
Reporting Usability Defects – Do Reporters Report What
Software Developers Need?

Nor Shahida Mohamad Yusop
School of Software and Electrical Engineering

Swinburne University of Technology
Melbourne, Australia

nmohamadyusop@swin.edu.au

John Grundy, Rajesh Vasa
Faculty of Science, Engineering and Built Environment

Deakin University
Melbourne, Australia

{j.grundy, rajesh.vasa}@deakin.edu.au

ABSTRACT
Reporting usability defects can be a challenging task, especially in
convincing the software developers that the reported defect
actually requires attention. Stronger evidence in the form of
specific details is often needed. However, research to date in
software defect reporting has not investigated the value of
capturing different information based on defect type. We surveyed
practitioners in both open source communities and industrial
software organizations about their usability defect reporting
practices to better understand information needs to address
usability defect reporting issues. Our analysis of 147 responses
show that reporters often provide observed result, expected result
and steps to reproduce when describing usability defects, similar
to the way other types of defects are reported. However, reporters
rarely provide usability-related information. In fact, reporters
ranked cause of the problem is the most difficult information to
provide followed by usability principle, video recoding, UI event
trace and title. Conversely, software developers consider cause of
the problem as the most helpful information for them to fix
usability defects. Our statistical analysis reveals a substantial gap
between what reporters provide and what software developers
need when fixing usability defects. We propose some remedies to
resolve this gap.

CCS Concepts
• Software and its engineering à Software creation and
management à Software post-development issues à
Maintaining software

Keywords
Defect repository; software quality; usability defect reporting.

1. INTRODUCTION
Software usability is one of the prominent software quality
characteristics that determines acceptance of a software product in
today’s competitive market. Usability defects are an unintended
behavior by the product that is noticed by the user and has an
affect on user experience. According to Nielsen [1], good
software should be easy to learn, efficient to use, allow rapid
recovery from errors and be easy to remember. Typically,

software companies manage and track defects using a central
defect-tracking system where all defects are treated similarly in
terms of information capture. Wilson and Coyne [2] argue that we
should consider a different system for usability defects – but, do
not offer specific guidance. They show that usability defects tend
to get less priority compared with functional defects [2]. The most
common reason for not properly addressing usability defects is
either the software developers do not understand the reported
problems or they do not consider the problem identified as valid.
This is illustrated by this comment from an Ubuntu user:

‘…Ubuntu developers either don’t understand my
usability reports or tag them as low priority bugs, which
gets triaged for many released. Once I have submitted a
bug report on usability issue that caused information
loss, which is serious. In certain PDF files, I can’t
search for accented characters. This affects not only,
say, evince search, it also affects tracker searches, for
example. The main (non duplicate) bug for this was
reported 2 years ago by lherrmann and, right now, it's
tagged as confirmed/unknown, triaged/low.”

Reporting usability defects can be a challenging task, especially in
convincing software developers that the usability defect reported
is indeed a real defect. Specifically, the subjective nature of
usability defects may cause confusion or problems for some
people [3]. Let us consider a small clickable area of website
hyperlinks in a touch screen device. For those who have small
fingers, it is not a problem to click the hyperlinks, but for those
with large fingers, clicking them might be. In this case, additional
information is often needed to describe this finger touch problem.

However, research to date in software defect reporting has not
investigated capturing of different information based on defect
type, specifically usability defects. For example, [4]–[6] have
surveyed software developers and users to identify useful
information for software developer to fix defects. They identified
information such as steps to reproduce, observed results and
expected results are important on defect fixing. Nevertheless, they
do not consider what information should be reported, and how the
information should be presented when it come to other type of
defect reports. Other work focuses on software repository mining
to understand the structure and content of defect reports [3], [7]–
[9], quality of defect reports [10], and use of defect data to
develop prediction models [11]–[13] – however these too do not
go into any specific issues related to usability defects.

Our research fills in this gap by focusing on usability defects, in
particular among non-usability practitioners. We surveyed
software development practitioners to investigate “What

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EASE 2016, June 1-3 2016, Limerick, Ireland.
Copyright 2016 ACM 1-58113-000-0/00/0010 …$15.00.
DOI: http://dx.doi.org/10.1145/12345.67890

information do reporters use to describe usability defects? and
“What information do developers consider useful for fixing
usability defects?”. Such investigation set out to provide
comprehensive view on the day-to-day practices when dealing
with usability defects and pinpointing challenges. Through this
study, researchers can find characteristics, open issues, and
understand the nature of describing usability defects, which can be
valuable for improving defect reporting processes and tools.
Software development practitioners, in turn will also find
technical references for reporting specific types of defects. Our
study builds upon previous work that investigated defects in
general [5], [6], and we add questions on many of the possible
factors influencing content of usability defect reports. Both open
source and industrial participants participated voluntarily in the
survey.

In the next section our research methodology is described, and
then we report our survey results in detail. We discuss the key
findings from this survey, implications for usability defect
reporting, and key threats to validity. We conclude with a
summary of key findings and future directions for research.

2. RELATED WORK
Table 1 presents five studies that were characterized according to
defect type, research method, population/ dataset, sample data,
defect attributes studied and findings. As shown in Table 1, we
found three studies that surveying software developers and
reporters in order to investigate the most helpful information
when reporting and fixing software defects. Zimmerman et al. [5]
found the most helpful information for fixing software defects in
open source projects are steps to reproduce, stack traces, test
cases, screenshots, observed behavior and expected behavior.

Laukkanen et al [6] replicated Zimmerman et al. survey in six
industrial software organizations. They confirmed that steps to
reproduce and observed behavior are the most important aspects
of defect reports. However, they discovered that many defect
reports lack this technical information. In contrast to [5] [6],
Følstad [14] investigated usability defects from the perspective of
usability practitioners. Their survey focused on how solution
proposals are presented. The most prevalent materials used for
presenting solution proposals are textual descriptions, annotated
screenshots, UI digital mockups and oral presentations. Our
survey, on the other hand, focuses on non-usability practitioners
with varying knowledge on HCI (software tester, developers,
project managers, consultant and etc), and we investigated all
attributes of software defect instead of focusing on solution
proposal only. Therefore, their survey only covers a small
usability defect attributes that we are interested in

Other studies in defect reporting used defect reports mined from
open source defect repositories. Davies and Roper [7] examined
1600 defect reports from Eclipse, Firefox, Apache and Facebook
API to understand what information users provide in defect
reports. They found that the most included information in defect
reports is observed behavior followed by expected behavior and
steps to reproduce. Similarly, Android-based apps defect reports
often contains steps to reproduce and explanation of the difference
between expected and the observed behavior [15]. In fact,
Bhattacharya et al. reported a good quality of defect report is one
that has long textual description of the problem. In the context of
existing related work, our study replicated and extended the
survey conducted by [5][6][14]. Our study makes new
contributions in the following aspects:

Table 1. Related work on software defect reporting and our work

Criteria Zimmermann et
al. [5]

Laukkanen et al.
[6]

Følstad et al.
[14]

Davies & Roper
[7]

Bhattacharya et
al. [15]

Our Work

Defect type General General Usability General General & Security Usability
Research
Method

Survey Survey Survey Repositories
mining

Repositories
mining

Survey

Survey
population/
Dataset

Software
developers and
reporters from
Apache, Eclipse
and Mozilla

Software developers
from industrial

Usability
practitioners

Eclipse, Firefox,
Apache HTTP,
Facebook API

Open source
Android-based
apps

Software
developers and
reporters from
both open source
and industrial

Respondents/
sample size

466 74 155 1600 53 940 147

Defect
attributes
studied

Product,
component, version,
severity, hardware,
operating system,
summary, build
information,
observed result,
expected result,
STR, stack traces,
screenshots, code
examples, error
reports, test cases

Title, component,
configuration, error
reports, hardware,
expected result
observed result,
operating data, part of
the application,
product, contact
information,
screenshots, severity,
software context, stack
traces, STR, test cases,
test scripts, user input

Solution proposal Observed result,
expected result,
steps to reproduce,
error reports, stack
traces, screenshots,
code examples, test
cases, build
information,
application code

Description length,
steps to reproduce,
observed result,
expected result,
additional
information (such as
user input and
version)

Title, cause of the
problem, software
context, solution
proposal, observed
result, expected
result, STR,
severity, product,
component,
version, operating
system, hardware

* STR = Steps to reproduce

• Our survey population includes both open source and
industrial projects, while Zimmermann et al. [5] focused
on open source projects, Laukkanen et al. [6] used only
industrial software developers, and Følstad et al. [14]
surveyed usability practitioners.

• Zimmermann et al. [5] and Laukkanen et al. [6] studied
coarse-grained levels of defect attributes. That is, they
only identified which attributes were considered useful.
But in this study, we wanted to drill down into fine-
grained level of usability defects by asking specific

questions on what information is included and how the
information is presented for each selected attributes.

• We focus on usability defect reporting, while
Zimmermann et al. [5] and Laukkanen et al. [6] studied
software defect reporting in general.

• We added video, audio, cause of the problem, UI event
trace, proposed solution and usability principle to the list
of defect information. This additional information was
based on the literature [14][16][17]. We removed
attributes that do not directly map to usability defects.

3. STUDY DESIGN
3.1 Selection of Participants
We use a survey of practitioners to collect their current practices,
challenges and perspectives. Our participants were selected from
software development practitioners with varying experience levels
and roles (including developers, testers, and managers). The
respondents were recruited from both open source and industrial
communities. For open source respondents, we advertised the
survey through the community forum, such as Eclipse Community
forums. While industrial respondents were invited through
Facebook, LinkedIn, Software Testing Club1 and researchers’
industrial contacts. Participation was voluntary and participants
were allowed to discontinue participation at any time during the
research activity. The consent to participate in the survey was
implied by the return of the anonymous questionnaire. However, a
precise response rate cannot be determined, as the total number of
the participants who received the invitation is unknown.

3.2 Questionnaire Design
The survey had 50 questions, split into seven sections. Around
14% of the questions on investigating usability defect attributes
were derived from [5], [6]. While questions on the influential
factors of defect reporting practices, like knowledge, experience,
tools and methods were based on [18]. Other questions were
formulated based on literature review. The questionnaires
consisted of two versions: one for usability defects fixer
(developers) and one for reporters. The sections are:

1) Background information: We collected general
information about the respondents including gender, age
ranges, employment information, and role in dealing with
usability defects.

2) Training/ certification in Human-Computer Interaction:
We asked both reporters and developers if they attended
any Human-Computer Interaction and/ or usability
training and how useful the training/certification was.

3) Discovering usability defects: We asked the reporters
about their experience in software testing and method
they used to discover usability defects. The respondents
were also asked if they agreed (on a Likert scale) that the
amount of information available for reporting usability
defects varies according to how defects are discovered.

4) Reporting usability defects: We asked what information
reporters usually provide, evidence they used to support
their claim, and how usability defects are presented. This
section also asked reporters to rank top five most difficult
attributes to provide.

1 http://www.softwaretestingclub.com/forum

5) Fixing usability defects: We asked what information do
software developers usually use when fixing usability
defects and ranked the top five most importance attibutes.
The software developers were also asked to indicate the
problematic attributes that they have experienced and
their opinions on the quality of defect report produced by
different types of reporters.

6) Defect reporting and automation tool: We asked both
reporters and software developers on their experience of
using defect reporting/automation tools. Questions
focused on tools used and their effectiveness to capture
and manage usability defects. Other questions aimed to
get opinions on the influence of experience, and
knowledge in designing new defect reporting form.

7) Knowledge and experience in usability defect reporting:
We asked both reporters and software developers about
their view of experience and knowledge in usability
defect reporting. The questions asked about the influence
of level of experience, and whether different type of
knowledge (usability/ software engineering, domain and
technical) can affect the level of detail of defect reports.
For space reasons, the results of this section will be
published in future works.

We used an online survey using the Opinio survey tool. The
survey was piloted with Swinburne Software Innovation Lab
(SSIL) software engineers and fifteen software developers
recruited during a developer conference (DDD Melbourne 2014).
Based on the verbal comments and the pattern of responses
received, the survey instruments were refined.

The survey is at http://bit.ly/UsabilityDefectsReportingSurvey.
This survey study was approved on behalf of Swinburne’s Human
research Ethics Committee (SUHREC) by a delegated SUHREC
subcommittee (SHESC2) (Approval number: SHR Project
2014/231).

3.3 Data Analysis
In this study, both quantitative and qualitative data were collected.
For quantitative data, we used descriptive statistics. While
qualitative data was analyzed using exploratory analysis [19]. We
began by reading the respondents’ comments, looking for key
words, trends and themes. Next, the results of the analyses were
used as supportive evidence for the quantitative results. Finally,
we generated hypotheses for further study. The responses to the
qualitative questions are discussed only briefly in this paper.

4. FINDINGS
The data was collected during June – November 2015. A total of
294 respondents attempted the survey. However, only 147
responses were included in this analysis. The remaining 50%
responses were excluded for no response beyond the first parts of
the questionnaire. One possible explanation of the high percentage
of invalid responses is due to the out of scope problems, where the
respondents are not in the target population. For example, the
software development practitioners who do not have experience in
dealing with usability defects would be not interested or they may
find the questions are not relevant and return blank questionnaires.

4.1 Respondents Background
The majority of the respondents were (65.3%) male, with 34.0%
female participants, and 0.7% of participants who did not indicate
their gender. About 85% of the respondents were between 25 - 44
years of age. As shown in Table 2, majority of the respondents are
software developers (40.9%) followed by software testers (14.8%)

and project managers (10.0%). In terms of year of experiences,
63.8% of respondents had one to five years of work experience in
their current position, while 25.3% had more than five years.

Table 3 shows respondents’ knowledge on human-computer
interaction (HCI). The vast majority of respondents do not receive
any training usability-related training. However, for those who
had acquired the related training, 84% believed the training was
useful for to understand and report usability defects (cf. Table 4).

Table 2. Distribution of respondents across professional
position and year of experience

Professional
Position

Less
than 1
year

Between
1 and 3
years

Between
3 and 5
years

More
than 5
years

Software
developer

4.1% 21.8% 7.5% 7.5%

Software
tester

2.0% 5.4% 3.3% 4.1%

Quality
assurance
engineer

0% 0% 2.0% 0.7%

Customer
consultant/
support

0% 0.7% 1.4% 0.7%

System
engineer

0% 0.7% 0% 0.7%

Test manager 0.7% 0% 0.7% 0.7%
Project
manager

0.7% 3.3% 3.3% 2.7%

Usability
engineer

0% 0% 0.7% 0.7%

User interface
designer

0.7% 0.7% 0.7% 0.7%

Other 2.7% 6.8% 4.8% 6.8%

Table 3. Distribution of respondents’ knowledge on HCI

Role in dealing with
usability defects

HCI related
training

Total

Yes No
Reporting usability defects 17 65 55.8%
Fixing usability defects 8 57 44.2%

Table 4. Responses on “usefulness” of usability-related
training for reporting usability defects

Very useful 44.0%
Somewhat useful 40.0%
Neither useful or not useful 4.0%
Not very useful 12.0%
Complete waste of time 0%

4.2 Dealing with Usability Defects
Most respondents had experience reporting usability defects
(55.8%), while 44.2% has experience fixing them. The majority of
them have more than 5 years of experience in software testing
(34.1%) (cf. Table 5). Table 6 summarizes the defect discovery
methods used by the respondents to discover usability defects.
Note that respondents were able to select more than one option.
More than 60% of respondents indicated that they found usability
defects when performing exploratory testing, functional testing
and while using the product. A smaller proportion of respondents

indicated that they discovered usability defects through alpha/beta
testing (26.8%). From the free-text explanation, some respondents
explicitly mentioned other methods including focus groups, GUI
testing, performance testing, heuristics evaluation and automated
testing.

Table 5. Years of experience in software testing

No experience 25.6%
Less than 1 year 6.1%
Between 1 and 3 years 22.0%
Between 3 and 5 years 12.2%
More than 5 years 34.1%

Table 6. Defect discovery methods

Exploratory testing 62.2%
Functional testing 63.4%
Usability testing 58.5%
Beta/ alpha testing 26.8%
Complaints/ reports from customers 53.7%
Using the product 62.2%
Other 7.3%

4.3 What do Reporters Usually Provide in
Defect Report?
Question 13 asked respondents to indicate a frequency of
supplying attributes listed in Table 7 when reporting usability
defects. Based on “Often” and “Always” rating, the reporters
mostly provide title/ summary (81.8%), observed result (79.5%)
and expected result (76.8%). steps to reproduce (74.4%), software
context (70.7%) and software information (70.7%). In order to
understand the content of each selected attributes, for those who
selected option other than “Never”, we further asked questions
about the elements and supportive materials that they used. For
these subsequent questions, multiple answers were allowed and
respondents could describe other details in a free text section
(Question 14 – Question 24). Table 9 summarizes the responses.

Title/ summary is a headline summarizing the problem. When
crafting a title, majority of the reporters explained the situation
that was happening at the time the problem occurred (70.7%).
Some of them (58.8%) prefer to copy and paste an error message.
Only less than half of the reporters provided product details (such
as build, version and operating system) (47.6%) and clarified on
the quality issues that were affected (43.9%). As expected, most
of the reporters who are able to provide quality issue are those
who have software testing experience of more than five years.

Cause of the problem describes what a user is doing when he/
she discovers the problem or criteria used to justify the problem.
Our findings indicated that cause of the problem is normally
justified based on the reporter’s knowledge (61.0%). About half
of reporters (51.2%) were able to explain a design fault, such as
how the interaction architecture may contribute to the problem.
Nearly quarter (26.8%) of the reporters pointed out violated
usability heuristics. Other information, as described in the free
text, specified the consequence to the user (3.7%). To support this
justification, the screenshot with accompanying text is the most
widely used material other than annotated screenshot and textual
description (Table 8). Other materials used by reporters included
UI event trace (36.6%) and videos with captions (17.1%).

Software context addresses the location of the problem in the
interface. As expected, majority of the reporters were mentioned

the name of the defective interface, such as screen title (76.8%)
and problematic user interface object (70.7%). Some respondents
(58.5%) describe user’s task to indicate the context of usage. In
terms of specifying the components affected, only 41.5% of
reporters were able to supply the information. This information
was often conveyed in annotated screenshots (82.9%) followed by
textual description (64.6%) – cf. Table 8.

Proposed solution describes a recommendation to remedy the
usability defects. 56.1% (cf. Table 8) of reporters addressed the
proposal solutions as a way to improve the desired software
behavior, rather than to correct a defective software behavior
(46.3%). Reporters mentioned that these recommendations were
originated from their knowledge (45.1%). To support these
recommendations, only a few reporters provided alternate
solutions (37.8%), advantages and disadvantages for alternative
solutions (28.0%), and usability design principles (26.8%).
Additionally, nearly half of respondents (48.8%) prefer to use
textual form to explain the recommendations. Some of them
supported these recommendations with the annotated screenshot
(39%), and simple sketches (28%). While, 25% of reporters prefer
to demonstrate their recommendations through oral presentations.

Observed results describes the actual results that differ from the
reporter’s expectation or violating specification. As indicated in
Table 8, the observed results were usually described based on the
effect on a user’s performance (65.9%). In this case, the
justification on what was wrong and why it is wrong (53.7%)
were supplied. Others explained the user’s behavior by outlining
the issues (50%). To support the claimed issues, reporters

preferred to attach annotated screenshots (64.6%) followed by
error messages (57.3%).

Expected results describes what reporters expect the software
should response. The majority of the reporters used their
knowledge and experience to interpret the intended results (72%).
Some reporters mentioned usability requirements (59.8%) and
usability design guidelines (40.2%) that were used to justify their
expectations.

Steps to reproduce outlines the instructions suggested by
reporters so that software developers can reproduce the discovered
usability defects. The majority of reporters write a textual
description on the user’s navigation flow through the system
(72%). About one-third recorded the actual steps that they
followed and attached a link to the video (30.5%). Other
supplementary information, as specified in the free text, included
logs and even event traces (3.7%).

Severity indicates the level of effect the usability defects had on
the user. In order to rate the severity level, most reporters
considered the impact of the issue (74.4%). While others
examined the frequency of issues occurred during usage (61%)
and business impact (48.8%).

In Question 27, we asked respondents to rank top five attributes in
order of difficulty from 1 to 5 where 1 is the most difficult and 5
is least difficult. Among the attributes considered to be most
difficult to provide, respondents ranked cause of the problem,
usability principle, video recording, UI event trace and title.

Table 7. Defect attributes used to report usability defects – title, observed and expected result are the most provided attributes by
reporters

Items Never Rarely Sometimes Often Always
Title/ Summary 1.2% 2.4% 14.6% 25.6% 56.2%
Cause of the problem 3.7% 6.1% 23.2% 23.2% 43.8%
Software context 1.2% 3.7% 24.4% 24.4% 46.3%
Proposed solution 9.8% 12.2% 32.9% 26.8% 18.3%
Observed result 1.2% 3.7% 15.9% 20.7% 58.5%
Expected result 1.2% 7.4% 14.6% 26.8% 50.0%
Steps to reproduce 2.4% 6.1% 17.1% 31.7% 42.7%
Severity 1.2% 18.3% 20.7% 22.0% 37.8%
Software information (product, component, version) 0% 9.8% 19.5% 29.3% 41.4%
Test environment (Operating system, hardware,
browser)

0% 9.8% 26.8% 29.3% 34.1%

Table 8. Materials used to support usability defect description – the most prevalence material is screenshots with annotations

Material Cause of the problem Software context Proposed solution Observed result
UI event trace 36.6% - - -
Screenshot and accompanying text 75.6% 1.2% - -
Screenshot with annotations 62.2% 82.9% 39.0% 64.6%
Textual description 61.0% 64.6% 48.8% -
Video with captions 17.1% 18.3% - -
Fix patch - - 12.2% -
Digital mockups - - 11.0% -
Simple sketches - - 28.0% -
ASCII art - - - -
Graphical elements or code - - - -
Error messages - - - 57.3%
Oral presentation - - 25.6% -
Other – audio video 2.4% 1.2% 3.7% 1.2%

Table 9. Details explanation included for each attribute

Items %
Title/ Summary
Explanation on the situation that was happening at the
time the problem occurred

70.7%

Build or version of the software or operating system on
which the problem occurred

47.6%

An error message that come up 58.5%
Quality attributes affected 43.9%
Other – Not mentioned 4.9%
Cause of the problem
Heuristics that are violated 26.8%
Design fault 51.2%
My knowledge of performing and understanding a task
or object interface

61.0%

Other – consequence to the user 3.7%
Software context
Location of the problem in the interface, such as screen
title

76.8%

The problematic user interface object, such as button,
menu and dialogue box

70.7%

User’s task 58.5%
System components that are affected 41.5%
Other – Not mentioned 2.4%
Proposed solution
Alternate solutions 37.8%
Advantages and disadvantages for alternatives solutions 28.0%
Usability design principles and/ or previous research 26.8%
My knowledge to interpret how design is supposed to
work

45.1%

The expected behavior (defects) 46.3%
The behavior desired (enhancements) 56.1%
Other – as suggested by project manager 2.4%
Observed result
The effect on the user’s performance 65.9%
The user’s behavior following the issue 50.0%
What was wrong and why is it wrong 53.7%
Other – user experience 1.2%
Expected result
Usability requirements 59.8%
Knowledge/ experience to interpret the expected result 72.0%
Usability design guideline 40.2%
Other – Not mentioned 3.7%
Steps to reproduce
User’s navigation flow through the system 72.0%
Record the steps 30.5%
Other - logs 3.7%
Severity
Impact of the issue 74.4%
Business effects, such as costs and time loss 48.8%
Frequency of the issue occurs during usage 61.0%
Other – Not mentioned 2.4%

4.4 How are Usability Defects Reported?
As shown in Table 10, nearly half of our respondents used written
reports (50%), verbal meetings (53.7%) and defect reporting tools
(53.7%) as a medium for their defect reporting (Q25). Only a few
respondents used edited video for reporting purposes. For those
who have used a defect-reporting tool, we asked respondents to
mention their tool (Q36). The most commonly used defect

reporting tools reported by our respondents were JIRA, Bugzilla
and Redmine. Mantis, HP Quality Center, Trello, IBM Rational
Team Concert, HP Application Lifecycle Management and Visual
Studio TFS were listed multiple times. For JIRA, Bugzilla and
Redmine users - 90% of them agreed to some extent that the tool
offers sufficient flexibility to capture and manage usability defects
(Q37), but free-text feedback revealed considerable negative
satisfaction (Q38). The following are representative: “Most of the
defect reporting tool do not have exhaustive options for usability
defects” and “JIRA more customized by client but no specific
customizations done for usability”.

Some respondents nominated specific recommendations for
usability defect reporting tool improvements (Q50). For example,
they argued that video evidence can reduce the amount of time to
reproduce and describe the issues, especially when working with
offshore development teams. One respondent also suggested a
questionnaire feature.

4.5 What do Developers Actually Need?
As shown in Table 11, question Q28, Q29 and Q30 asked
software developers to rate a frequency of using textual
information and supplementary information respectively when
fixing usability defects. Based on the “Often” and “Always”
rating, cause of the problem (83.1%,), steps to reproduce (81.6%),
software context (78.5%), expected result (78.5%) and observed
result (73.8%) were the most widely used textual information.
Three least used textual information were: title/ summary (50.8%),
hardware (55.4%) and severity (56.9%). About half the
developers seldom used title/summary. One possible explanation
can be that title/summary contains limited information for
understanding the likely difficulty faced by users. Also,
Meanwhile, severity may only be useful for prioritizing defects to
be fixed but it does not provide input to solve the problem.
Supplementary information which was most frequently used for
fixing usability defects were: screenshots (83.1%), UI event trace
(56.9%) and patch (41.5%) (Table 11). Even graphical elements
such as ASCII art (9.3%) and digital mockups (23.1%) provided
rich source of proposed fix, but software developers rarely used
them.

For the importance of information (Question 31), cause of the
problem clearly stands out. This is followed by screenshot, steps
to reproduce, expected result, software context and proposed
solution. Similar to the findings from [5][6], in order to fix
usability defects, mandatory fields such as hardware, product,
component and severity were not of much value. This does not
mean the information is not useful; rather they might be used in a
different context for different purposes.

In Question 32, we asked software developers to select
problematic attributes supplied by reporters. Note that software
developers were able to select more than one option. As shown in
Table 12, among the problems experienced, unclear cause of the
problem (76.9%) and insufficient information in steps to
reproduce (72.3%) was the most commonly encountered. Other
common problems include unclear software context (46.2%) and
screenshots (46.2%). Apart from lacking of technical information,
the software developers also received vague comment (52.3%),
unstructured text (55.4%) and duplicate defect reports (50.8%).
While the low occurrence of spam and viruses confirms [5].

Table 10. Medium to report usability defects – respondents mostly used defect-reporting tool and discuss through verbal meeting

Medium of reporting Never Rarely Sometimes Often Always Not answer
Traditional written report 13.4% 11.0% 12.2% 22.0% 28.0% 13.4%
Verbally in a meeting with designers/ developers 3.7% 6.1% 23.2% 42.7% 11.0% 13.4%
Edited videos 31.7% 31.7% 13.4% 8.5% 1.2% 13.4%
Entry in defect reporting tool 7.3% 6.1% 19.5% 15.9% 37.8% 13.4%

Table 11. Frequency of attributes used to fix usability defects – the most useful attribute is cause of the problem

Items Never Rarely Sometimes Often Always
Textual information
Title/ Summary 3.1% 13.8% 32.3% 15.4% 35.4%
Cause of the problem 3.1% 0% 13.8% 24.6% 58.5%
Software context 4.6% 4.6% 12.3% 27.7% 50.8%
Proposed solution 3.1% 10.8% 26.2% 46.1% 13.8%
Observed result 3.1% 1.5% 21.5% 32.3% 41.5%
Expected result 3.1% 4.6% 13.8% 33.8% 44.7%
Steps to reproduce 1.5% 3.1% 13.8% 27.7% 53.9%
Severity 3.1% 7.8% 32.3% 21.5% 35.4%
Product 7.8% 6.2% 20.0% 36.9% 29.2%
Component 1.5% 10.8% 26.2% 38.5% 23.1%
Version 0% 6.2% 29.2% 23.1% 41.5%
Hardware 0% 18.5% 26.2% 32.3% 23.1%
Operating system 0% 12.3% 29.2% 27.7% 30.8%
Supplementary information
Usability principle/ violated heuristic 9.2% 15.4% 43.1% 20.0% 12.3%
Video recording 16.9% 15.4% 30.8% 24.6% 12.3%
Audio recording 21.5% 35.4% 26.2% 10.8% 6.2%
UI event trace 6.2% 0% 36.9% 35.4% 21.5%
Screenshots 1.5% 3.1% 12.3% 29.2% 53.9%
Fix patch 3.1% 13.8% 41.5% 21.5% 20.0%
Digital mockups 15.4% 24.6% 36.9% 10.8% 12.3%
ASCII art 30.8% 33.8% 26.2% 7.8% 1.5%

Table 12. Problems with usability defect reports – unclear cause of the problem and insufficient information in steps to reproduce
were the most common encountered problems experienced by software developers

Problems Attributes Frequency Problems Attributes Frequency
You were given
unclear

Title/ summary 38.5% There was insufficient
information in

Steps to reproduce 72.3%
Cause of the problem 76.9% UI event trace 38.5%
Software context 46.2% The reporter used Bad grammar 27.7%
Usability principle/ heuristic violated 21.5% Unstructured text/ format 55.4%
Proposed solution 29.2% Vague comment 52.3%
Screenshots 46.2% Too long text 32.3%
Audio recording 20.0% Non technical language 35.4%
Video recording 16.9% Usability jargon/ term 20.0%

You were given
incorrect

Component 16.9% Other Duplicate 50.8%
Observed result 38.5% Spam 23.1%
Expected result 44.6% Viruses/ worms 15.4%
Product 23.1%
Version 32.3%
Severity 23.1%
Hardware 20.0%
Operating system 27.7%

5. DISCUSSION
5.1 Reporting Usability Defects
The responses from the survey indicated title/summary,
observed result, expected result, steps to reproduce, software

context, and software information are often supplied when
reporting usability defects. However, we argue that these
findings are biased in a way the defect form is designed. In
Bugzilla, for example, by default the defect form contains title/
summary, software information (i.e. product, component and
version), steps to reproduce, actual results, expected results and

attachment. Therefore, the use of this generic defect reporting
form will produce the same content structure for all types of
defects. To address this concern, in this survey we explicitly
identify what detailed information reporters provide for each
textual attribute and what other materials are attached to support
usability defect description.

Even though most of the reporters can produce a relatively
complete defect description, usability-related information is
rarely included. For instance, only 26.8% of the reporters were
able to augment the cause of the problem by relating the issue
with violated usability heuristics. In terms of describing
proposed solutions and expected results, barely a quarter of the
reporters included usability design principles to justify their
idea. This is possibly due to the fact that the majority of the
reporters do not have sufficient knowledge on relevant usability
principles. Moreover, the shortcoming of the existing generic
defect report form does not assist users in reporting a clear
usability defect description. Perhaps, a defect report form should
be designed as a wizard-style guided-answering form that
consists of necessary information. A good example is the
question-based structure form proposed by Simões [20]. The
form contains of six questions to report HCI issues. However, a
lack of pre-defined usability attributes for input selection can be
explored for future work.

Many respondents considered cause of the problem, usability
principles, video recording, UI event trace and title/ summary
are the most difficult items to provide. One possible reason for
that may be reporters lack background to provide this
information. Since UI event traces, for instance, are not readily
available to end users, reporters may need to take extra steps. In
this circumstance, reporters with deficient programming skills
may only report problems in a graphical user interface (GUI)
rather than a sequence of events that can be mapped into user
tasks. This corresponds with Wang et al. [21]’s examination of
open defect reports, which showed that most of the defect
reports that contains technical information are often submitted
by highly technical reporters. Moreover, lack of automated tools
and limited types of supported recording and attachments in
existing defect reporting tools make it challenging to include
video and audio files [22].

As shown in Table 10, many reporters mentioned verbal
discussion with developers as a common approach to
communicate usability defects. In our opinion, as Andre et al.
[23] addressed, verbal communication alone is not sufficient to
resolve usability defects without a written description. This is
because every software defect needs to record evidence and
keep formal logs. In this case, the use of formal reporting tool,
such as defect tracking systems were considered particularly
useful to track and manage defects in a timely manner.
However, as our survey results indicated, defect descriptions
suffer from insufficient information for problem correction. One
possibility is due to the text-centric approach used by the defect
tracking system. The unstructured text may contain a mixed of
data such as cause of the problem, proposed solution and impact.
This results in unorganized data and ambiguities that make it
difficult to understand the whole issues as compared to data
stored in fielded form. Furthermore, it is important to consider
the subjective nature of the usability defects that may not be
easy to explain textually [24]. Therefore, additional information
in the form of attachable files may be required to complement
this deficiency. We have identified four categories of attachable
files: (1) screenshots, (2) videos, (3) graphical elements such as
ASCII art, and (4) UI event traces / error messages. In this

survey, we found that reporters tend to use screenshots, rather
than videos, UI event traces and error messages when
highlighting the cause of the problem, software context and
observed results. Whereas, to propose a design solution,
reporters often used textual descriptions as compared to
graphical elements (i.e, digital mockups, simple sketches and
ASCII art). Possibly, the low rate of use of non-textual media is
due to the fact that good drawing tools may not be readily
available [25] and producing graphical representations using a
toolkit may require extra skill and time to learn and use [3].

5.2 Fixing Usability Defects
The most widely used textual information mentioned by
software developers are cause of the problem, steps to
reproduce, software context, expected result and observed
result. Similar to previous studies [5], [6] that focused on
general defects, steps to reproduce, expected result and
observed result were also common to be used by developers
when fixing usability defects. In particular, it indicates that steps
to reproduce, expected result and observed result are
fundamental pieces of information for understanding all types of
defects. In contrast to previous studies [5], [6], we added cause
of the problem, usability principles and proposed solution to the
list of defect information to reflect relevant attributes for fixing
usability defects. Out of these items, cause of the problem was
selected as the most useful and important attribute for fixing
usability defects. Hence, our research extends the knowledge
from the previous research.

Since our study is solely focused on usability defects that are
primarily dealing with graphical elements, screenshot was rated
as the most widely used supplementary information other than
video, ASCII art, digital mockups and patch. When looking at
the low frequency used of video, ASCII art, digital mockups and
patch, we can explain that this is probably due to the reporters
rarely supplying such information to justify the problems and
propose their suggestions. Therefore, in the absence of this
information, it is not surprising that software developers rarely
use this information when fixing usability defects. In [5][6],
software context was not considered useful, but was rated the
third of most widely used attributes in our research context. We
think that difference in the results comes from the different
definition we introduce for software context. In our study, we
refer software context as the specific location of problem in the
interface where the problem was observed, such as button, menu
and dialogue box. In contrast, [5][6] defined software context as
the operating environment where the problem occurred, such as
web application.

A number of problems in the way usability defects are described
were identified. Unclear cause of the problem and insufficient
information in steps to reproduce was very strongly identified as
problematic defect attributes. This is not surprising because, as
noted above, the reporters are indeed difficult to explain the
cause of the problem clearly. In fact, the inability of reporters to
supply UI event traces in defect reports will limit the essential
information regarding user behavior and task sequences with
respect to the application’s user interface. In the absence of this
technical information, such as the time to complete certain task,
number of erroneous action sequences and usage of certain
functions may cause software developers to misinterpret the
usability problems [26]. Another problem to consider is
“vagueness”, a similar issue raised by Dumas et al. [27]. In our
study, about half of the software developers claimed that they
received vague comments. These either did not have precise
problem descriptions or the solutions suggested were too

general. According to Dumas et al., when describing usability
problems or giving fix suggestions, reporters should be specific
as they can, and do not let software developers make self-
judgment. For instance, instead of suggesting “use a color with
better contrast to the background and increase the font clarity”
one could precisely suggest color contrast theory - black text on
a brown background, for example.

5.3 Mismatch Between What Reporters
Provide and What Software developers Need
We compared the responses obtained from reporters and
software developers to find out whether reporters provide
sufficient information for software developer to fix usability
defects. In Table 13, attributes are ranked based on the mean of
response to the questions “Do you use the following items when
describing usability defects” and “Do you use the following
items when fixing usability defects” that range from 1 (Never) to
Always (5). To discover the level of agreement between what
reporters provide and what software developers need, we
measure the absolute value of differences between reporters’ and
developers’ mean. The lowest difference indicates a more
agreements and vice versa. As shown in Table 14, reporters and
developers are in agreements on severity, software context, and
expected result. However, more disagreements were observed.
The most notable ones are title/ summary and cause of the
problem. While our study and [6] identified title/summary is the
least problematic information, but title/summary is not really
needed by software developers to fix usability defects, as it was
ranked as the second lowest. On the contrary, the cause of the
problem that is expected to be presented in usability defect
descriptions is seldom provide by reporters. In summary, our
experiments suggest that reporters do not provide information
that is frequently used by software developers.

Table 13: Rank of attributes

Rank (based
on mean)

Reporter Developer

1 Title/ summary Cause of the problem
2 Observed result Steps to reproduce
3 Expected result Software context
4 Software context Expected result
5 Steps to reproduce Observed result
6 Software information Software information
7 Cause of the problem Severity
8 Test environment Test environment
9 Severity Title/ summary

10 Proposed solution Proposed solution

Table 14: Agreement level between what reporters provide
and what software developers need

Item
 Mean (x) Differences

of mean
Reporter Developer

Severity 3.77 3.78 0.01
Software context 4.11 4.15 0.04
Expected result 4.17 4.12 0.05
Test environment 3.88 3.68 0.20
Software information 4.02 3.82 0.20
Steps to reproduce 4.06 4.29 0.23
Observed result 4.32 4.08 0.24
Proposed solution 3.32 3.57 0.25
Cause of the problem 3.98 4.35 0.37
Title/ summary 4.33 3.66 0.67

5.4 Threats to Validity
Internal validity. The main threat to this study is a
misunderstanding of the survey context by the respondents. Our
goal is to focus on usability defect reporting instead of general
software defect reporting. Respondents may have answered the
questionnaire based on their general defect reporting knowledge
and experience. We addressed this threat by (a) giving three
different types of usability defect examples at the beginning of
the survey, (b) highlighting the usability defects (bold and italic)
keyword for every question, so the respondents were always
aware of the survey context.

External validity. One possible external threat to the validity of
the survey outcome is the representativeness of the respondents.
While the respondents were recruited from a range of software
practitioners, there is the possibility that the software developers
and testers responding have not used formal defect reporting
processes and tools. Therefore, there is possibility of response
bias towards providing answer and feedback. Due to the sample
size of the survey, the generalizability of the results is limited.
We mitigated this by incorporating open source and closed
source projects and different kinds of software systems.

Construct validity. One concern is regarding incorrect measures,
i.e. not precisely measuring respondents’ practices in reporting
usability defects. To mitigate this concern, we reused previous
surveys and added questions from both usability and software
engineering fields. Another possible threat is that our respondent
recommendation does not entirely reflect the true reality of
defect reporting practice. Since our survey is anonymous, some
responses we received stated that they have never used defect
reporting tools. In fact, some comments are not meaningful.

6. CONCLUSION AND FUTURE WORK
We conducted a survey among open source software
communities and industrial practitioners to understand the most
valuable information in reporting and fixing usability defects.
We extended previous studies [5],[6] that focused on software
defects in general. We added cause of the problem, software
context and proposed solution in context of usability-related
defect information. Our study extends the previous findings on
software defect reporting. We discovered that developers need
additional defect information when fixing usability defects. We
found that cause of the problem is the most useful, but seldom
supplied by reporters. Our results confirm that observed results,
expected results and steps to reproduce are also substantially
important for software developers.

According to reporters, they usually provided title/ summary,
steps to reproduce, observed result and expected result. While
usability-related information: cause of the problem, video
recording, UI event trace and usability principle are the most
difficult information to provide. When we compare the
responses from software developers and reporters, we found the
information most expected by the software developers was the
least provided by reporters. The most significant one are title/
summary and cause of the problem. Our statistical analysis
shows a mismatch between what reporters reported and software
developers claim that they need to fix usability defects.

Our results showed that unclear cause of the problem and
insufficient information in steps to reproduce were most
commonly experienced by software developers. This reaffirms
with evidence an anecdotal expectation that cause of the
problem is difficult to provide. Other problems include vague
comments, unstructured text and duplication of reported

usability defects. We plan to further investigate the potential
usefulness of custom defect reporting forms for different kinds
of usability defects. We want to determine better ways of
reporting such defects, particularly to identify factors that
influence a defect-type-specific form. A better understanding of
usability defect report characteristics is necessary as this may
identify redundant information as well.

7. ACKNOWLEDGEMENT
Support for the first author from the Ministry of Higher
Education Malaysia, Universiti Teknologi MARA (UiTM), and
from the Swinburne Software Innovation Lab and the National
ICT Australia for all authors, is gratefully acknowledged.

8. REFERENCES
[1] J. Nielsen, Usability Engineering, vol. 44. 1993, p. 362.
[2] C. Wilson and K. P. Coyne, “The whiteboard: Tracking

usability issues: to bug or not to bug?,” Interactions, pp.
15–19, 2001.

[3] M. B. Twidale, D. M. Nichols, and N. Zealand, “Exploring
Usability Discussions in Open Source Development,” in
Proceedings of the 38th Annual Hawaii Internatioal
Conference on System Sciences, 2005, pp. 1–10.

[4] N. Bettenburg, C. Weiß, S. Just, and A. Schröter, “Quality
of Bug Reports in Eclipse,” in Proceedings of the 2007
OOPSLA workshop on eclipse technology eXchange, 2007,
pp. 21–25.

[5] T. Zimmermann, R. Premraj, N. Bettenburg, C. Weiss, S.
Just, and A. Schro, “What Makes a Good Bug Report  ?,”
IEEE Trans. Softw. Eng., vol. 36, no. 5, pp. 618–643, 2010.

[6] E. I. Laukkanen and M. V. Mantyla, “Survey Reproduction
of Defect Reporting in Industrial Software Development,”
in 2011 International Symposium on Empirical Software
Engineering and Measurement, 2011, pp. 197–206.

[7] S. Davies and M. Roper, “What’s in a bug report?,” in
Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and
Measurement - ESEM ’14, 2014, pp. 1–10.

[8] S. Zaman, B. Adams, and A. E. Hassan, “Security Versus
Performance Bugs  : A Case Study on Firefox,” in
Proceedings of the 8th Working Conference on Mining
Software Repositories, 2011.

[9] S. Breu and J. Sillito, “Information Needs in Bug Reports  :
Improving Cooperation Between Developers and Users,” in
The 2010 ACM Conference on Computer Supported
Cooperative Work, 2010, pp. 301–310.

[10] P. Bhattacharya and I. Neamtiu, “Bug-fix time prediction
models: Can we do better?,” in Proceedings - International
Conference on Software Engineering, 2011, no. 3, pp. 207–
210.

[11] L. D. Panjer, “Predicting Eclipse Bug Lifetimes,” in Fourth
International Workshop on Mining Software Repositories
(MSR’07), 2007.

[12] P. Hooimeijer and W. Weimer, “Modeling Bug Report
Quality,” in Proceedings of the 22nd IEEE/ACM
international conference on Automated software
engineering, 2007, pp. 34–43.

[13] P. Anbalagan, M. Vouk, C. Science, and N. Carolina, “An
Empirical Study of Security Problem Reports in Linux

Distributions,” in Third International Symposiumm on
Empirical Software Engineering and Measurement, 2009,
pp. 481–484.

[14] A. Følstad, P. O. Box, E. L. Law, K. Hornbæk, and S.
Copenhagen, “Analysis in Practical Usability Evaluation  :
A Survey Study,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
2012, pp. 2127–2136.

[15] P. Bhattacharya, L. Ulanova, I. Neamtiu, and S. C. Koduru,
“An empirical analysis of bug reports and bug fixing in
open source Android apps,” in Proceedings of the
European Conference on Software Maintenance and
Reengineering, CSMR, 2013, pp. 133–143.

[16] K. Hornbæk and E. Frokjær, “Comparing usability
problems and redesign proposals as input to practical
systems development,” in CHI 2005: Technology, Safety,
Community: Conference Proceedings - Conference on
Human Factors in Computing Systems, 2005, pp. 391–400.

[17] K. Hornbæk and E. Frøkjær, “Comparison of techniques
for matching of usability problem descriptions,” Interact.
Comput., vol. 20, no. 6, pp. 505–514, Dec. 2008.

[18] J. Itkonen and C. Lassenius, “The Role of the Tester ’ s
Knowledge in Exploratory Software Testing,” IEEE Trans.
Softw. Eng., vol. 39, no. 5, pp. 707–724, 2013.

[19] G. Guest, K. MacQueen, and E. Namey, Introduction to
applied thematic analysis. London, UK: Sage, 2012, pp. 3–
20.

[20] F. P. Simões, “Supporting End User Reporting of HCI
Issues in Open Source Software,”. PhD Thesis. Pontificia
Universidade Catolica, Do Rio De Janeiro, 2013.

[21] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An
Approach to Detecting Duplicate Bug Reports using
Natural Language and Execution Information,” in
Proceedings of the 30th international conference on
Software engineering, 2008, pp. 461–470.

[22] N. Shahida, M. Yusop, J. Grundy, and R. Vasa, “Reporting
Usability Defects  : Limitations of Open Source Defect
Repositories and Suggestions for Improvement,” in
Proceedings of the ASWEC 2015 24th Australasian
Software Engineering Conference, 2015, pp. 38–43.

[23] T. S. Andre, H. Rex Hartson, S. M. Belz, and F. a.
Mccreary, “The user action framework: a reliable
foundation for usability engineering support tools,” Int. J.
Hum. Comput. Stud., vol. 54, pp. 107–136, 2001.

[24] D. M. Nichols and M. B. Twidale, “Usability processes in
open source projects,” Softw. Process Improv. Pract., vol.
11, no. 2, pp. 149–162, Mar. 2006.

[25] G. Çetin, D. Verzulli, and S. Frings, “An Analysis of
Involvement of HCI Experts in Distributed Software
Development: Practical Issues,” Online Communities Soc.
Comput., vol. 4564, pp. 32–40, 2007.

[26] Y. Tao, “Grammatical analysis of user interface events for
task identification,” Lect. Notes Comput. Sci. (including
Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), vol. 8517 LNCS, pp. 197–205, 2014.

[27] B. J. S. Dumas, B. R. Molich, and B. R. Jeffries,
“Describing usability problems: Are we sending the right
message?,” Interactions, pp. 0–4, 2004.

