbersome and it
required significant effort to understand the meaning of generated
code. As per [3], the first-time users of GitHub Copilot spend more
time reviewing the code generated by the Al code generator than
writing code.The authors also mention in their work that he early
users of GitHub Copilot reported that there was a risk of revealing
secrets such as API keys and passwords or suggest inappropriate
test. Further, the authors state that this was fixed at the technical
preview of GitHub Copilot. However, according to our findings, the
distrust of Al-based programming assistants and use of alternatives
to ensure privacy still exist. [22] mentions that developers’ program-
ming shifts from writing code to checking and doing unfamiliar
debugging. [5] recommends that it is necessary to assure users
about privacy and confidentiality. According to what we found,
improving transparency will help in that case. [20] touch upon
the fact that GitHub Copilot is a black-box and a closed resource
residing on a remote server which is unaccessible by general users.
[5] raises that getting user content is key as per GDPR privacy
principles. The authors recommend the users of Al code generating
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tools need to get the informed consent from paricipants. This is
also related to being transparent (the previous point) as in order to
get user consent, the tool needs to be transparent about its actions.
As per [29], long prompts tend to have a negative impact on code
generated by ChatGPT and Codex. Therefore, the participants need
to master prompt engineering. [4] found that longer details result
in poor outputs. By going through experience reports of developers,
the authors of [22] found that the developers find it hard to write
prompts. [5] recommends that Al code generating tools have to
warn users in cases like sharing information to the public. [28]
states the participants found that the code generated in general is
similar to style and quality of a human but for a couple of the exper-
iments the participants participated found that the code generated
were not similar to the human style. As mentioned previously, they
also found the generation of large chunks of code cumbersome.
To the best of our knowledge, we could not find any particular
study specifically focusing on Al-based code generation for privacy
that revealed insights on the need of understanding diverse data
privacy laws, self testing, explainable output, compliance which
are imperative findings of our study.

6 Conclusion

Al-based programming assistants have rapidly become very popular.
We conducted a survey of 51 professional developers that identified
a range of using, perceived usefulness, and concerns about these
tools. Our study revealed common usage challenges and improve-
ments for Al-based programming assistants available in the market.
Al-based programming assistants do need to be improved more for
developers to trust them with generating code for ensuring data
protection (privacy). We developed several recommendations for
developers and Al-based programming assistants producing com-
panies to improve them for privacy-preserving code generation
tasks.
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