

1	
	

Software Engineering for Blockchain Based Software Systems: Foundations, Survey, and Future

Directions
Mahdi Fahmideh
University	of	Wollongong,	Australia		

John Grundy
Monash	University,	Australia	

Aakash Ahmed
University of Adelaide, Australia

Jun Shen, Jun Yan, Davoud Mougouei, Peng Wang, Aditya Ghose, Anuradha Gunawardana
University	of	Wollongong,	Australia	

Uwe	Aickelin	
The	University	of	Melbourne,	Australia	

Babak	Abedin	
Macquarie	University,	Australia		

Many	scientific	and	practical	areas	have	shown	increasing	interest	 in	reaping	the	benefits	of	blockchain	technology	to	empower	
software	systems.	However,	the	unique	characteristics	and	requirements	associated	with	Blockchain	Based	Software	(BBS)	systems	
raise	new	challenges	across	the	development	lifecycle	that	entail	an	extensive	improvement	of	conventional	software	engineering.	
This	article	presents	a	systematic	literature	review	of	the	state-of-the-art	in	BBS	engineering	research	from	a	software	engineering	
perspective.	We	characterize	BBS	engineering	 from	the	 theoretical	 foundations,	processes,	models,	and	roles	and	discuss	a	 rich	
repertoire	of	key	development	activities,	principles,	challenges,	and	techniques.	The	focus	and	depth	of	this	survey	not	only	gives	
software	engineering	practitioners	and	researchers	a	consolidated	body	of	knowledge	about	current	BBS	development	but	also	
underpins	a	starting	point	for	further	research	in	this	field.		

CCS	 CONCEPTS	 •	General	 and	 reference	→	 Surveys	 and	overviews	 •	 Software	 engineering,	 Software	 and	 its	
engineering,	Software	development	process	management,	Blockchain		

Additional	Keywords	and	Phrases:	Software	engineering,	Systems	development	methods,	Blockchain,	Blockchain	based	software	

systems		

1 INTRODUCTION

Blockchain-based	software	uses	concepts	and	technologies	popularized	by	cryptocurrencies	such	as	Bitcoin	–	highly	
decentralized,	open	transaction	ledgers	with	immutable	content.	Further	advances,	such	as	smart	contracts	and	faster	
transaction	processing,	have	provided	advantages	including	transparent	operation,	user	anonymity,	auditability,	and	
high	scalability.	A	global	survey	of	more	than	1400	senior	executives	and	practitioners	across	different	countries	by	
Deloitte	[1]	reveals	that	many	IT-based	organizations	have	found	many	compelling	blockchain	use	cases	in	areas	like	
finance,	 transport,	 healthcare,	 and	 manufacturing.	 A	 study	 by	 Chakraborty	 et	 al.,	 [2]	 reports	 that	 over	 3,000	
blockchain	 software	projects	had	been	hosted	on	GitHub	 in	March	2018	and	 that	 this	number	had	been	 sharply	
doubled	to	nearly	6,800	in	October	of	the	same	year.	
However,	in	parallel	with	the	growing	interest	in	using	and	developing	Blockchain-Based	Software	(BBS)	systems,	

the	accounts	of	project	failure	and	system	attacks	in	this	domain	have	also	become	noticeable.	For	example,	the	MtGox	
attack	in	2014	led	to	a	declared	loss	of	$600	million,	Bitfinex	attack	in	2016	led	to	a	loss	of	$65	million,	and	a	DAO	
(decentralized	autonomous	organization)	attack	in	2016	caused	the	withdrawal	of	Ether	digital	currency	funds	worth	
$50-60	million.	These	failures	are	commonly	attributed	to	a	lack	of	adoption	of	a	systematic	development	approach,	a	
project	management	flaw	that	is	aptly	phrased	as	un-ruled	and	hurried	software	development	by	Porru	and	Pinna	[3].	
The	situation	has	not	significantly	changed	as	blockchain	projects	in	most	organizations	are	in	the	experimental	mode.	
A	Gartner	report	in	2019	predicted	that	some	blockchain	projects	would	be	replaced	in	the	near	future	due	to	these	
development	failures	[4].	These	negative	outcomes	of	blockchain	applications	have	been	reflected	in	another	Gartner	

2	

report	[5]	which	mentions	that	many	chief	information	officers	overestimate	the	capabilities	and	short-term	benefits	of	
blockchain	[…]	thus	creating	unrealistic	expectations	from	blockchain	platform	vendors	and	service	providers	[….].	Given	
these	shreds	of	evidence,	there	is	skepticism	about	whether	blockchain	technology	really	fortifies	software	systems.	
Research	agendas,	development	frameworks,	and	prioritization	of	futuristic	work	have	been	put	forward	[6],[7].		
To	 alleviate	 these	 issues,	 there	 is	 a	 need	 for	 more	 systematic	 software	 engineering	 approaches,	 sometimes	

deprecatingly	referred	to	as	engineering	methodologies,	to	ensure	the	quality	of	both	development	and	maintenance	
of	BBS	systems,	which	has	been	corroborated	by	prior	research	[3].	In	this	spirit,	Chakraborty	et	al.	[8]	surveyed	156	
active	blockchain	software	developers	from	145	blockchain	projects	hosted	on	GitHub	and	concluded	that	standard	
software	engineering	methods	and	best	practices	need	to	be	adapted	to	address	the	unique	characteristics	of	BBS	and	
mitigate	potential	threats.	In	addition	to	characteristics	such	as	decentralized	architecture,	unreliable	connections,	
unexpected	latency,	and	malicious	system	attacks	that	commonly	occur	in	distributed	computing	systems	including	
cloud	computing	[9]	or	IoT	[10],	BBS	development	raises	unique	challenges	[11].	These	challenges	include	a	higher	
emphasis	on	security	and	reliability,	accepting	the	immutability	of	system	transactions	compared	to	conventional	
data-intensive	 systems,	 and	 the	 need	 for	 an	 in-depth	 knowledge	 of	 cryptography,	 just	 to	 name	 a	 few	 [3].	 Some	
researchers	envision	blockchain	as	another	class	of	software	 like	the	 Internet	 [12],	and	call	 for	revisiting	software	
engineering	attuned	with	the	requirements	of	this	technology	[2],[3].	
In	recent	decades,	the	software	engineering	field	has	evolved	to	meet	industry	needs	and	to	keep	abreast	of	modern	

computing	technologies	that	have	influenced	the	development	and	adoption	of	software	systems.	In	line	with	this,	
there	 is	 a	 growing	 awareness	 that	 the	 end-to-end	development	 lifecycle	of	BBS	 requires	new	 innovative	 guiding	
engineering	approaches	to	bind	together	technical	programming	models,	platforms	(e.g.,	Ethereum),	and	technologies	
(e.g.,	Bitcoin	scripting	languages)	[2],[3],[13].	Although	small	BBS	projects	may	be	manageable	in	an	ad-hoc	manner,	
a	systematic	engineering	approach	becomes	essential	if	a	BBS	project	is	large	and	the	BBS	is	aimed	to	support	the	
core	 business	 processes	 of	 an	 organization.	 BBS	 components	 deployed	 on	 blockchain	 platforms	 are	 targets	 for	
malicious	 entities	 to	 attack.	 A	 systematic	 development	 approach	 can	 provide	 important	 activities,	 guidelines,	
checklists,	 design	principles,	 and	heuristics	 to	mitigate,	 trace,	 and	 rectify	 the	 cause	 of	 vulnerabilities	 and	 errors.	
Hence,	there	is	a	need	for	a	literature	survey	answering	the	looming	questions	like	how	software	engineering	for	the	
development	of	blockchain-based	software	systems	is	perceived	according	to	the	current	state-of-the-art	and	industry	
efforts.		
Despite	the	growth	and	interest	in	the	blockchain	field,	the	software	engineering	aspect	associated	with	developing	

this	class	of	systems	remains	under-explored	and	under-conceptualized	[3],[2].	Numerous	studies	are	available	in	the	
literature	 including	 proposals,	methods,	 empirical	 studies,	 and	 experience	 reports	 discussing	 different	 questions	
related	to	BBS	development	[14],	[15].	The	review,	classification,	and	analysis	of	these	different	studies	is	a	challenge	
for	researchers	and	practitioners	and	demands	rigorous	and	well-defined	literature	review	methods.	For	this	reason,	
we	employed	the	search	and	selection	protocols	proposed	by	the	procedure	of	Systematic	Literature	Review	(SLR)	
[16]	and	qualitative	data	analysis	based	on	Grounded	Theory	[17]	to	provide	a	complete	review	of	the	state-of-the-art	
of	 BBS	 development.	 Our	 literature	 review	 considers	 58	 selected	 core	 studies	 (Appendices	 A	 and	 B)	 which	 are	
organized	 into	a	new	conceptual	 framework.	The	 framework	addresses	different	aspects	of	BBS	development,	 in	
particular,	 approaches,	 processes,	modeling,	 and	 role	 which	 guide	 software	 developers,	 business	 managers,	 and	
academic	researchers	in	the	exploration	of	practical	side,	implications,	and	challenges	related	to	BBS	development.	
To	the	best	of	our	knowledge,	our	survey	is	an	unprecedented	work	and	a	novel	attempt	at	summarizing	the	state-of-
the-art	 research	and	practice	on	end-to-end	engineering	 lifecycle	 for	BBS.	As	discussed	 later,	no	other	published	
surveys	match	the	scope,	depth,	and	coverage	of	our	survey	and	its	findings.	The	key	contributions	of	this	work	are:	
—a	coherent	set	of	method	fragments	grounded	in	the	literature	to	facilitate	a	better	understanding	of	the	BBS	
engineering	lifecycle;		
—a	guidance	 framework,	 as	having	a	 tail-light	 to	 follow,	 for	novice	 software	practitioners	engaging	 in	BBS	
development	context;	and	
—an	outlook	on	open	challenges	in	BBS	development	for	future	research	directions.		
The	rest	of	this	paper	is	organized	as	follows.	In	Section	2,	the	discussion	of	blockchain	concepts	lays	the	basis	to	

raise	essential	 implications	for	the	development	of	BBS.	Section	3	summarizes	past	literature	work	related	to	our	
current	survey.	 In	Section	4,	we	introduce	our	proposed	conceptual	 framework,	which	is	derived	from	the	extant	
literature	on	BBS	engineering	and	provides	a	lens	for	an	analytical	literature	review.	Section	5	delineates	our	findings	

3	

based	on	our	framework,	followed	by	a	discussion	on	existing	knowledge	gaps	in	the	literature	in	Section	6.	We	close	
with	a	discussion	of	the	limitations	of	this	survey	in	Section	7	and	a	concluding	remark	in	Section	8.	

2 BACKGROUND
This	 section	 introduces	 the	 core	 concepts	 including	 the	 building	 blocks	 for	 BBS	 (Section	 2.1)	 and	 the	 needs	 for	
software	 engineering	 for	 BBS	 (Section	 2.2).	 The	 concepts	 and	 terminologies	 introduced	 in	 this	 section	 are	 used	
throughout	the	paper	to	guide	the	discussion	of	the	survey	results.			

2.1 Building Blocks for Blockchain

New	 system	 engineering	 approaches	 are	 typically	 grounded	 on	 fundamental	 concepts	 and	 underlying	 logic.	 As	
depicted	in	Figure	1,	blockchain	is	commonly	rooted	in	a	few	core	elements	that	a	BBS	is	built	upon	[12],	[13],	[18],	
[19].	A	distributed	ledger	is	a	form	of	a	shared	database	that	may	exist	across	multiple	locations	and	among	several	
participants	[13].	It	enables	parties	to	authenticate,	process,	and	validate	transactions	without	the	need	for	central	
authority	or	intermediary.	Blockchain,	with	its	origin	in	the	Bitcoin	cryptocurrency	[18],	is	a	type	of	distributed	ledger.	
It	 is	 viewed	 as	 a	 promising	 option	 for	 the	 secured	 and	 reliable	 next	 generation	 of	 Internet-Based	 information	
technologies	[19].	Some	industrial	domains	have	already	developed	BBS	and	others	are	still	figuring	out	a	reasonable	
use	case	to	offer	new	BBS	for	transactional	digital	services	[13].	In	a	simple	view,	blockchain	is	an	accounting	book	or	
digital	distributed	database.	It	has	a	chain	of	blocks	(i.e.	records)	that	are	sequentially	linked	together.	Each	block	
depends	on	its	predecessor	block	and	is	secured	via	cryptography	techniques	[19].	A	block	contains	transactional	
data,	a	time	stamp,	and	a	hash	value	of	its	previous	block.	Also,	a	block	saves	an	arbitrary	set	of	transactional	data	
that	is	created	by	a	node	(a	computer	in	the	distributed	ledger	network).	The	chain	of	blocks	is	stored	on	a	distributed	
network	of	nodes	where	each	node	contains	a	copy	of	the	entire	blockchain.	The	chain	is	visible	and	verifiable	by	all	
nodes	participating	in	the	network.	Once	a	block	with	its	own	time-stamp	is	appended	to	the	chain,	the	creator	node	
broadcasts	that	block	to	all	the	other	nodes	in	the	peer-to-peer	distributed	network.	Once	nodes	receive	the	block,	
they	validate	it	via	predefined	check,	and	add	the	block	to	their	own	local	blockchain	copy	to	provide	a	single	source	
of	truth.	Some	nodes,	called	validators,	are	responsible	for	validating	a	newly	added	block	to	the	blockchain.	The	data	
records	 in	 a	 block	 are	 non-reversible,	 transparent,	 and	 become	 an	 immutable	 part	 of	 blockchain	 after	 they	 are	
accepted	by	all	nodes.	Such	a	chain	of	blocks	provides	a	secured	means	of	information	exchange	between	systems	
without	involving	a	trusted	third-party	and	is	suitable	for	record-keeping	tasks	such	as	financial	transactions,	medical	
records,	and	so	on	[13].	Casino	et	al.	[20]	predict	that	blockchain	technology	will	continue	to	be	adopted	by	multiple	
industries	such	as	manufacturing,	cybersecurity,	5G	networks,	and	IoT	to	augment	security,	track	records,	and	ensure	
data	consistency.		

A	key	element	of	blockchain	technology	is	the	ability	to	create	smart	contracts.	The	term,	which	was	coined	by	Nick	
Szabo	in	the	mid-1990s	[21],	is	defined	as	translating	the	clauses	of	a	business	contract	into	code	and	embedding	
them	into	software	or	hardware	to	make	them	self-execute.	This	reduces	the	cost	of	contracting	between	transacting	
parties	and	avoids	malicious	actions	during	contract	execution.	Different	alternative	definitions	of	smart	contracts	
have	been	already	proposed.	For	example,	Crosby	and	Pattanayak	[18],	view	a	smart	contract	as	database	slots	that	
reserve	the	necessary	logic	for	the	creation	and	validation	of	transactions	and	enable	users	to	read,	update,	and	delete	
the	 data	 stored	 in	 blockchain	 platforms.	 A	 broad	 definition	 of	 smart	 contract	 that	 covers	 the	 breadth	 of	 these	
definitions	is	proposed	by	Clack	et	al.	[22].	That	is	a	smart	contract	as	an	automatable	and	enforceable	agreement.	
Automatable	 by	 computer,	 although	 some	 parts	may	 require	 human	 input	 and	 control.	 Enforceable	 either	 by	 legal	
enforcement	of	rights	and	obligations	or	via	tamper-proof	execution	of	computer	code	[22].	Smart	contracts	are	either	
implemented	via	domain-specific	languages,	e.g.	Solidity	on	Ethereum	platform,	Liquidity	on	the	Tezos	platform	or	
by	general-purpose	languages,	e.g.	Java,	Go,	Kotlin	to	ease	contract	programming.	For	instance,	Ethereum	platform	
offers	 the	 built-in	 language	 Solidity	 and	 executes	 the	 compiled	 bytecode	 of	 Solidity	 scripts	 on	 its	 execution	
environment,	 called	 Ethereum	 Virtual	 Machine	 (EVM).	 A	 smart	 contract’s	 script	 code	 is	 invoked	 if	 it	 receives	 a	
transaction	 from	 a	 user.	 The	 smart	 contract	 defines	 necessary	 entry	 points	 of	 transaction	 execution.	 In	 the	
terminology	of	Ethereum,	each	entry	point	is	called	a	function.	A	transaction	specifies	entry	points	at	which	function	
codes	of	a	smart	contract	should	be	executed.	In	line	with	this,	a	BBS	is	developed	by	codifying	business	logic	into	
smart	contracts.	The	smart	contracts	are	then	deployed	and	autonomously	executed	on	decentralized	ledgers,	e.g.	

4	

Ethereum.	 This	 end-to-end	 development	 needs	 a	 systematic	 development	 lifecycle	 or	 software	 engineering	
methodology	[3].		

	
Fig. 1. Fundamental constituents of the blockchain architecture

2.2 Software Engineering for BBS system

We	need	to	 first	establish	an	understanding	of	 the	meaning	of	software	engineering	 for	BBS	systems.	A	simple	
definition,	according	to	Porru	et	al.,	[3],	is	that	BBS	is	a	new	type	of	software	that	uses	the	implementation	of	blockchain	
in	its	components.	If	a	system	depends	on	blockchain,	its	development	may	revolve	around	this	technology	[3]	and	be	
perceived	 as	 actually	 different	 from	 a	 non-BBS	 development	 [2].	 Unlike	 non-blockchain	 software	 systems,	 the	
development	of	BBS	systems	raises	new	challenges	and	difficulties	that	software	engineers	have	to	cope	with.	As	
explained	in	Section	5,	these	challenges	highlight	the	importance	of	further	research	in	this	field	in	both	technical	and	
non-technical	 elements,	 such	 as	 better	 guidance	 for	 blockchain	 developers,	 a	 trade-off	 between	 security	 and	
performance,	the	choice	of	consensus	protocols	in	relation	to	transaction	time	and	computing	power	requirements,	
the	cooperation	of	multiple	institutions	and	stakeholders,	[2],[7],[19].	Some	of	these	issues	can	be	attributed	to	the	
immaturity	of	the	technology	itself	as	it	is	common	in	all	new	technologies	at	their	inception.	Others	are	intrinsic	to	
blockchain	concepts	and	requirements.	Conventional	wisdom	in	software	engineering	acclaims	that	the	appropriate	
use	of	engineering	methodologies	ensures	the	development	of	quality	software	that	meets	expected	outcomes	while	
satisfying	budget	and	timeframe	constraints	[23].	Inspired	by	the	lessons	learned	in	software	engineering	industry	
informing	that	the	more	a	system	gets	complex,	the	more	it	is	open	to	total	breakdown	[24],	it	can	be	suggested	that	
understanding	and	adopting	systematic	engineering	approaches	for	BBS	reduces	the	likelihood	of	user	dissatisfaction	
and	unforeseen	security	and	other	errors	that	may	become	costly	to	fix.	Drawing	on	the	common	prudence	in	software	
engineering	field	[25],[26],[27],	without	a	systematic	approach	it	will	be	hard	for	a	software	team	to	dissect	and	trace	
the	cause	of	errors	and	correct	them	when	things	go	wrong.	In	other	words,	the	quality	of	development	significantly	
impacts	the	quality	of	the	resulting	BBS	running	on	blockchain	platforms	[2],[3].		

3 RELATED SURVEYS

Due	to	its	popularity,	many	literature	reviews	on	different	aspects	of	the	blockchain	topic	are	available.	In	Table	1,	we	
broadly	classify	the	related	studies	into	broadly-related	surveys	focusing	on	software	engineering	for	Internet-based	
distributed	computing	applications	and	closely-related	surveys	pertinent	to	blockchain	applications.		

3.1 Surveys on Engineering Internet-Based Computing Systems

Broadly-related	surveys	focus	on	intersections	and	synergies	between	Internet-based	computing	technologies	such	
as	 blockchain,	 service	 computing,	 cloud	 computing,	 and	 IoTs.	 They	 are	 theoretically	 grounded	 on	 distributed	
architecture	engineering	that	provides	a	backbone	and	virtually	unlimited	computational	resources	and	on-demand	
services	to	develop	and	deploy	software	systems.	Surveys	of	Fahmideh	et	al.,	[9],	[10],	Lane	et	al.,	[28],	and	Razavian	
and	 Lago	 [29]	 are	 categorized	 under	 the	 broadly-related	 surveys.	 For	 example,	 cloud	 computing	 empowers	 the	

5	

scalability	and	performance	of	blockchain	platforms	by	providing	service	delivery	models	such	as	Infrastructure	as	a	
Service	(IaaS),	Software	as	a	Service	(SaaS),	or	Platform	as	a	Service	(PaaS).	Fahmideh	et	al.	in	their	initial	work	[30]	
that	is	later	elaborated	in	[9]	compare	the	characteristics	of	43	reengineering	approaches,	published	between	2007	
and	2015,	to	make	legacy	software	systems	as	cloud-enabled.	Their	survey	synopsizes	the	status	quo	and	presents	a	
rich	 set	 of	 development	 tasks	 and	 recommendations	 commonly	 incorporated	 into	 typical	migration	processes	 to	
cloud	platforms	upon	service	delivery	models	such	as	IaaS,	SaaS,	or	PaaS.	Blockchain	is	used	as	an	enabling	technology	
for	IoT-based	applications	as	it	provides	a	secured	decentralized	network	for	data	management	and	communication	
of	sensors	and	devices.	Fahmideh	and	Zowghi	[10]	present	a	generic	development	process	lifecycle	for	IoT-based	
applications	by	mapping	63	approaches,	published	between	2008	and	2019.	They	conclude	that	development	roles,	
requirements	analysis,	modelling,	testing,	and	tailorability	of	development	processes	are	not	addressed	in	the	existing	
approaches	to	engineer	IoT-based	applications.		
Razavian	 and	 Lago	 [29]	 present	 an	 analysis	 of	 reengineering	 processes	 in	 75	 approaches	 for	 developing	 SOA	

(service-oriented	architecture)	based	software	applications.	Their	main	contribution	is	to	devise	a	new	conceptual	
model	 and	 classifications	 of	 activities	 such	 as	 code	 analysis,	 architecture	 recovery,	 service	 design,	 and	
implementation	in	order	to	integrate	with	and	componentize	legacy	applications	to	web	services.	They	identify	major	
challenges	of	(i)	value	creation	for	service-based	software	engineering,	(ii)	decision	making	on	tool	selection,	and	(iii)	
legacy	understanding	without	reverse-engineering.		
In	addition,	a	possible	interplay	between	blockchain	and	big	data	is	to	use	blockchain	for	storing	big	data	analytics	

software	applications	that	enable	user	authentication,	recording	data	access	history,	and	proper	use	of	encrypted	
data	on	distributed	peer-to-peer	networks.	Davoudian	and	Liu	[31]	review	challenges	related	to	three	major	software	
engineering	 activities	 of	 requirements	 analysis,	 design	 and	 implementation	 in	 the	 context	 of	 big	 data	 analytics	
development	based	on	academic	and	multi-vocal	 literature.	Despite	the	focus	on	software	engineering	of	systems	
relying	 on	 Internet-based	 computing	 technologies,	 all	 the	 above	 surveys	 do	 not	 directly	 deal	 with	 technical	
implications	 and	 complexity	 of	 software	 engineering	 aspects	 highlighted	 in	 BBS	 such	 as	 adopted	 approaches,	
processes,	 models,	 and	 roles	 that	 represent	 the	multifaceted	 view	 of	 development	 lifecycle	 as	 presented	 in	 our	
framework	in	this	survey.	Despite	their	usefulness	in	forming	a	basis	for	our	conceptual	framework,	we	deem	that	
the	recent	literature	surveys	on	conventional	software	development	processes	and	improvement,	e.g.[32],[33],	do	
not	overlap	with	the	focus	and	scope	of	our	research	objectives.	

3.2 Surveys on Blockchain-based Systems Engineering

Scant	work	is	available	as	being	exclusively	devoted	to	a	review	of	existing	proposals	on	the	engineering	of	BBS.	To	
support	in-depth	technical	analysis,	we	discard	introductory	surveys	that	aimed	at	demystifying	the	notion	of	the	
blockchain	 and	 discussing	 prevailing	 challenges	 in	 adopting	 this	 technology	 in	 software	 applications	 and	
organizations.	The	reason	is	that	they	do	not	concentrate	on	the	aspect	of	the	development	lifecycle	and	despite	their	
usefulness	 in	 crafting	our	 research	objective,	 they	 fall	 outside	 the	 scope	 and	 focus	of	 this	 survey.	 Some	example	
surveys	 in	 this	 genre	 are	 the	 taxonomy-based	 surveys	 on	 the	 blockchain	 usage	 trend	 in	 the	 IoT	 context	 [34],	
consensus	algorithms	and	application	domains	of	blockchain	 [19],	 security	concerns	 in	blockchain	adoption	[35],	
[36],	and	business	applications	of	blockchain	[37].	The	most	extensive	work	is	provided	by	Yli-Huumo	et	al.,	[14]	with	
a	research	objective	to	understand	the	current	research	topics,	challenges,	and	future	directions	regarding	blockchain	
technology	from	the	technical	perspective,	(page.1).	By	analyzing	41	primary	studies,	published	between	2012	and	
2015,	where	80%	of	the	papers	focus	on	Bitcoin	systems	and	less	than	20%	deal	with	other	application	domains,	Yli-
Huumo	et	al.	highlight	that	the	lack	of	concrete	evaluation	metrics	and	techniques	to	measure	scalability	efficiency	in	
terms	of	throughput	and	latency	is	left	unaddressed	in	the	literature.	The	goal	of	the	survey	by	Liu	et	al.,	[15]	is	to	
investigate	the	design	of	smart	contracts,	implementing	trusted	transactions	among	parties	without	mediators.	They	
selected	53	papers	to	show	the	state-of-the-art	of	this	topic,	developed	a	taxonomy	towards	the	security	verification	
of	blockchain	smart	contracts,	and	discussed	the	pros	and	cons	of	each	category	of	the	related	studies.	Vacca	et	al.	
[38]	 review	 96	 articles	 published	 between	 2016	 and	 2020	 to	 identify	 existing	 solutions	 in	 tackling	 software	
engineering-specific	 challenges	 related	 to	 the	 development,	 test,	 and	 security	 assessment	 of	 blockchain-oriented	
software.	
None	 of	 the	 surveys	 in	 Table	 1	 is	 specifically	 geared	 towards	 the	 development	 lifecycle	 for	 BBS	 and	 intrinsic	

characteristics	 of	 blockchain	 that	 challenge	 well-established	 development	 processes	 of	 conventional	 software	

6	

systems.	As	a	response,	we	have	narrowed	our	focus	to	extant	studies	that	propose	completely	or	partially,	end-to-
end	approaches	for	BBS	development.	This	includes	development	themes,	essential	tasks	for	incorporation	into	the	
development	process,	emerging	roles,	and	modeling	challenges.	From	this	angle,	our	survey	is	more	precise	when	
compared	to	the	related	surveys.	Our	literature	analysis	is	performed	through	a	conceptual	framework,	encompassing	
four	important	dimensions	of	development	approaches,	processes,	modeling,	and	roles	that	are	not	covered	in	related	
surveys.	Our	study	aims	to	aid	software	teams,	managers,	and	researchers	in	characterizing	the	extant	material	in	the	
literature	and	mastering	skills	necessary	to	develop	BBS.	Due	to	the	different	focus	and	scope	of	our	review,	many	
research	papers	that	we	discuss	in	this	survey	are	not	covered	by	these	existing	surveys.	For	instance,	none	of	the	
studies	reviewed	in	our	survey	is	covered	by	[15].	Our	work	supersedes	the	existing	surveys	as	it	considers	many	
recently	published	studies	in	blockchain	literature	that	are	not	included	in	the	related	surveys.	

Table	1.	Comparison	of	proposed	survey	with	existing	related	surveys	
	 Survey	reference	 Computing	

paradigm	
Research	focus		 Publication	

year	
Reviewed	
studies	

Study	type	

W
id
el
y-
re
la
te
d	
su
rv
ey
s	

Razavian	 and	
Lago	[29]	

SOA	 Reengineering	processes	of	 legacy	software	
systems	to	SOA	

2015	 75	 Systematic	
literature	
review	

Fahmideh	 et	 al.	
[9]	

Cloud	 Reengineering	processes	of	 legacy	software	
systems	to	cloud	platforms	

2016	 43	 Systematic	
literature	
review	

Davoudian	 and	
Liu	[31]	

Big	 data	
analytics	

Challenges	 associated	 with	 software	
engineering	 activities	 of	 requirements	
analysis,	 design	 and	 implementation	 of	 Big	
data	analytics	software	applications		

2020	 Not	
stated	

Literature	
survey	

Fahmideh	 and	
Zowghi	[10]	

IoT	 Development	 processes	 for	 IoT	 based	
systems	and	platforms		

2019	 63	 Systematic	
literature	
review	

cl
os
el
y-
re
la
te
d	
su
rv
ey
s	

Panarello	 et	 al.	
[34]	

IoT	 and	
blockchain	

Integration	 of	 BC	 and	 IoT	 applications	 in	
terms	 of	 different	 application	 domains,	
usage	 patterns,	 device	 manipulation,	 and	
data	management	

2018	 Not	
stated	

Literature	
survey	

Zheng	et	al.	[19]	 Blockchain	 Blockchain	 architecture,	 key	 characteristics	
of	the	Blockchain,	consensus	algorithms	and	
protocols	

2018	 Not	
stated	

Literature	
survey	

Mohanta	 et	 al.	
[36]	

Blockchain	 A	 comprehensive	 analysis	 on	 blockchain	
applications	 including	 implementation	
challenges	associated	security	and	privacy	

2019	 135	 Literature	
survey	

Li	et	al.	[35]	 Blockchain	 Real	 security	 attacks	 to	popular	 blockchain	
systems	

2020	 Not	
stated	

Literature	
survey	

Konstantinidis	
et.al	[37]	

Blockchain	 Business	applications	of	Blockchain	 in	both	
public	and	private	sectors	

2018	 44	 Systematic	
literature	
review	

Liu	et	al.	[15]	 Blockchain	 Security	 assurance	 and	 correctness	
verification	of	smart	contracts	

2019	 54	 Literature	
survey	

Vacca	et	al.		[38]	 Blockchain	 Challenges	 in	 implementing,	 testing,	 and	
secure-aware	smart	contracts		

2021	 96	 Systematic	
literature	
review	

	
	 Our	survey	 Blockchain	 Blockchain	software	engineering	 -	 59	 Systematic	

literature	
review	

4 RESEARCH APPROACH

Due	to	reasons	of	(i)	the	sheer	volume	of	published	material	in	an	overgrown	and	unkempt	domain	like	blockchain	
and	 (ii)	 the	 exploratory	 nature	 of	 this	 literature	 review,	 we	 employed	 the	 kernel	 techniques	 from	 software	
engineering	and	information	system	research	fields.	In	particular,	we	used	the	guidelines	for	conducting	a	Systematic	
Literature	Review	(SLR)	[16]	and	qualitative	data	analysis	based	on	Grounded	Theory	[17]	as	outlined	in	Figure	2	and	

7	

detailed	in	sections	4.1	and	4.2.	We	want	to	provide	a	conceptual	framework,	encompassing	commonly	occurring	
fragments	 of	 software	 engineering	 methods	 for	 BBS	 and	 their	 interrelations.	 In	 the	 following,	 we	 describe	 our	
literature	review	procedure	and	the	steps	to	derive	the	conceptual	framework,	guided	by	the	illustration	in	Figure	2.	

	
Fig. 2. Sequence of steps undertaken in our literature survey 	

4.1 Systematic Literature Review

As	stated	earlier,	 this	 study	aims	 to	portray	 the	current	 research	 landscape	 in	 software	engineering	 for	BBS.	We	
formulated	the	following	research	questions:		

• RQ1:	what	are	the	common	software	engineering	approaches	that	are	adopted	for	BBS	development?		
• RQ2:	what	are	the	key	emerging	and	changing	tasks	in	developing	BBS	systems?		
• RQ3:	what	software	modeling	approaches	and	notations	are	applicable	in	BBS	development	lifecycle?	
• RQ4:	what	key	roles	are	in	a	BBS	development	endeavor	and	what	do	they	play?		

We	followed	the	well-known	and	accepted	procedure	and	guidelines	by	Kitchenham	et.	al.	[16]	to	conduct	this	SLR	as	
they	deem	to	be	an	appropriate	way	to	systematically	identify	and	qualitatively	specify	the	criteria	for	the	selected	
studies	 involved	 in	 the	 review	 and	 data	 synthesis.	 In	 the	 blockchain	 field,	 the	 concepts,	 nomenclature,	 and	
terminologies	 have	 not	 been	 consolidated	 yet.	 Hence,	 our	 SLR	 undertaking	 was	 not	 a	 linear	 and	 mechanical	
procedure.	Instead,	our	review	tended	to	be	hermeneutic	and	iterative.	That	is,	to	get	immersed	in	the	literature,	as	
recommended	by	Brun	et	al.	 [39],	we	read	introductory	and	literature	survey	papers,	some	of	which	are	 listed	in	
Section	 3	 (Table	 1),	 to	 get	 an	 in-depth	 understanding	 of	 the	 important	 aspects	 of	 BBS	 engineering	 and	 further	
refinements	of	the	literature	review,	in	particular,	 inclusion/exclusion	criteria	definition	and	data	extraction	step.	
Our	SLR’s	key	steps	 included	review	protocol,	 searching	queries,	 selection	of	 study	sources,	 study	selection,	data	
extraction,	and	data	analysis	as	shown	in	Figure	2.	More	exactly,	we	determined	the	main	terms	software	engineering,	
blockchain,	 and	 approach	 based	 on	 the	 research	 questions	 to	 define	 a	 set	 of	 search	 queries	 along	 with	 related	
abbreviations,	plurals,	and	extended	them	with	alternative	synonyms.	The	approach	was	also	used	because	some	
papers	from	our	initial	literature	search	used	these	terms	to	express	frameworks	and	methods	for	the	development	
of	 BBS.	 Search	 queries	were	 executed	 against	 the	main	 scientific	 digital	 libraries	 including	 Google	 Scholar,	 IEEE	
Explore,	 ACM	 Digital	 Library,	 Elsevier,	 SpringerLink,	 and	 ScienceDirect.	 We	 then	 selected	 papers	 that	 met	 the	
following	inclusion	criteria:		

• explicitly	discussed	software	engineering	challenges	related	to	BBS;		
• published	in	the	software	engineering	and	information	systems	international	venues	such	as	journals,	
conferences,	congresses,	and	workshops	as	well	as	computing	specific	venues,	e.g.	computer	networks	
and	sensor-driven	systems,	that	streamline	software	aspects	of	BBS;		

• written	in	English	language	with	at	least	three	pages	(not	an	extended	abstract,	and	
• provided	a	proper	validation	of	their	work	such	as	case	study	application,	exemplar	scenario,	interview/survey	
of	practitioners	of	blockchain	practitioners,	simulation,	comparative	analysis,	or	theoretical	evaluation.		

Thus,	based	on	the	criterion	above	and	standard	SLR	practice	we	discarded	studies	that	were		

8	

• opinions,	white,	and	short	papers	without	any	sorts	of	evaluation	results;	
• provide	 only	 background	 on	 blockchain	 or	 discussed	 the	 applications	 of	 blockchian	 in	 other	 enabling	
technologies	like	IoT,	big	data,	and	cloud	computing;	
• Thesis or other non-refereed publications; and 	
• 	Not written in English	

In	addition	to	the	digital	 libraries,	we	paid	attention	to	peer-reviewed	venues	exclusively	dedicated	to	blockchain	
publications	themes	such	as	International	Conference	on	Blockchain	and	International	Conference	on	blockchain	and	
Trustworthy	Systems.	We	also	sought	online	non-academic	literature,	i.e.	multi-vocal	literature	[40],	such	as	internet	
blogs,	white	papers,	and	trade	journal	articles,	which	could	share	real-world	findings	surrounding	BBS	development.	
A	total	of	24	papers	were	identified	from	the	previous	search	iterations	in	the	selected	digital	libraries.	An	important	
technique	 that	 we	 strictly	 used	 during	 the	 literature	 search	 iterations	 was	 snowballing	 [40],	 through	which	 we	
identified	65	new	important	papers	from	the	reference	sections	of	the	initially	identified	papers.	In	the	last	search	
iteration,	snowballing	technique	resulted	in	69	papers	that	were	reduced	to	65	after	removing	4	duplicated	papers	
from	the	same	authors.	We	screened	the	title,	abstract,	and	preferably	 full	 texts	of	 the	papers,	and	shortlisted	60	
papers	after	applying	the	inclusion	criteria.	To	avoid	being	bias,	the	list	of	the	identified	papers	by	the	main	research	
investigator	was	double-checked	by	two	co-authors,	independently.	Two	papers	were	removed	after	they	were	found	
as	unsatisfactory	to	the	inclusion	criteria	and	the	objective	of	this	survey.	The	literature	search	iteration	in	its	last	
round	culminated	in	58	papers	listed	in	Appendix	A.	A	summary	of	the	identified	papers’	demographic	information	
(e.g.,	types	and	years	of	publications,	types	of	validations,	and	geo-distribution	of	authors)	is	shown	in	Appendix	B.	
We	denoted	each	paper	(S	for	short)	by	combining	a	number	to	distinctly	refer	to	it	(i.e.,	[Sn],	n	is	unique	a	number	
from	1-58)	throughout	this	survey	and	conceptual	graphs	in	Section	5.			

4.2 Conceptual Framework for Software Engineering of BBS

In	 light	 of	 different	 terminologies	 and	 broad	 varieties	 of	 blockchain	 concepts,	 it	 is	 essential	 to	 first	 establish	 a	
foundation	to	enable	our	analysis	of	literature	pertinent	to	software	engineering	for	BBS.	To	this	end,	we	devised	a	
conceptual	framework	that,	according	to	Miles	and	Huberman	[41],	would	enable	researchers	to	graphically	explain	
the	main	concepts	and	relationships	in	a	domain	of	interest.	In	this	survey,	the	derivation	of	such	a	framework	was	
based	on	Grounded	Theory	 [17],	which	has	been	 found	useful	 in	qualitative	 research	and	 its	 application	 is	well-
recognized	in	several	fields	including	medical	sociology,	education,	and	management.	In	recent	years,	using	Grounded	
Theory	 in	 the	 software	 engineering	 field	 has	 received	 growing	 attention	 [42].	 It	 aims	 to	 generate	 theories	 and	
conceptual	models	out	of	a	collection	of	data	about	a	research	problem	and	to	enable	researchers	to	have	amenable	
interpretation	and	free	comprehension	of	data	in	different	ways.	The	data	can	be	sourced	from,	for	instance,	field	
observations,	interviews,	secondary	data,	semi-structured	data,	pictures,	and	diagrams.	The	generation	of	the	theory	
from	the	data	is	based	on	a	few	steps	including	open	coding,	axial/selective	coding,	and	theoretical	coding	that	can	be,	
according	to	Strauss	et	al.	[43],	governed	and	consulted	by	the	pre-defined	concepts/views	from	a	domain	literature	
to	enhance	theoretical	sensitivity.	We	took	into	account	the	literature	on	conventional	software	engineering	[44]	to	
analyze	 the	 identified	papers.	We	used	open	coding	 to	break	down	and	 label	data	 into	smaller	 fragments	[43]	 to	
analyze	and	highlight	the	text	segments	in	each	paper	that	could	be	considered	as	a	discrete	piece	of	data	annotated	
with	a	descriptive	label,	as	a	series	of	high-level	intellectual	bin	[41].	The	labels	could	help	structure	and	focus	on	the	
context	of	the	data	in	the	papers.	As	an	example	to	demonstrate	the	inner	working	of	open	coding,	Table	2	presents	
an	excerpt	of	text	segments	that	were	extracted	from	papers	[S24],	[S25],	[S26].	When	these	quotes	are	collectively	
viewed,	their	common	theme,	despite	the	difference	in	wording,	is	related	to	the	notion	of	the	suitability	of	blockchain,	
which	should	be	performed	by	software	teams	at	the	early	stages	of	the	development	process.	Thus,	we	defined	a	
label	 in	 the	 conceptual	 graph	 of	 the	 framework	 as	 a	 development	 task	 and	 named	 it	 feasibility	 analysis	 of	 BBS	
supported	by	the	identified	papers,	which	will	be	delineated	in	Section	5.2.1.		

Table	2.	An	example	of	emerging	development	task	named	feasibility	analysis	of	BBS	via	open-coding	
Quote	from	the	source	paper	 Source	
This	technology	is	being	applied	to	an	increasing	range	of	industries	and	problem	spaces.	However,	such	an	application	
might	not	always	be	appropriate	or	optimal;	in	many	cases	[...]	while	evaluating	potential	applications	of	blockchain	at	
CableLabs,	[…]	I	developed	a	framework	for	determining	whether	blockchain	is	appropriate	[…]	

[S24]	

9	

Table	2.	An	example	of	emerging	development	task	named	feasibility	analysis	of	BBS	via	open-coding	
Quote	from	the	source	paper	 Source	
Investigating	the	feasibility	of	developing	a	smart	contract	that	manages	a	network	of	banks	[…]	is	a	big	challenge,	above	
all	looking	at	the	throughput	of	the	blockchain	and	hence	to	the	rate	at	which	a	blockchain	can	confirm	transactions.	

[S25]	

Due	to	the	long	commit	time	and	high	transaction	fees	on	a	public	blockchain	(where	fees	are	largely	independent	of	the	
transacted	amount),	it	is	often	infeasible	to	store	every	micro-payment	transaction	on	the	blockchain	network.	On-chain	
transactions	are	suitable	for	transactions	with	medium	to	large	monetary	value,	relative	to	the	transaction	fee.	

[S26]	

The	open	coding	step	resulted	in	labels	such	as	requirements	analysis	for	BBS,	state	management	design,	replication	
and	 synchronization	 design,	 authentication	 and	 authorization	 design,	 interaction	 design,	 smart	 contract	 design,	
consensus	mechanism	design,	and	incentive	mechanism	design	each	of	which	is	supported	by	at	least	one	reference	to	
the	identified	source.	Once	labels	emerged	over	58	identified	papers	as	the	source	of	data,	axial	coding	was	performed	
to	aggregate	and	condense	related	labels	to	form	broader	groups	of	labels.	We	derived	four	essential	groups	of	labels,	
a.k.a.	aspects,	namely	(i)	approaches,	i.e.	kernel	theories	or	software	engineering	foundations	that	could	govern	the	
end-to-end	BBS	development	lifecycle,	(ii)	development	process,	(iii)	modelling,	and	(v)	roles.	More	specifically,	some	
labels	were	grouped	as	a	kind	of	modelling	aspect:	a	smart	contract	model,	recommended	by	studies	[S1],	[S5],	[S31],	
[S46],	 [S56],	 and	 [S57],	 that	 is	 used	 to	 represent	 the	 expected	 functionalities	 and	 features	 of	 smart	 contracts	
implemented	and	tested	by	low-level	code	scripts	running	on	blockchain	platforms.	Axial	coding	resulted	in	labels	
related	to	the	aspect	of	role	that	is	involved	during	a	BBS	development	endeavor.	If	a	label	couldn’t	be	classified	under	
any	or	indirectly	related	to	one	or	more	of	these	aspects,	we	could	define	a	new	label	or	group	it	under	a	related	
aspect.	That	is,	some	labels	were	related	to	decision	factors	for	incorporation	into	the	analysis	and	design	activities,	
e.g.	decision	on-blockchain	and	off-blockchain	components,	decision	on	blockchain	type,	and	concerns	e.g.,	visibility	and	
transparency,	 organization	 restructuring,	 uncertain	 status.	 Axial	 coding	 was	 further	 elaborated,	 in	 line	 with	 the	
literature	on	conventional	software	engineering	[44],	to	create	new	high-level	labels	that	could	classify	fine	granular	
labels	with	common	themes	under	the	same	aspect.	For	example,	tasks	feasibility	analysis	of	BBS	and	requirements	
analysis	for	BBS	were	subsumed	under	the	BBS	analysis	phase	in	an	analogy	with	the	analysis	phase	in	conventional	
software	engineering.	Often,	there	should	be	references	supporting	labels	in	this	conceptual	framework	generated	
from	Grounded	Theory.	These	references	to	the	identified	papers	are	listed	in	the	conceptual	framework’s	graphs	and	
cited	 in	Section	5	wherever	we	present	the	results	of	 the	 literature	review.	It	should	be	noted	that	a	paper	could	
belong	 to	 multiple	 aspects	 of	 the	 framework.	 Grounded	 Theory	 was	 ended	 with	 theoretical	 coding	 where	 we	
established	 the	 conceptual	 relations	 between	 substantive	 labels,	 resulting	 in	 the	 conceptual	 framework	 for	 BBS	
engineering.	Using	the	Grounded	Theory	in	this	literature	survey	was	not	intended	to	develop	testable	hypotheses	
nor	to	answer	unexplored	research	queries	in	the	blockchain	literature.	Rather,	we	used	it	to	(i)	analyze	and	compare	
the	extant	papers	in	the	literature	on	BBS	engineering,	(ii)	identify	existing	engineering	challenges	and	corresponding	
techniques,	 and	 (iii)	 construct	 further	 research	 directions	 for	 unresolved	 challenges.	 Our	 generic	 conceptual	
framework,	yet	pluralistic	and	platform-independent,	binds	the	essential	aspects	together,	provides	an	integrated	
overarching	view	of	software	engineering	 for	BBS	to	 facilitate	understanding	of	existing	challenges	and	solutions	
proposed	by	blockchain	community	in	the	literature,	and	enables	further	research	and	development	in	this	field.	The	
next	 section	 presents	 the	 framework	 that	 was	 produced	 to	 structure	 a	 coherent	 set	 of	 relevant	 aspects	 of	 BBS	
engineering.	

5 RESULTS

To	present	our	results	in	an	illustrative	manner,	we	use	visual	conceptual	framework	diagrams	as	represented	in	
Figures	3,4,6,7,	and	8.	In	this	conceptual	framework,	a	node,	either	sub-node	or	parent	node,	may	refer	to	a	task/sub-
task,	technique,	decision	factor,	challenge,	modeling,	or	role	that	comes	into	play.	Directed	edges	(or	arrows)	show	
relationships	 among	 nodes.	 The	 nodes	 and	 arrows	 are	 supported	 by	 one	 or	more	 source	 studies	where	 the	 full	
demographic	information	of	the	study	set	is	listed	in	appendices	A	and	B.	As	mentioned	in	Section	4,	rooted	in	the	
fundamental	aspects	of	software	engineering,	the	diagrams	in	the	framework	characterize	BBS	development	based	
on	the	four	major	aspects	of	approach,	process,	modeling,	and	roles,	which	are,	respectively,	related	to	answering	RQ1,	
RQ2,	RQ3,	and	RQ4	(Section	4.1).	These	allow	software	teams	to	explore	and	make	a	comparison	between	different	
BBS	development	options.	These	aspects	and	their	importance	are	substantiated	below.			

10	

The	aspect	of	development	approach,	 i.e.,	 theoretical	 foundation,	 is	rooted	 in	 the	 fact	 that	software	engineering	
endeavors	 are	 not	 impartial	 on	 their	 own,	 rather	 they	 have	 underlying	 development	 perspectives,	 including	
principles,	 assumptions,	 and	 drivers	 that	 govern	 and	 rationalize	 an	 end-to-end	 development	 lifecycle	 in	 a	 given	
project	context	[45].	BBS	development	is	thus	founded	on	some	fundamental	concepts	and	basic	logic	such	as	trust,	
decentralized	 and	 distributed	 public/private	 ledger,	 cryptography,	 smart	 contract,	 consensus	 algorithm,	 and	
transaction	 transparency	 that	 should	 take	 into	 account	 by	 software	 teams.	 These	 are	 critical	 and	 deserve	 close	
investigation.		
The	aspect	of	process	specifies	guidance	for	development	lifecycle	phases,	necessary	tasks,	and	techniques	that	are	

sequenced	 into	 the	development	of	BBS.	We	borrowed	 the	 generic	phases	of	 the	 software	development	 lifecycle	
(SDLC),	i.e.	analysis,	design,	implementation	and	test,	and	maintenance,	introduced	by	Pressman	[15]	allowing	us	to	
organize	 and	 represent	 the	 software	 engineering	 process	 body	 of	 knowledge.	 The	 rationale	 to	 incept	 BBS	
development	 process	 like	 SDLC	 is	 that,	 regardless	 of	 an	 application	 domain	 or	 adopted	 underlying	 blockchain	
platforms,	 it	 is	 generally	 taken	 as	 axiomatic	 that	 engineering	 processes	 are	 almost	 the	 same	 at	 the	 macro	 and	
abstraction	level,	though	they	differ	in	fine-granular	development	tasks	and	technical-centric	implementation	details.	
This	 interpretation	 is	 consistent	with	previous	 exploratory	 literature	 surveys	 in	 other	 Internet-based	 computing	
domains	such	as	IoT	[10],	cloud	migration	processes	[46],	and	SOA	based	development	processes	[47],[48]	where	the	
authors	 leverage	 SDLC	 phases	 to	 classify	 peer-reviewed	 studies	 to	 compare	 and	 contrast	 them	 and	 to	 identify	
unaddressed	 research	 gaps.	 This	 aspect	 enables	 a	 better	 understanding	 of	 BBS	 life	 cycle	management	 and	 it	 is	
populated	with	the	identified	commonly	occurred	development	process	tasks	from	the	literature.		
The	aspect	of	modelling	deals	with	the	representation	techniques	and	notations	that	developers	may	employ	for	

process	tasks’	outputs	during	BBS	development	endeavors.	This	aspect,	itself,	encompasses	two	sub-aspects	of	(i)	a	
model,	a.k.a.	work-product/artefact,	as	a	result	of	development	tasks	according	to	Gonzalez-Perez	et	al.	[49],	and	(ii)	
a	modelling	language	to	represent	and	maintain	generated	models.	A	model,	as	generally	defined	by	ISO/IEC	24744	
standard	meta-model	for	software	engineering	methodologies	[50],	is	an	artefact	of	interest	to	a	software	team.	In	a	
blockchain	project	context,	this	may	be	a	legal	document,	distributed	ledger	architecture,	Bitcoin	transactions,	smart-
contract	 template,	 Solidity	 code,	 or	 a	piece	of	 information	 related	 to	 the	project.	On	 the	other	hand,	 a	modelling	
language	 provides	 underlying	 elements	 to	 represent	 a	 model.	 For	 example,	 class,	 inheritance,	 aggregation,	 or	
composition	 in	 the	 object-oriented	 software	 development	 paradigm	 enables	 developers	 to	 express	 different	
structural	and	behavioral	facets	of	a	model	at	a	different	level	of	abstraction	serving	as	overlapping	aspects	of	system	
development.	
The	 role	 aspect	 indicates	 associated	 responsibilities,	 interactions,	 and	 required	 skills	 in	 a	 BBS	 development	

endeavor.	This	aspect	in	our	framework	is	required	as	the	development	of	BBS	relies	on	different	technical	expertise,	
business	vision,	and	delivery	skills	that	imply	having	a	development	role	acquisition	plan.	Bosu	et	al.	[S22]	suggest	
that	special	skills,	beyond	those	known	ones	in	non-BBS	development,	are	needed	for	people	considering	joining	BBS	
projects.	There	are	advantages	in	defining	the	aspect	of	roles	participating	in	BBS	development.	That	is,	specifying	
BBS	roles	and	their	duties	enables	the	separation	of	concerns	so	that	if	changes	occur	to	one	role,	there	will	be	less	
influence	 or	 dependency	 between	 roles.	Moreover,	 this	 clarifies	 the	 responsibilities	 of	 each	 stakeholder,	 enables	
better	 team	management,	 and	monitors	 activities	 per	 role.	 Another	 advantage	 of	 defining	 the	 role	 aspect	 in	 our	
framework	is	to	inform	software	teams	who	are	with	limited	experience	in	blockchain	and	are	not	quite	sure	about	
the	roles	required	in	BBS	development.		

5.1 RQ1: What are the common software engineering approaches that are adopted for BBS development?

In	the	identification	of	proposed	approaches	for	BBS	development	in	the	literature,	we	did	not	set	any	pre-defined	
classification	during	the	open	coding	step	of	Grounded	Theory.	Instead,	we	found	approaches	based	on	what	appeared	
in	the	selected	studies.	We	observed	five	distinct	themes,	as	depicted	in	Figure	3,	that	BBS	development	may	leverage,	
namely	(i)	Agile	based	development	(e.g.	[S1],[S4],[S16],[S23],[S27],[S28],[S51]),	(ii)	model-driven	development	(MDD)	
(e.g.	 [S5],[S16],[S28],[S57],[S29],[S30],[S34],[S52]),(iii)architecture-based	 BBS	 development	 (e.g.	
[S3],[S4],[S11],[S12],[S33]),	 (iv)	 pattern-based	 BBS	 development,	 and	 (v)	 ontology-based	 BBS	 development.	 The	
adoption	of	these	approaches	is	not	mutually	exclusive,	rather	they	can	be	used	together	and	orthogonally	used	across	
the	development	lifecycle.	For	example,	in	[S16],	authors	have	shown	the	model-driven	and	Agile-based	approach	for	
BBS.	

11	

	
Fig. 3. Approach conceptual map

5.1.1 Agile-based BBS development

The	common	perception	of	agile-based	software	development	is	distilled	in	the	Agile	Manifesto	[51]	and	used	in	
well-known	 agile	 software	 development	 methodologies	 such	 as	 SCRUM,	 XP,	 and	 Lean	 Kanban.	 They	 emphasize	
practices	 such	 as	 active	 user	 involvement,	 lightweight	 modeling,	 short	 cycles,	 iterative	 releases	 with	 frequent	
customer	review,	and	priority	of	working	software	over	documentation.	Blockchain	researchers	have	utilized	agile	
practices	for	non-real-time	critical	BBS	development	[S1],[S4],[S16],[S23],[S27],[S28],[S51].	BBS	Agile	prototyping,	
a.k.a.	Spike	Solution	in	XP,	has	been	found	to	be	a	useful	technique	at	the	early	stage	of	BBS	development	for	the	
purpose	of	(i)	requirements	elicitation,	specification,	and	thus	far	from	target	blockchain	platform,	(ii)	forming	a	base	
target	BBS	architecture	without	dependency	to	a	specific	platform,	and	(iii)	identifying	uncertainties	in	system	quality	
factors	such	as	transaction	execution	performance,	security,	as	well	as	the	trade-off	between	them	[S1],[S4],[S28].	
Marchesi	et	al.,	[S23]	discuss	the	usefulness	of	user	stories,	i.e.	defining	target	BBS	features	as	seen	from	stakeholders’	
point	of	view,	 to	get	early	 feedback	 from	stakeholders	 to	validate	required	smart	contracts.	Being	open	 to	users’	
change	requests	and	continuous	integration,	as	promised	by	core	Agile	development	technologies	like	DevOps	[52],	
nevertheless,	is	not	consistent	with	the	intrinsic	characteristics	of	blockchain	harness.	For	example,	the	data	that	is	
generated	 and	 stored	by	 smart	 contracts	 on	distributed	 ledgers	 is	 almost	 impractical	 or	 too	 costly	 to	modify	 by	
external	users	and	developers.	This	limitation	is	mainly	due	to	the	immutable	and	append-only	feature	of	blockchain	
environments	 in	which	 smart	 contracts	 are	 executed	 [12],[13],[18],[19].	 As	will	 be	 discussed	 in	 Section	 5.2.1,	 a	
conclusion	from	this	matter	is	that	Agile	practices	are	thus	useful	at	the	early	stage	of	BBS	engineering	to	identify	
potential	BBS	 requirements	 and	 smart	 contracts.	 They	may	not	 be	 always	 suitable	 for	 developing	 ever-changing	
business	services.	Rather,	software	teams	should	implement	smart	contracts	for	business	services	with	minimum	
later	 upgrade	 needs	 at	 run-time	 and	 ensure	 the	 verification	 of	 smart	 contracts	 before	 their	 deployments	 on	
blockchain	platforms.	In	this	regard,	[S23]	suggests	separating	the	system	development	lifecycle	into	two	individual	
concurrent	development	 endeavors,	 i.e.,	 	 (i)	 smart	 contracts	 development	 and	 (ii)	 typical	 software	development.	
Complementing	this,	developers	should	implement	proxy/mediator	components	to	enable	interactions	between	(i)	
and	(ii)	and	to	inform	on-blockchain	components	of	changes	in	off-blockchain	components.		
The	benefits	of	agile	development	and	blockchain	are	reciprocal.	Whilst	the	above-mentioned	studies	narrow	their	

focus	on	the	contributions	of	agile	practices	for	the	engineering	of	BBS,	other	studies	explore	the	ways	blockchain	
features	 enhance	 and	 scale	 to	 the	 agile	 development.	 For	 example,	 blockchain	 can	 support	 the	 communication	
between	product	owner	and	developers	in	handling	product	acceptance	test	and	certification	via	smart	contracts	in	
agile	 Scrum	 or	 Lean-Kanban	 process	 as	 discussed	 by	 Lenarduzzi	 et	 al.,	 [53].	 The	 benefit	 of	 blockchain	 to	 agile	
development	falls	out	of	the	scope	of	this	survey,	although,	it	is	an	important	potential	research	area.		

12	

5.1.2 Model-driven BBS development

The	underlying	principle	of	model-driven	development	 (MDD)	 in	 software	engineering	 is	abstraction	 through	
which	 separation	 of	 concerns	 can	 be	 maintained	 between	 abstraction	 (domain	 models)	 and	 specification	
(implementation	models)	along	with	necessary	transformation	rules	to	move	from	abstraction	to	specification	[54].	
The	abstraction	provided	by	models	facilitates	understanding	of	a	given	domain	and	automatic	code	generation	while	
maintaining	the	traceability	between	models	(system	design)	and	code	(system	execution)	[55].	A	model	can	express	
the	structure	and	behavior	of	domain	concepts	and	define	a	set	of	 implying	statements	about	concepts	and	 their	
relationships	 [56].	 Numerous	 advantages	 have	 been	 shown	 for	 incorporating	 MDD	 into	 BBS	 engineering	
[S5],[S16],[S28],[S57],[S29],[S30],[S34],[S52].	 Firstly,	 MDD-based	 development	 platforms,	 e.g.	 Ethereum	 and	
Hyperledger	 Fabric	 (See	 section	 5.2.3),	 offer	 model	 transformation	 techniques	 and	 generate	 well-tested	 smart	
contract	bytecodes	to	automatically	detect	vulnerabilities	that	may	be	exploited	by	attackers	targeting	blockchain	
platforms.	Secondly,	platform-agnostic	models	of	smart	contracts	mitigate	the	issue	of	vendor	lock-in	to	a	specific	
blockchain	platform	as	each	platform	may	have	its	own	programming	language	to	implement	smart	contracts,	which	
reduces	the	reusability	and	platform	interoperability	of	smart	contracts.	If	a	developer	needs	to	deploy	the	current	
smart	contract,	for	example,	written	in	Solidity	language	of	Ethereum	platform	in	Neo	platform	based	on	C#	language,	
he/she	needs	to	learn	a	new	language	and	re-implement	smart	contracts.	By	following	a	MDD-based	approach,	once	
a	 smart	 contract	 is	modeled,	 it	 can	 be	 transformed	 to	multiple	 blockchain	 platforms.	 Thirdly,	 the	 traceability	 to	
requirements	 and	 consistency	 checking,	 for	 instance,	 from	 legal	 contract	 models	 to	 smart	 contract	 models	 and	
subsequently	to	smart	contract	code	models	is	facilitated.	Fourthly,	from	a	human	perspective,	smart	contract	models	
are	easier	 to	understand	 than	smart	 contract	 codes.	Hence,	 they	 improve	communication	 in/between	blockchain	
engineers,	domain	experts,	and	stakeholders.		
The	 abovementioned	 benefits	 can	 be	 embodied	 throughout	 a	 BBS	 development	 endeavor.	 An	 example	 of	 this	

application	 is	 the	work	by	 Jurgelaitis	 et	 al.	 [S5]	 that	proposes	an	end-to-end	development	 lifecycle.	This	work	 is	
inspired	 by	 the	 Model-Driven-Architecture	 (MDA)	 [57]	 approach,	 which	 defines	 three	 types	 of	 models	 that	 are	
gradually	 refined	 from	 high-level	 models	 to	 platform-specific	 ones	 based	 on	 vertical	 model	 transformation	
techniques.	The	authors	use	Computation	Independent	Models	(CIMs)	to	represent	BBS	requirements	and	interaction	
models.	CIMs	are	used	to	derive	Platform	Independent	Models	(PIMs)	representing,	in	particular,	high-level	smart	
contracts	 that	 are	bounded	 to	 implementation	details,	 e.g.	 Ethereum	or	Hyperledger.	 PIMs,	 give	 a	 broad	 view	 to	
software	 teams	of	what	 smart	 contracts	 should	be	 in	operation,	help	with	a	better	 selection	of	 target	blockchain	
platforms,	 specify	 transaction	 structures,	 participants,	 and	 consensus	 algorithms	 which	 are	 next	 reflected	 in	
Platform-Specific	Models	 (PSMs).	Model	 transformation	 rules	 are	 used	 to	 generate	 smart	 contracts	 for	 a	 chosen	
platform	out	of	PSM	models.	In	adopting	MDA	harness,	software	teams	should	identify	what	needs	to	be	modelled	
and	how	it	to	be	transformed.	The	discussion	on	the	challenges	of	model	transformation	for	the	automatic	generation	
of	 smart	 contracts	 is	 an	 important	 potential	 research	 area	 as	 discussed	 in	 the	 selected	 studies	
[S5],[S16],[S28],[S57],[S29],[S30],[S34],[S52],	however,	it	falls	out	of	the	scope	of	this	survey.	

5.1.3 Architecture-based BBS development

In	 software	 engineering,	 architectural	 thinking	 is	 a	means	 for	managing	 software	 development	 complexity	 by	
breaking	 down	 a	 large	 system	 into	 its	 components,	 their	 interrelationships,	 existence	 rationale,	 and	 important	
properties.	 Software	 architecture	models,	 such	 as	4+1	 view	 [58],	 enable	 the	 representation	 of	 different	 software	
architecture	aspects	such	as	logical,	process,	physical,	and	scenario.	This	enables	examining	if	system	quality	factors	
are	 achievable	 [59].	 The	 use	 of	 an	 architecture-centric	 approach	 in	 BBS	 development,	 as	 reported	 in	
[S3],[S4],[S11],[S12],[S33]	is	recommended	for	the	purpose	of	complexity	management.	For	instance,	a	logical	view	
of	the	target	BBS	architecture,	suggests	decomposing	BBS	into	different	layers	for	separation	of	concerns	where	each	
layer	is	allocated	to	an	individual	team.	The	architectural	view	by	Glaser	et	al.	[S33]	divides	BBS	development	into	
three	layers:	(i)	presentation	layer	where	end-users	interact	with	the	BBS,	(ii)	fabric	layer	that	fulfills	basic	services	
and	the	actual	blockchain	code	base	including	communication	layer,	the	public	key	infrastructure,	data	structures,	
and	constructs	 for	developing	and	execution	of	smart	contract	 languages,	and	(iii)	application	 layer	 that	 includes	
software	components	invoking	basic	services	from	the	fabric	 layer.	 In	a	similar	vein,	[S4]	and	[S11]	 jointly	define	
layers	 namely	 application,	 trust,	 blockchain,	 transaction,	 and	 network.	 Alternatively,	 developers	 can	 divide	 BBS	
architecture	into	modules	to	be	designed	and	developed	like	(i)	REST	API/front-end,	(ii)	blockchain	Hyper-ledger,	and	

13	

(iii)	back-end	system,	where	REST	API/front-end	allows	end-users	to	interact	with	blockchain	Hyper-ledger	and	back-
end	system	[S3],	[S12].	In	section	5.2.2,	we	further	discuss	the	role	of	architecture-centric	approach	in	BBS	design	
phase.		

5.1.4 Pattern-based BBS development

A	software	pattern	represents	a	general	solution	to	a	common	recurring	problem,	one	from	which	a	specific	solution	
may	be	derived	[60].	Patterns,	as	a	timeless	piece	of	reusable	knowledge,	are	useful	to	resolve	repeated	problems	
faced	during	development	for	multiple	blockchain	platforms.	Zhang	et	al.,	[S35]	contend	that	due	to	the	structural	
similarity	 of	 smart	 contracts	 to	object-oriented	program	 languages	 like	C++,	 in	 terms	of	 support	 for	 inheritance,	
abstraction,	 and	 polymorphism,	 many	 foundational	 software	 patterns	 can	 be	 employed	 to	 address	 the	 design	
challenges	of	smart	contracts	such	as	interoperability	and	reuse.	Most	patterns	so	far	used	for	BBS,	as	discussed	in	
Section	5.2.2,	are	attuned	with	the	design	phase	and	they	are	classified	into	three	themes:	
(i) existing	well-known	design	patterns	in	conventional	software	engineering	that	are	applied	to	resolve	BBS	
development	challenges	such	as	interoperability	patterns	proposed	by	Zhang	et	al.	[S35];	
(ii) emerging	platform-agnostic	patterns	that	are	results	of	blockchain	practitioners’	experience	gained	while	
developing	 BBS	 in	 real-world	 case	 scenarios	 such	 as	 Solidity	 coding	 practices	 [S36],	 smart	 contract	 design	
patterns	by	Liu	et	al.		[S37],	blockchain	data	migration	patterns	by	Bandara	[S38];	and	gas	consumption		
(iii) platform-specific	patterns	such	as	Ethereum	Solidity	smart	contract	security	design	patterns	[S39],	[S40]		
For	example,	the	collection	of	15	patterns	proposed	by	Liu	[S37]	have	been	identified	and	abstracted	from	different	

real-world	BBS	development	scenarios.	Bartoletti	and	Pompianu	[S40]	analyzed	811	Solidity	smart	contract	source	
codes	 on	 the	 blockchain	 explorer	 (https://etherscan.io)	 and	 extracted	 design	 patterns	 related	 to	 transaction	
execution	time	management	by	a	smart	contract,	i.e.,	time-constraint	patterns,	and	encoding	smart	contract	business	
logic	execution	to	protect	from	critical	operations,	i.e.,	math	patterns,	and	so	on.		
A	 unique	 and	 typical	 challenge	 of	 smart	 contract	 design	 is	 the	 gas	 cost	 consumption	 for	 the	 execution	 of	

transactions	 on	 blockchain	 platforms.	 Each	 transaction	 that	 is	 executed	 by	 smart	 contract	will	 be	 charged	 some	
amount	of	gas,	so	the	more	intensive	the	computations	are,	the	more	gas	fee	should	be	paid	for.	The	execution	of	a	
smart	 contract	may	 be	 failed	 if	 the	 transaction	 is	 excessive	 in	 gas	 consumption.	 On	 the	 other	 hand,	 an	 accurate	
estimation	of	gas	consumption	by	a	smart	contract	may	not	be	easy.	From	this	point	of	view,	design	patterns	and	
recommendations	[S36],	[S39]	can	aid	software	teams	for	smart	contract	design,	with	a	view	to	save	gas.		
From	these	pattern	collections,	it	appears	that,	although	software	patterns	have	gone	some	length	to	effectively	

address	 the	problems	of	BBS	design	phase,	 their	 application	 to	 requirements	 elicitation	and	analysis	 are	not	 yet	
explored	 in	 practice.	 Patterns	 related	 to	 requirements	 engineering	 enable	 software	 teams	 to	 capture	 right	
requirements,	whose	realization	via	BBS	create	added	values,	is	an	important	avenue	for	future	research.	Another	
matter	 related	 to	 the	 deficiency	 of	 literature	 in	 adopting	 patterns	 for	 blockchain	 engineering	 is	 that	 almost	 all	
proposed	patterns	contribute	to	better	BBS	design.	Despite	their	usefulness,	there	is	a	lack	of	patterns	for	specifying	
BBS	development	processes,	which	technically	are	referred	to	as	process	patterns,	a	term	coined	by	Coplien	in	his	
landmark	 paper	 in	 1994	 [60].	 Process	 patterns	 are	 the	 result	 of	 applying	 abstraction	 to	 recurring	 software	
development	processes,	thereby	providing	a	foundation	for	constructing	a	bespoke	software	development	process	
through	the	composition	of	appropriate	process	pattern	instances.	Applied	in	BBS	engineering,	process	patterns	are	
an	invaluable	source	of	insight	for	blockchain	researchers	and	practitioners	because	they	can	normally	reflect	the	
state	of	the	BBS	development	processes	and	are	based	on	recurrent	series	of	actions	and	well-established	concepts.	

5.1.5 Ontology-based BBS development

Ontologies	help	reduce	conceptual	ambiguities	and	inconsistencies	in	a	particular	domain	while	enabling	value-
creation	capabilities	[61].	The	application	of	ontologies	becomes	important	to	facilitate	knowledge	interoperability	
among	stakeholders.	Ontology-based	system	development	is	initiated	by	identifying	concepts/classes	in	a	domain,	
and	followed	by	assigning	properties	for	each	concept	and	defining	domain	constraints	and	relationships	among	these	
concepts	that	need	to	be	verified	if	constraints	are	violated	by	these	properties	[62].	In	view	of	the	identified	studies,	
the	 purpose	 of	 ontology-based	 BBS	 development	 is	 for	 training	 [S41],	 identification,	 design,	 and	 test	 of	 smart	
contracts	 [S42],[S43],	 and	 improving	discoverability	of	 smart	 contract	 services	 at	 the	 run-time	 [S44].	Kruijff	 and	
Weigand	[S41]	discuss	the	support	of	ontologies	for	BBS	development	by	providing	essential	concepts	related	to	an	

14	

operational	BBS.	Their	proposed	ontology	can	be	viewed	as	a	training	material	for	software	teams	who	might	not	be	
familiar	 with	 the	 key	 concepts	 of	 blockchain.	 This	 pioneering	 effort,	 in	 turn,	 has	 motivated	 others	 to	 explore	
alternative	applications	of	ontologies	to	support	the	development	activities	of	BBS,	in	particular	the	design	phase,	as	
will	be	delineated	in	Section	5.2.		

5.2 RQ2: What are the key emerging and changing tasks in developing BBS?

BBS	engineering	aims	at	achieving	business	outcomes	such	as	lower	transaction	cost,	reduced	dependency	on	trusted	
third	parties,	regulation	compliance	and	certification,	and	secure	data	access.	To	this	end,	a	series	of	tasks	needed	to	
be	accomplished	these	outcomes.	We	identified	these	tasks	from	our	primary	studies	and	these	are	depicted	in	Figure	
4.	The	tasks	are	grouped	into	four	typical	SDLC	phases.	

	
Fig. 4. Process conceptual map	

5.2.1 BBS analysis

The	 analysis	 phase	 encompasses	 tasks	 related	 to	 requirements	 elicitation	 and	 verification.	 It	 establishes	 a	 link	
between	stakeholders’	needs	and	desired	features	of	the	target	BBS.	Note	that	tasks	feasibility	analysis	of	BBS	and	
requirements	analysis	of	BBS	in	our	framework	are	by	no	means	a	complete	description	of	comprehensive	analysis	
phase	of	BBS	engineering.	They	do	highlight	some	distinctions	of	BBS	development	from	non-blockchain	software	
engineering.	We	elaborate	on	major	challenges	related	to	this	phase	as	follows.	
Feasibility	analysis	of	BBS.	BBS	 is	not	merely	a	 technical	shift	and	a	subject	of	 regulation	but	also	a	substantial	

change	in	the	way	all	stakeholders	and	systems	hereinafter	will	operate,	provide	services	to	users,	and	be	maintained.	
A	BBS	might	be	at	the	same	time	disruptive	to	some	stakeholders	and	sustaining	to	others.	Hence,	the	first	essential	
task	in	the	development	process	is	to	examine	if	blockchain	technology	enablement	is	a	suitable	option	to	embed	into	
organizational	business	processes	and	to	come	up	with	an	outline	plan	for	the	next	phases.	The	most	recent	literature	
enumerates	important	situation	factors	(or	competing	factors)	that	can	inhibit	BBS	development	process	and	thus	
should	be	examined	in	the	feasibility	analysis	task	as	shown	in	Table	3.	

Table	3.	Sample	list	of	situational	factors	for	consideration	in	feasibility	analysis	of	BBS	task	

15	

Category	 Situational	factor	 Possible	values	for	the	factor	 References	

Organization	

Management	commitment	 Low,	medium,	high	 [S16],[S24],[S46],[S47]	
Organizational	restructuring	 Hierarchical,	 functional,	 horizontal,	

divisional,	matrix,	team-based,	network			
[S16],[S24],[S46],[S47]	

Business	change	 Rarely,	occasionally,	frequent,	always		 [S22],	[S23],	[S24]	
Energy	consumption	cost	 Low,	medium,	high	 [S1]	

Software	
team	

Development	 skills	 in	 cryptography,	
law/legislation		

Low,	medium,	high	 [S1],[S6],[S9],[S13],[S16],	
[S22],[S45],[S46],[S52],	
[S55],[S56]	

Technical	

Immutability	of	data	 Stable,	volatile	 [S24]	
Data	format	 Homogeneous,	mixture,	substance			 [S38]	
Visibility/transparency	 Public,	private,	protected,	package	private	 [S24],[S45]	
Transaction	fee	 Free,	low	cost,	variable,	expensive		 [S38]	
Data	provenance		 Source,	temporal,	meta-data	result		 [S38]	
Transactionality	 Low,	medium,	high	 [S24]	
transaction	performance	 Critical,	fairly	important,	low,	moderate		 [S24],[S25],[S26],[S47]	
Roll-back	performance	 Critical,	fairly	important,	low,	moderate		 [S24]	
Demanding	infrastructure		 None,	emergent,	operating,	matured	 [S24]	
Vendor	lock-in	 Impossible,	unlikely,	even	chance,	certain	 [S48]	
Hosting	modes	 Cloud,	dedicated	servers,	virtual	private,		 [S38]	
Smart	contract	tool	availability		 Yes,	no	 [S31],	[S52]	

		
—Immutability	achieved	through	cryptographic	algorithms,	can	be	a	cost	barrier	to	a	BBS	project	[S24].	That	is,	if	the	
need	for	the	data	persistency,	immutability,	and	records’	longevity	is	not	greatly	important,	BBS	may	be	an	expensive	
choice,	 as	 implementation	 effort	will	 be	 required	 in	 subsequent	phases,	 in	 comparison	 to	other	data	persistency	
mechanisms	 such	 as	 normative	 database	management	 systems	 (e.g.,	 Relational	 Database	Management	 Systems).	
Stakeholders	need	to	decide	if	immutability	is	a	real	need	to	be	addressed	by	a	BBS	development	instance.		
—Visibility	and	transparency	indicate	that	BBS	enables	all	participants	in	the	network	to	observe	the	chain	of	blocks,	
regardless	of	privacy	and	anonymity	applied	to	the	data,	download	blocks,	and	check	them	against	contract	rules.	For	
example,	 participants	 can	 validate	 if	 there	 is	 a	 certain	 threshold	 for	 ordering	 items	 from	 a	 specific	 supplier,	
automatically	via	smart	contracts.	Visibility	to	external	actors	and	systems	is	a	situational	factor	that	should	be	taken	
into	account	in	the	BBS	project	feasibility	analysis	task	[S3],[S24].		
—Organization	 restructuring	means	 that	BBS	may	 raise	 complexities	 and	 changes	 in	 intermediary	 trusted	 legacy	
systems,	cooperating	organizations,	boundaries,	and	layered	based	organizational	structure	for	the	coordination	and	
enforcement	of	business	legislations	and	privacy	rules.	This	often	results	in	a	decentralized	structure	comprising	of	
peers	working	according	to	fully	transparent	rules	which	are	written	in	smart	contracts	[S16],	[S24],	[S46],	[S47].	
Hence,	smart	contracts	should	be	adopted	only	if	all	parties	agree	to	perform	transactions	on	distributed	ledgers.	
Findings	 in	 the	 research	 by	 Du	 et	 al.,	 [S47]	 highlight	 that	 an	 incremental	 approach	 takes	 precedence	 over	 a	
revolutionary	 approach	 for	 organizations	 to	 develop	 BBS	 to	 accumulate	 tangible	 outcomes	 of	 addressing	
stakeholders’	concerns	prior	to	proceeding	towards	phases.	Moreover,	BBS	presents	a	risk	of	software	maintenance	
team	downsizing.	That	is,	as	BBS	increases	the	automation	of	decision	making	such	as	documentation,	monitoring,	
verification,	and	auditing	reports	that	are	traditionally	manually	performed,	staff	associated	with	these	activities	will	
no	longer	be	needed.		
—Transactionality	 of	 organizational	 business	 services	 needs	 to	 be	 evaluated	 before	 converting	 them	 to	 smart	
contracts.	 If	 the	 type	 of	 business	 services	 is	 not	 concerned	 with	 verifying	 and	 enforcing	 credible	 processing	
transactions	and	data	exchange	between	permitted	participants,	then	BBS	development	is	not	worth	it.	For	example,	
blockchain	may	not	make	an	applicable	case	for	simulation	systems	where	the	credibility	of	experimental	data	is	not	
concerned.	In	such	a	situation,	Scriber	et	al.,	[S24]	suggest	that	non-transactional	services	may	indirectly	benefit	from	
BBS	via	intermediator/proxy	software	components	–	depending	on	the	definition	of	use-case	scenario-	where	the	
intermediator	sends/receives	transactions	between	BBS	and	non-transactional	services.	
—Operational	performance	 relates	 to	 the	 result	 of	 integrating	 existing	 legacy	 software	with	BBS.	This	 evaluation	
should	be	based	on	factors	such	as	acceptable	latency	and	level	of	transaction	verification.	Unlike	non-BBS	systems,	
in	which	a	 transaction	verification	 can	be	determined	 instantly,	BBS	harness	 is	 attributed	by	 limited	operational	
performance	due	to	the	latency	of	associated	Proof	of	Work	(PoW)	algorithms	to	reach	consensus	and	interoperability	
amongst	chains/ledgers	as	pinpointed	by	findings	of	[S24],	[S25],	[S26],	[S47].	A	node	might	accept	a	transaction,	but	

16	

wait	for	an	extended	period,	based	on	the	defined	consensus	model,	for	verifying,	sharing,	accepting,	and	encoding	a	
transaction	into	the	chain	of	blocks.	If	the	target	BBS	is	expected	for	a	real-time	response	or	specific	performance,	i.e.	
processing	millions	 of	 transactions	 continuously,	 BBS	will	 affect	 the	 overall	 performance	 and	 scalability	 [3].	 To	
alleviate	this	issue,	Du	et	al.,	[S47]	suggest	that	software	teams	should,	in	collaboration	with	stakeholders,	identify	an	
essential	dataset	from	business	transactions	for	storing	on	blockchain	and	keep	non-essential	transactional	data	on	
traditional	 database	 systems.	 Furthermore,	 data	 and	 transaction	 security	 enforced	 by	 cryptography	 and	 PoW	
algorithms	affect	expected	BBS	performance.	In	particular,	for	IoT-based	BBS,	constrained	devices	might	not	be	able	
to	perform	more	advanced	cryptographic	techniques	due	to	limited	bandwidth,	battery	capacity,	memory,	processing	
power,	and	heat	management	issues	[S24].		
—Demanding	 infrastructure	(or	 technical	maturity)	 refers	 to	providing	support	 for	 the	high	degree	of	 transaction	
processing,	 computational	 power	 to	 perform	 cryptography	 algorithms,	 storage	 size,	 and	 high	 bandwidth	 for	
distributed	nodes,	which	are	essential	to	deploy	and	maintain	BBS.	Organisations	in	poor	regions	or	rural	areas	may	
not	be	able	to	afford	these	costs	if	are	to	set	up	BBS	on	their	own	infrastructural	[S24].		
—There	are	other	concerns	that	cause	BBS	to	turn	out	ill-suited	and	far-reaching	consequences	in	later	phases	that	
turn	out	to	be	costly	to	rectify.	These	concerns,	mainly	related	to	the	current	technical	limitations,	are	gas	consumption	
cost	(computational	effort	required	to	execute	operations	by	smart	contract)	[S1],	development	skills	in	cryptography	
[S1],[S6],[S9],[S13],[S16],[S22],[S45],[S46],[S52],[S55],[S56],	business	change	[S22],[S23],[S24],	delayed	rollback	for	
cancelled	 transactions	 after	 verification	 [S24],	 differences	 in	 data	 format,	 hosting	 modes,	 transaction	 fees,	 data	
provenance	[S38],	vendor	lock-in/platform	[S48],	and	tool	availability	for	smart	contracts	test	[S31],[S52].		
Software	 teams	 can	 embed	 the	 existing	 conventional	 techniques	 into	 the	 development	 process	 to	 conduct	 a	

feasibility	analysis	of	BBS	task	such	as	conducting	workshops	[S31],	[S49],	acceptability	questionnaire	[S5],	creating	
core	technology	working	group	[S50],	and	prototyping	[S51]	to	evaluate	if	BBS	simplifies	the	business	processes	and	
is	an	appropriate	fit.	It	should	be	noted	that	the	abovementioned	factors	may	influence	each	other	and	hence	should	
be	investigated	before	moving	to	further	phases	of	the	BBS	development	process.	
Requirements	analysis	of	BBS.	A	highlighted	challenge	of	requirements	analysis	in	the	context	of	BBS	development	

is	 to	 identify	 right	 and	 cogent	 use-cases.	 Plansky	 et	 al.,	 [S50]	 propose	 a	 four-step	 technique	 starting	 with	 the	
compilation	of	a	pilot	project	that	all	stakeholders	believe	a	distributed	ledger	can	contribute	to	strong	prospects.	
Existing	pain	points	such	as	the	lack	of	trust	in	the	current	collaborative	business	processes,	conformance	checks,	
intermediary	delays,	and	areas	of	user	dissatisfaction	should	be	identified.	Explicit	hypotheses	on	how	BBS	improves	
these	issues	in	terms	of	decreasing	a	certain	level	of	organizational	cost	in	a	specified	time	period	are	defined	in	the	
second	step.	This	is	followed	by	developing	the	BBS	prototype,	for	example,	a	smart	contract,	to	attest	hypotheses	in	
the	third	step.	If	the	prototype	gets	a	clear	sense	of	hypotheses	acceptance,	a	project	plan	aiming	at	a	few	long-term	
goals	e.g.	increased	revenue,	better	compliance,	cost	reductions,	is	set	for	the	scaling	up	prototype	in	a	measurable	
way.	 In	 the	 same	 vein,	 Fridgen	 et	 al.,	 [S52]	 propose	 a	 technique	with	 application	 examples	 in	 five	 idiosyncratic	
industrial	 cases.	 The	 technique	 consists	 of	 the	 following	 steps:	 (i)	 understanding	 blockchain	 technology	 to	 get	 a	
conceptual	and	technical	foundation,	(ii)	deriving	BBS	application	scenarios,	(iii)	analyzing	existing	legacy	systems,	
(iv)	 documenting	 application	 scenarios,	 and	 (v)	 and	 developing	 and	 evaluating	 the	 prototype.	 Moreover,	 the	
requirements	analysis	 in	 the	proposed	development	process	by	Marchesi	et	al.,	 [S3]	relies	on	Agile	practices	and	
includes	 the	 following	steps:	 (i)	 specifying	blockchain	adoption	goals	visible	 to	 stakeholders,	 (ii)	 identification	of	
actors	 interacting	 with	 target	 BBS,	 e.g.	 human,	 external	 system,	 and	 IoT	 devices,	 (iii)	 determining	 the	 trust	
requirements	between	actors	and	BBS	components,	and	(iv)	documenting	requirements	in	the	form	of	user	stories	
and	 expected	 features.	 Alternatively,	 the	 approach	 of	Du	 et	 al.,	 [S47]	 underlines	 the	 role	 of	 blockchain	 as	 a	 new	
automated	trust-building	machine.	Accordingly,	software	teams	should	identify	user	inputs,	manual	verification,	and	
reconciliation	in	transactions	as	candidate	areas	for	converting	them	to	smart	contracts	that	create	self-executing	
transactions	through	if-then	conditions.	A	particular	group	of	requirements	that	need	more	attention	is	related	to	
security,	which	should	be	captured	at	the	early	stage	of	the	development	and	be	addressed	in	the	design	and	test	
phases	[S1].	Other	than	that,	the	literature	suggests	further	techniques	for	requirements	identification	such	as	events	
occurrence	identification	[S48]	and	data-driven	[S53].	They	specify	data	elements	of	a	problem	domain	and	uncover	
data	flow	that	is	needed	to	be	transformed	and	managed	by	smart	contracts,	respectively.		

17	

5.2.2 BBS design

The	basic	assumption	 in	the	design	phase	 is	 that	 it	 leverages	the	output	produced	by	the	analysis	phase	(Section	
5.2.1).	The	design	phase	dedicates	identifying	features	to	be	exhibited	and	requirements	to	be	satisfied	by	a	specific	
architectural	blueprint	of	target	BBS.	According	to	the	identified	papers,	discussion	on	the	design	phase	is	organized	
into	three	essential	architectural	design	decisions	including	(i)	decision	on-blockchain	and	off-blockchain	components,	
(ii)	decision	on	blockchain	type,	and	(iii)	decision	on	being	permission-based	or	permission-less	blockchain,	as	well	as	
seven	key	design	tasks:	(i)	state	management	design,	(ii)	replication	and	synchronization	design,	(iii)	authentication	
and	authorization	design,	(iv)	interaction	design,	(v)	smart	contract	design,	(vi)	consensus	mechanism	design,	and	(vii)	
incentive	mechanism	design.	Both	key	architectural	design	decisions	and	tasks	should	be	centered	on	the	common	
system	quality	factors	such	as	privacy,	security,	energy	efficiency,	scalability,	and	interoperability.	They	are	realized	
in	the	next	phase	by	implementing	new	software	and	hardware	BBS	components.		
Key	architectural	design	decisions.	The	architecture	of	a	BBS	can	be	viewed	as	the	set	of	interrelated	design	decisions	

that	influence	the	quality	factor	of	the	overall	BBS	functionality.	Thus,	decisions	are	thus	indispensable	to	the	success	
of	BBS	development	endeavor.	These	include:		
—Decision	about	on-blockchain	and	off-blockchain	components.	This	concerns	determining	functionalities	that	should	
be	kept	in	a	local	organizational	network	and	functionalities	that	are	deployed	in	a	blockchain	network	[S54].	Such	
segregation	 between	 on-blockchain	 and	 off-blockchain	 components,	 as	 used	 in	 [S1],[S11],[S30],[S38],[S39],	 and	
[S54],	facilitates	the	separation	of	concerns	and	manageability	of	implementation	and	maintenance.	On-blockchain	
components	are	smart	contracts	 that	are	deployed	and	executed	on	blockchain	platforms	whereas	off-blockchain	
components	host	off-line	data	and	application	business	logic.	Off-blockchain	components	interact	with	On-blockchain	
components	 via	 transactions.	 The	 interaction	 between	 these	 two	 groups	 of	 components	 is	 enabled	 via	mediator	
components	 [S30]	or	gateway	 connector	 components	 [S54]	 that	provide	 services	 for	 communication	 (transferring	
data),	 coordination	 (transferring	 control),	 conversion	 (adjusting	 unmatched	 interactions),	 and	 facilitation	
(optimizing	interactions),	as	depicted	in	Figure	5.		

	
Fig. 5. A BBS architecture representation based on off-blockchain and on-blockchain components

—Decision	on	blockchain	type.	The	type	of	blockchain	network	-	public,	private,	and	consortium-	leads	to	making	a	
trade-off	between	quality	 factors	such	as	privacy,	performance,	 traceability,	and	transparency.	Unlike	private	and	
consortium	 blockchains	 where	 a	 single	 or	 a	 limited	 number	 of	 organizations	 authorize	 and	 control	 transaction	
validations,	a	public	blockchain	may	include	a	large	number	of	nodes.	All	committed	transactions	in	a	chain	of	blocks	
are	visible,	downloadable,	and	verifiable	to	all	nodes	in	the	blockchain	network.	Whilst	this	enables	better	information	
transparency	 and	 audit-ability,	 on	 the	 other	 hand,	 the	 transparency	 in	 public	 networks	 is	 at	 the	 expense	 of	
information	privacy	and	scalability	degradation	for	a	large	chain	of	blocks.	Another	example	of	trade-off	architecture	
decision-making	situation	is	that	both	private	and	consortium	types	offer	partial	immutability	because	participants	
can	agree	within	the	network	to	change,	update,	or	delete	a	previous	record.	Despite	the	immutability	constraints,	
private	and	consortium	blockchain	have	significantly	higher	transaction	throughput	compared	to	public	blockchain	
as	well	as	cheaper	set-up	cost	due	to	less	required	resources.	Lin	et	al.	[S1]	recommend	that	public	blockchain	should	
limit	the	number	of	smart	contracts	and	writing	of	permanent	data	due	to	the	high	costs	such	as	computational	power	
and	 data	 capacity	 involved	 in	 running	 computations	 and	 recording	 in	 the	 permission-less	 network.	 Therefore,	
software	teams	should	not	move	all	computations	and	data	to	the	blockchain.	A	common	recommendation,	as	jointly	
pointed	by	[S1],	[S3],	[S47],	[S54],	is	to	keep	the	big	and	private	raw	data	off-blockchain	whilst	the	tamper-resistant,	

18	

transparent,	 and	 traceable	 data	 reside	 on-blockchain.	 For	 instance,	 the	 hash	 of	 personal	 data	 can	 be	 stored	 on-
blockchain	and	the	raw	data	are	saved	to	off-chain	to	provide	better	scalability	and	higher	efficiency.	
—Decision	 on	 being	 permission-based	 or	 permission-less	 blockchain.	 This	 concerns	 with	 the	 extent	 to	 which	 a	
participant	plays	in	a	blockchain	network.	The	authority	of	permission	management	is	granted	by	a	permission-based	
blockchain	 network.	 Permission	 definition	 ranges	 from	 joining	 the	 network,	 transaction	 submission,	 transaction	
validation,	asset	creation	to	mining	operations.	For	example,	a	participant	node	that	is	allowed	to	join	the	network	
has	the	read	permission	on	the	recoded	transactions	in	blockchain.	In	a	permission-less	architecture,	e.g.,	Bitcoin	and	
Ethereum,	a	participant	can	be	either	pseudonymous	or	anonymous.	In	a	permission-based	architecture,	e.g.,	Ripple	
and	Eris	 Industries,	 the	 identity	of	 participants	 is	 identifiable,	which	 is	 similar	 to	 conventional	 commercial	 bank	
accounts	.	Hence,	in	permissioned	architecture,	participants	need	a	legal	identity	to	validate	transactions.	Both	public	
and	permission-less	blockchain	architecture	do	not	guarantee	data	security	and	privacy.	In	other	words,	any	node	
can	 join	 the	 network	 and	 visit	 all	 data	 records	 of	 participants.	 Since	 legal	 contracts	 that	 are	 executed	 by	 smart	
contracts	will	be	accessible	by	participants	in	the	public	blockchain,	software	teams	may	be	reluctant	to	use	BBS	or	
they	 need	 to	 select	 a	 permissioned	 blockchain	 architecture	 to	 grant	 or	 revoke	 permissions	 to	 participants.	 The	
permissioned	blockchain	can	enforce	access	control	to	participant	nodes.	Whilst	developers	might	want	to	encrypt	
transaction	data	on	public	and	permission-less	blockchain	through	cryptography	algorithms	to	alleviate	the	privacy	
issue,	on	the	other	hand,	a	side	effect	of	the	encryption	is	the	overall	BBS	performance	and	throughput	degradation	
due	to	processing	time	needed	for	the	data	encryption/decryption.	Hence,	in	the	selection	between	permissioned	or	
permission-less	architecture	for	BBS,	software	teams	should	make	the	trade-offs	between	factors	such	as	security,	
transaction	processing	rate,	cost,	censorship,	and	reversibility	[S55].	
—There	 are	 other	 design	 decisions	 listed	 by	 Arthur	 [S48]	 that	 influence	 architecture	 design,	 such	 as	 the	 size	 of	
transactions,	speed	of	response	times,	and	data	storage	(in	block/out	of	block).		
In	the	following,	we	review	seven	essential	design	tasks	that	are	frequently	highlighted	by	our	selected	papers.	We	

view	the	necessity	of	these	tasks	in	relation	to	the	layers	of	blockchain	architecture	as	shown	in	Table	4.	Based	on	the	
proposed	layers	in	[S3],	[S11],	[S12],	[S31],	[S33],	the	following	distinct	layers	of	BBS	are	notable:		
—Application	 layer	packages	existing	 legacy	systems	or	new	software	applications	and	use	cases	 interacting	with	
smart	contracts;		
—Smart	 contract	 layer	 includes	various	 scripts	and	algorithms	 that	 execute	 certain	operations	on	data,	memory,	
business	process,	and	assets	stored	in	blockchain	network	once	pre-conditions	are	met.	
—Incentive	 layer	 defines	 mechanisms	 for	 economic	 rewards	 in	 blockchain	 network	 to	 motivate	 participants	 to	
continue	their	effort	for	new	block	validation	once	it	is	created.	
—Consensus	 layer	 contains	 possible	 consensus	 algorithms	 to	 reach	 transaction	 validity	 once	 it	 is	 added	 to	 the	
blockchain.		
—Network	layer	specifies	mechanisms	of	distributed	networking	for	data	forwarding,	routing,	and	verification.	
—Data	layer	stores	the	chain	of	data	blocks	via	related	mechanisms	such	as	asymmetric	encryption,	time-stamping,	
and	hash	algorithms;	and			
—Physical	layer	includes	hardware	components	such	as	servers,	networks,	and	IoT	devices	on	which	BBS	components	
are	deployed.	

Figure	to	be	added	
In	performing	these	tasks,	software	teams	face	trade-offs	among	many	quality	factors	across	different	layers	of	BBS	

architecture.	These	are	explained	along	with	illustrative	examples	in	the	following.		

Table	4.	Design	tasks	based	on	their	correspondence	to	blockchain	architecture	layers	
										Task	
Layer	

State	
management	

Replication	and	
synchronization	

Authentication	
and	authorization		

Interaction	 Smart	
contract		

Consensus	
mechanism	

Incentive	
mechanism	

Application	 ×	 ×	 √	 √	 ×	 ×	 ×	
Smart	
contract		

√	 ×	 √	 √	 √	 ×	 ×	

Incentive		 ×	 ×	 ×	 √	 ×	 ×	 √	
Consensus	 ×	 √	 √	 √	 ×	 √	 ×	
Network	 ×	 ×	 √	 √	 ×	 ×	 ×	
Data		 √	 √	 √	 √	 ×	 ×	 ×	
Physical	 ×	 ×	 √	 √	 ×	 ×	 ×	

19	

State	management	design.	In	an	on-blockchain	environment,	a	state	is	a	snapshot	of	distributed	ledger	at	a	specific	
time.	The	state	changes	as	a	result	of	creating,	updating,	or	deleting	blocks.	In	such	a	self-contained	environment,	a	
ledger	keeps	a	full	record	of	state	transitions	in	a	timestamp-sequenced,	immutable,	and	tamper-resistant	way.	In	an	
off-blockchain	 environment,	 however,	 external	 software	 applications	 do	 not	 keep	 these	 states	 to	 perform	 their	
transactions.	This	means	the	state	of	external	systems	is	not	accessible	to	on-blockchain	components,	for	example,	a	
smart	contract,	if	they	need	to	know	that	state	to	complete	its	functions	(Figure	5).	This	can	be	problematic	for	the	
validation	of	 cross-domain	 transactions	 that	may	depend	on	 the	 states	 of	 both	 on-blockchain	 and	off-blockchain	
environments.	To	handle	this	issue,	some	useful	design	patterns,	are	proposed	by	Xu	et	al.,	[S26]	and	Zhang	et	al.	
[S35].	These	are	concerned	with	interaction	with	the	external	world	and	resolve	the	interaction	issues	between	BBS	
components	 and	 the	 external	 components	 [S26],	 [S35].	 The	 patterns	 are	 suggested	 to	 design	 state	management	
components	and	they	are	based	on	the	notion	of	(i)	Oracle,	i.e.,	storing	the	state	of	external	systems	into	the	blockchain	
execution	 environment	 and	 (ii)	 reverse	 Oracle,	 i.e.,	 creating	 an	 interface	 between	 external	 systems	 and	 smart	
contracts	for	supplying	data	and	check	conditions,	and	(iii)	validation	oracle	i.e.,	a	state	coordination	mechanism	to	
check	conditions	that	cannot	be	represented	in	an	on-blockchain	environment.	If	a	transaction	validation	depends	on	
external	states,	the	validation	oracle	is	asked	to	validate	and	sign	the	transaction.	The	validation	oracle	mechanism	
can	 be	 performed	 by	 automated	 or	 human	 arbitrator	 by	 injecting	 external	 states	 into	 blockchain	 via	 regularly	
updating	the	values	of	external	application	states	within	the	contract	storage.	Alternatively,	Luu	et	al.	[S17]	propose	
a	 technique	 in	which	 a	 transaction	T	 defines	 a	 guard	 condition	g	 too.	 The	 current	 state	 should	 satisfy	g	 for	 the	
execution	of	T	to	proceed.	If	g	is	not	satisfied,	the	transaction	is	simply	dropped	by	the	new	rule.	For	transactions	
which	do	not	provide	g,	we	simply	consider	g	≡	true.	This	solution	guarantees	that	either	the	sender	gets	the	expected	
output	or	the	transaction	fails.	Nevertheless,	software	teams	should	be	aware	that	all	these	ways	affect	the	execution	
performance	of	transactions	and	cause	a	delay	due	to	the	need	to	make	sure	the	consistency	of	states	between	on-
blockchain	and	off-blockchain	components	by	validation	oracle	mechanism	[S55].		
Replication	and	synchronization	design.	There	are	differences	in	the	design	of	data	replication	and	synchronization	

between	conventional	software	systems	and	BBS	[S55].	In	the	non-BBS	context,	software	teams	adopt	common	data	
partitioning	and	replicating	mechanisms	such	as	master-slave	or	multi-master	replication	to	improve	the	throughput,	
sustainability,	 and	 latency	 of	 a	 software	 system.	 In	 contrast,	 in	 BBS	 harness,	 each	 data	 block	 is	 duplicated	 over	
network	nodes,	which	 causes	unwanted	 increase	 in	 latency	 and	 reduction	of	 throughput.	Moreover,	 for	 the	data	
synchronization	design	in	conventional	software	architecture	design,	there	are	well-known	mechanisms	such	as	2-
Phase	Commit	and	Paxos	to	keep	data	replication	synchronized.	The	synchronization	mechanism	in	BBS	is	based	on	
reaching	 consensus	 among	 network	 nodes	 to	 perform	 correct	 operations	 regardless	 of	 faulty	 components.	
Additionally,	consistency	control	on	performing	transactions	in	BBS	is	based	on	the	defined	terms	and	rules	in	their	
associated	smart	contracts.	The	choice	of	replication	and	synchronization	mechanisms	[13],[18],[19],[37],	will	be,	
unavoidably,	influencing	final	BBS	quality	factors	of	throughput,	sustainability,	and	latency.		
Authentication	and	authorization	design.	Specific	mechanisms	should	be	designed	to	enable	the	identity	detection	

of	 an	 entity	 in	 a	 blockchain	network,	which	 either	manages	data	 for	 operational/business	purposes	or	provides	
services	to	participants,	via	cryptography	techniques	such	as	digital	signatures,	homomorphic	encryption,	and	multi-
party	 computation	 [13],[18],[19].	 In	particular,	 for	a	permissioned	blockchain,	 an	additional	 access	 control	 layer	
should	be	defined	via	Certificate	Authority	(CA)	and	a	Membership	Service	Provider	(MSP).	Hebert	et	al.,	[S49]	list	a	
comprehensive	set	of	security	risks	including	fifteen	general	categories	of	risks	from	key	management	to	privacy,	
consensus,	interoperability,	and	legal	concerns.	To	tackle	these	risks,	[S1]	and	[S3],	jointly,	define	a	set	of	security	
design	principles	that	should	be	realized	via	implementing	new	components	in	BBS	architecture.	The	following	sub-
activities	are	recommended:	
—Log	design.	BBS	reflects	historical	records	and	the	usage	of	data	by	any	entities	such	as	who,	why,	when,	what	
and	how,	that	all	should	be	logged	in	the	log	ledger	in	a	verifiable	way.	
—Policy	 design	 for	 data	 usage.	 The	 policy	 indicates	 rules	 for	 topics	 such	 as	 access	 rights,	 permissions,	 and	
conditions.		
—Off-Chain	data	storage	design.	Storing	sensitive	data	directly	in	blockchain,	regardless	of	encryption	techniques	
applied,	 can	 be	 at	 the	 risk	 of	 privacy	 leakage.	 Thus,	 the	 sensitive	 data	 should	 be	 stored	 in	 off-blockchain	
components	such	as	conventional	database	management	systems	(e.g.,	Oracle	or	MongoDB),	cloud	storages	(e.g.,	
S3,	AWS	or	Azure),	and	distributed	storages	(e.g.,	IPFS	or	Storj).	The	reference	to	these	data	should	be	stored	in	

20	

the	blockchain.	Such	a	reference	can	be	a	hash,	a	connection	string,	an	absolute	path,	or	an	identifier	referring	to	
a	dataset.	
—Circuit	breaker	design.	This	indicates	necessary	emergency	termination	functions	in	smart	contracts	that	are	
triggered	in	the	case	of	bugs	or	the	occurrence	of	abnormal	behaviour	by	an	entity.		
Interaction	design.	This	task	is	to	specify	interdependencies,	integration	pain	points,	and	the	way	BBS	components	

can	 communicate,	 exchange,	 and	use	 each	other’s	 services.	 It	 helps	 characterize	 the	 overall	 architecture	 and	 the	
position	 of	 BBS	 in	 the	 operational	 environment.	 A	 key	 concern	 during	 the	 interaction	 design	 task	 is	 the	
interoperability	factor	across	the	BBS	layers.	This	is	due	to	reasons	like	(i)	switching	BBS	between	single	or	multiple	
blockchain	platforms,	(ii)	BBS	integration	with	existing	legacy	software	applications,	and	(iii)	multiple	types	of	BBS	
support	 the	 completion	 of	 a	 cross-domain	 transaction	 within	 networks,	 which	 involve	 computational	 resources	
owned	by	different	entities,	(iv)	changing	hardware	components	on	which	BBS	instance	is	running,	and	(vi)	changing	
a	smart	contract	to	a	new	one	or	combing	several	smart	contracts	into	a	single	one.	For	instance,	some	smart	contracts	
that	are	upgraded	to	new	Ethereum	Virtual	Machine	(EVM)	with	the	aim	of	strengthening	the	security	and	optimizing	
performance,	may	raise	interoperability	issues	–	in	the	scope	of	the	platform	versions,	smart	contract	languages,	and	
APIs.	 Hardjono	 et	 al.,	 [S56]	 investigate	 the	 interoperability	 issues	 in	 BBS	 architecture	 design	 and	 propose	 the	
following	root	cause	analysis	to	identify	interoperability	pain	points:	(i)	minimal	assumption,	i.e.	identifying	the	unit	
of	 transaction	 that	 is	 semantically	 recognizable	 for	multiple	 BBS,	 (ii)	degrees	 of	 permissionability,	 i.e.	 identifying	
transactions	 that	 are	 processed	 by	 both	 permissioned	 network	 and	 external	 permission-less	 networks	 (foreign	
domains),	 and	 (iii)	 participants,	 i.e.,	 identifying	 network’s	 nodes	 that	 are	 involved	 in	 transaction	 processing.	 In	
addressing	the	interoperability	pain	points	for	cross-domain	transactions,	Hardjono	et	al.,	[S56]	rely	on	the	notion	of	
peering	 agreement	 in	 autonomous	 systems	 and	 recommend	 steps	 of	 designing	 (i)	 semantic	 compatibility	 that	 is	
required	 for	 multiple	 BBS,	 (ii)	 data	 exchange	 and	 communication	 protocols,	 (iii)	 mediators,	 delegations,	 and	
technical-trust	mechanisms,	and	(iv)	agreements	such	as	level	of	services,	fees,	penalties,	liabilities,	and	warranties.		
Recall	from	Section	5.1,	software	patterns	can	be	used	to	resolve	interoperability	issues	between	on-blockchain	

and	off-blockchain	components.	Zhang	et	al.,	[S35]	exploit	the	application	of	software	design	patterns	to	address	BBS	
interoperability	design	issues	and	choose	e-health	software	applications	as	a	representative	use	case.	The	application	
of	four	sample	software	patterns,	namely	abstract	factory,	flyweight,	proxy,	and	publisher-subscriber	is	appraised.	For	
example,	 to	 abstract	 away	 the	 implementation	 detail	 of	 data	 storage	 of	 a	 smart	 contract,	 the	 proxy	 pattern	 is	
suggested	 that	 enables	 seamless	 interaction	 between	BBS	 components	while	 still	 supporting	 variations	 in	 smart	
contract’s	data	storage	options.	Moreover,	the	abstract	factory	pattern	provides	the	creation	services	to	instantiate	
generic	 smart	 contracts	 to	 domain-specific	 ones.	 Heterogeneity	 of	 blockchian	 platforms	 and	 legacy	 systems	 and	
support	for	the	data	migration	from	on-premise	to	blockchian	platforms	or	migration	between	multiple	blockchain	
platforms	have	been	taken	into	account	from	software	pattern-oriented	view	by	providing	blockchain	data	migration	
patterns	[S38]	such	as	state	extraction	pattern,	state	transformation	patterns,	state	and	transaction	load	patterns,	and	
safe	data	management.	
Smart	contract	design.	The	aim	of	this	task	is	to	(i)	analyze	existing	textual	legal	contracts,	(ii)	identify	and	convert	

semantic	clauses	and	rules	that	are	expressed	as	smart	contracts,	and	(iii)	transform	smart	contracts	expressible	as	
software	codes.	Derived	from	our	selected	papers,	we	broadly	divide	the	task	of	smart	contract	design	into	two	sub-
tasks	of	(preliminary)	high-level	design	and	(detailed)	low-level	design	as	shown	in	Figure	6.		

21	

	
Fig. 6. Smart contract design conceptual map	

The	high-level	design	sub-task	 is	 concerned	with	crafting	an	 initial	 structure	 for	 smart	 contracts	by	 translating	
clauses	 of	 legal	 (textual)	 contracts,	 business	 transaction	 logics,	 or	 backend	 codes	 into	 smart	 contract	 codes,	 e.g.,	
Ethereum	Solidity	scripts	that	are	executable	on	blockchain	platforms.	A	key	challenge	in	smart	contract	design	is	
how	to	map	legal	contracts	to	executable	software	code	in	a	correct	way.	There	are	important	differences	between	
the	content	of	a	legal	contract	expressed	in	the	natural	language	and	a	corresponding	smart	contract	code.	Some	prose	
of	a	legal	contract	may	not	have	equivalent	expressions	in	a	smart	contract	and	vice	versa.	Moreover,	a	legal	contract	
may	contain	certain	terms	like	a	reasonable	excuse,	unintended	delay,	exempted	penalty,	and	so	on	that	are	deemed	
implicit	in	a	natural	language.	However,	they	may	have	no	explicit	meaning	at	the	level	of	smart	contract	code.	Hence,	
in	 transforming	 contract	 documents	 and	 legal	 prose	 to	 equivalent	 smart	 contracts,	 software	 teams	 encounter	
ambiguities	and	different	interpretations	that	can	be	reflected	in	smart	contract	code.		
As	briefly	introduced	in	Section	5.1.1,	using	ontologies	and	formal/mathematic	expressions	to	describe	legal	text	

can	potentially	reduce	the	transformation	errors	in	legal	contract	to	smart	contract	mapping	and	to	ensure	legal	prose		
that	 are	 expected	 to	 meet.	 However,	 this	 needs	 training	 effort	 and	 acceptance	 by	 all	 BBS	 project	 communities	
(software	 teams	 and	 stakeholders)	 to	 use	 formal	 constructs	 to	 describe	 legal	 contracts.	 Domain	 ontologies	 are	
suggested	 to	 enhance	 the	 identification	 of	 target	 smart	 contracts	 including	 their	 functions’	 specifications,	
relationships,	automated	inference,	and	verification.	Kim	and	Laskowski	in	[S42]	use	first-order	logic	to	express	the	
ontology	 of	 smart	 contracts	 that	 later	 execute	 a	 provenance	 trace	 and	 to	 enforce	 traceability	 constraints	 on	
transaction	execution	on	blockchain.	Following	this	introductory	work,	Choudhury	et	al.	[S43]	introduce	a	framework	
that	uses	semantic	rules	to	encode	BBS	functional	requirements	and	to	leverage	the	structure	of	abstract	syntax	trees	
for	the	automatic	generation	of	smart	contracts.	Also,	ontology	design	techniques	[61]	enable	developers	to	elicit	
potential	network	participants	in	business	processes.	They	also	help	identify	participants’	relationships,	conditions,	
and	 constraints	 in	 terms	of	 resources	 exchanged	between	 themselves	which	 can	be,	 accordingly,	 represented	by	
smart	contracts.	Furthermore,	ontologies	are	also	proposed	to	improve	the	discoverability	of	smart	contract	services	
that	are	offered	by	a	deployed	BBS.	The	notion	of	semantic	smart	contract	 is	proposed	by	Baqa	et	al.	[S44]	to	use	
RESTful	semantic	web	to	enable	 indexing,	browsing,	and	annotating	of	smart	contracts.	As	such,	annotated	smart	
contracts	deploying	on	distributed	ledgers	can	be	treated	as	linked	data	for	performing	queries	by	domain-specific	
terms,	which	increases	the	discovery	of	public	smart	contracts.	
In	addition	to	the	application	of	ontology	design	techniques	in	the	smart	contract	design,	recall	from	Section	5.1.2,	

MDD	can	play	a	key	role	in	the	design	phase	of	BBS	engineering,	in	particular,	in	reducing	mapping	complexity,	i.e.	
enforcing	control-flow	and	conformance	to	normative	business	processes	via	smart	contracts	[S29],[S30].	Frantz	and	
Nowostawski	[S57],	propose	a	semi-automated	technique	for	transforming	human-readable	behavior	specifications	

22	

to	a	smart	contract	format.	They	borrow	the	idea	of	institutional	analysis	from	the	social	and	economic	field	in	order	
to	 analyze	 and	 decompose	 the	 functions	 of	 human	 institutions	 into	 a	 set	 of	 declarative	 rule-based	 statements.	
Statements	 are	 expressed	 via	 core	 elements	 such	 as	 attributes,	 actions,	 outcomes,	 conditions,	 and	 consequences	
associated	 with	 non-conformance.	 The	 mapping	 of	 core	 constructs,	 which	 is	 automated	 via	 a	 domain-specific	
language	(DSL)	such	as	Scala,	provides	a	foundation	to	transform	rule-based	statements	into	contracts.	An	alternative	
design	technique	is	proposed	by	Clack	et	al.,	[S52].	It	is	based	on	the	idea	of	separation	of	concerns	through	which	
three	levels	of	abstractions	for	a	smart	contract	are	defined	including:	legal	contracts,	smart	contract	templates,	and	
smart	 contract	 codes.	 In	 this	 layered-based	 contract	 design,	 a	 legal	 contract	 includes	 text	 (a	 linear	 sequence	 of	
sentences,	hierarchical	structure)	in	the	natural	language,	lists/tables,	cross-references,	and	redacted	text	(privileged	
and	proprietary	text).	A	smart	contract	template	is	an	intermediate	and	electronic	representation	of	the	legal	contract	
documents.	A	 template	 contains	different	parameters	 such	 as	 identity,	 data	 types,	 and	values.	 It	 is	 developed	by	
standard	bodies	and	uses	parameters	in	legal	documentations	to	connect	it	to	corresponding	codes.	All	stakeholders	
should	have	agreements	on	these	parameters	and	their	values	as	they	directly	influence	their	business	relationship	
as	well	as	the	way	codes	in	smart	contracts	will	operate.	While	a	smart	contract	template	tries	to	formalize	actions,	
legal	rights,	and	enforceable	obligations	that	accrue	to	different	actors	and	often	are	context-specific,	a	smart	contract	
is	 an	 automated	 version	 of	 the	 smart	 legal	 template	 by	 a	 software	 script.	 This	 harness	 forms	 the	 layers	 of	
transformation	which	can	be	performed	in	a	semi-automatic	way	using	appropriate	tools.	A	similar	technique	for	
high-level	smart	contract	design,	named	correct-by-design	development,	 is	proposed	by	Mavridou	et	al.	 [S34].	The	
technique	 is	 based	 on	 an	 end-to-end	 formal	model-based	 verification.	 It	 describes	 the	 security	 requirements	 via	
abstract	transition	models	along	with	semantic	operations	and	reasoning	at	the	abstract	model	level	to	examine	if	the	
behavior	of	the	contract	models	satisfies	these	requirements.	The	formal	models	are	then	transformed	to	Solidity	
code	bytes	for	execution	on	Ethereum.	
Smart	contracts	should	provide	mechanisms	to	guarantee	the	security	and	privacy	of	sensitive	data	access	and	

process.	Yet	security	challenges	related	to	smart	contract	design	are	multitude.	Although	it	is	not	in	the	scope	of	our	
survey	to	cover	all	the	security-associated	issues	of	smart	contracts,	there	is	a	wealth	of	pattern	collections,	proposed	
by	Wohrer	 et	 al.	 [S39]	 that	 deal	with	 the	 security	 concerns	 in	 smart	 contract	 design.	 Software	 teams	 can	 adopt	
patterns	 such	 as	 checks-effects-interaction,	 speed	 bump,	 rate	 limit,	mutex,	 and	 balance	 limit	 for	 safe	 and	 reliable	
execution	of	smart	contracts.	
Low-level	 design	 concerning	 the	 elaboration	 of	 high-level	 smart	 contract	 definition	 on	 functions’	 signature,	

parameters,	contract	storage,	events,	and	state	variables,	the	reviewed	papers	recommend	performing	the	following	
alternative	analysis	to	define	custodial	functions	to	support	primitive	functions	of	smart	contracts:		
—analyzing	actors	who	interact	with	smart	contracts	of	BBS	([S31],	[S46],	[S47]);	
—analyzing	interaction	points	and	message	flows	between	smart	contracts	and	external	components,	e.g.	smart	
contracts	and	legacy	systems	[S46];	
—analyzing	 events	where	 a	BBS	 is	 viewed	 as	 a	 stimulus-response	machine	 reacting	 to	 smart	 contracts	 and	
external	components,	e.g.	smart	contracts	and	legacy	systems	[S46];		
—analyzing	external	behaviors	of	a	BBS	to	identify	states	that	a	smart	contract	can	enter	or	trigger	events	[S31],	
[S46];	
—support	of	cancellation	of	transactions	and	delayed	rollback	[S24];	
—specifying	required	libraries,	data	structure,	inheritance	structure,	and	interfaces	for	smart	contracts	[S31];		
The	low-level	smart	contract	design	also	raises	two	common	challenges	that	software	teams	should	be	aware	of:	

—Granularity.	The	granularity	of	a	smart	contract	 is	defined	 in	 terms	of	 the	number/size	of	required	processing	
functions	in	smart	contracts	to	enforce	rules	and	control	the	execution	of	business	transactions	[S6].	For	large-scale	
transactions,	an	individual	smart	contract	negatively	affects	power	consumption,	storage	space,	and	performance.	
For	 instance,	 Ethereum	 charges	 a	 computation	 fee	 for	 smart	 contract	 execution.	 Likewise,	 smart	 contracts	 are	
performed	sequentially	on	blockchain	platforms,	which	reduces	the	overall	performance	of	BBS	if	there	are	many	
smart	contracts	that	are	bounded	to	a	business	process.	The	parallel	execution	of	smart	contracts	 is	a	resolution	
technique	 to	 address	 this	 issue.	 However,	 a	 detailed	 discussion	 about	 the	 concurrent	 smart	 contract	models	 is	
discussed	in	[13],[18],[19],[37],	which	falls	out	of	the	scope	of	this	survey.	
—Re-entrancy.	This	issue	occurs	in	an	interaction	between	two	smart	contracts	when	the	control	of	smart	contract	
execution	 is	 taken	over	 from	one	 to	another	during	 the	execution	of	 cross-functional	 transactions.	Once	a	 smart	

23	

contract	calls	another	smart	contract,	its	current	execution	is	stopped	until	the	other	call	is	finished.	The	intermediate	
status	of	the	first	smart	contract	may	not	be	ready	or	correct	for	other	BBS	components	to	use.	This,	for	example,	can	
be	a	critical	issue	associated	with	money	withdrawal	function.	Smart	contracts	should	define	discrete,	atomic,	and	
sequential	functions	in	a	way	that	when	a	function	is	called,	 it	cannot	be	re-entered	by	an	external	call	before	its	
current	execution	is	entirely	ended	[S17].		
Apart	from	the	discussion	on	high-level	and	low-level	smart	contract	design,	the	literature	draws	attention	to	sub-

design	tasks	related	to	smart	contracts:		
—Change	management	design.	As	mentioned	earlier,	legal	contracts	may	include	complex	conditions	and	terms	that	
are	updated	based	on	agreed	upcoming	changes	by	parties.	On	the	other	hand,	once	a	transaction	is	generated	and	
stored	by	 smart	 contracts	on	blockchain	database,	 it	 is	 infeasible	 to	modify	 this	 transaction	as	 the	blockchain	 is	
merely	 an	 append-only	 that	 supports	 the	 creation	 of	 a	 new	 transaction	 to	 add	 to	 the	 chain	 of	 blocks	 instead	 of	
updating	already	existing	blocks.	This	is	realized	via	defining	change	management	function	and	control	variables	in	
smart	contracts.	This	is	in	contradiction	with	evolving	requirements	and	business	environments.	Unforeseen	changes	
in	legal	prose	and	rules	frequently	occur	after	a	contract	document	is	finalized	and	signed	by	parties	due	to	reasons	
such	as	a	change	in	business	goals	or	valid	rescission	by	courts	(no	longer	a	cause	of	action	for	agreement	breach)	
that	yield	in	changing	smart	contract	parameters	and	functions	to	meet	new	requirements.	This	is	crucial	to	address	
change	requests	in	smart	contracts	and	to	assess	the	change	impact	and	propagation	for	keeping	consistency	between	
stakeholders’	requirements	and	the	design	of	smart	contracts.	Software	patterns	proposed	by	Weber	et	al.	[S30]	and	
Liu	et	al.	[S37]	open	new	possibilities	for	ameliorating	smart	contract	change	management.	Weber	et	al.	[S30]	suggest	
using	contract	factory	defining	methods	for	instantiation	of	specific	case	contracts	from	predefined	generic	contracts.	
There	are	works	in	progress	to	handle	the	smart	contract	evolution,	e.g.	delegation	technique	where	the	data	and	logic	
of	the	contract	are	separated	and	registry	contract	technique	which	keeps	the	track	of	contract	version	and	records	
the	history	of	changes	and	rationales	[S13],[S45].	Marino	et	al.	[S15]	suggest	guidelines	for	smart	contract	change	
management	that	have	been	applied	for	altering	and	undoing	smart	contracts	on	Ethereum	platform.	The	guidelines	
that	are	taken	from	legal	contracts	and	adjusted	to	the	context	of	smart	contracts,	briefly,	are	(i)	modification	by	right	
resulting	in	a	new	contract,	(ii)	modification	by	agreement,	and	(iii)	reformation.	Despite	this,	change	management	
mechanisms	for	smart	contract	have	not	been	fully	explored	in	the	context	of	BBS	engineering	process,	however,	it	is	
an	important	topic	for	future	research.		
—Dispute	resolution	design.	The	enforcement	of	smart	contracts	for	business	services	raises	the	question	about	the	
scope	and	responsibilities	in	the	case	of	arising	disputations	whether	they	should	be	resolved	automatically	by	smart	
contracts	or	human	intervention	[S52].	In	a	business	environment,	a	violation	or	illegal	act	against	a	contract	can	be	
resolved	by	a	well-established	body	of	 laws	such	as	 imposing	fines,	asset	detachment,	and	service	deprivation	 in	
courts.	On	the	other	hand,	despite	some	debates,	violations	like	malicious	security	attacks,	network	disruption,	and	
power	cut	at	software	or	network	levels	cannot	be	fixed	without	the	need	for	dispute	resolution.	Such	issues	imply	
that	software	teams	should	clarify	and	verify	with	stakeholders	the	boundary	and	scope	of	user	stories	and	actor	
interactions	that	should	be	converted	to	smart	contracts.		
Consensus	mechanism	design.	Validator	nodes	are	responsible	for	validating	a	newly	added	block	to	the	blockchain.	

The	 new	block	 is	 propagated	 to	 the	 network	 and	 is	 appended	 to	 the	 chain	 of	 blocks	 once	 all	 validators	 reach	 a	
consensus	to	ensure	that	they	have	an	exact	copy	of	the	new	block.	In	this	regard,	the	task	of	consensus	mechanism	
design	deals	with	defining	an	agreement	mechanism	satisfying	all	validators	involved	in	the	network	when	a	new	
block	is	created.	Efficient	consensus	creation	has	been	an	important	query	in	distributed	system	engineering	design	
and	several	consensus	mechanisms	have	already	been	explored	over	the	years.	Some	are	transplantable	to	the	BBS	
context.	 The	 choice	 of	 prevailing	 consensus	mechanisms	 such	 as	 proof	 of	work	 (PoW),	 delegated	 proof	 of	 stake	
(DPoS),	proof	of	importance	(POI),	and	proof	of	stake	(PoS)	[13],[18],[19],[37]	requires	a	software	team	to	make	the	
trade-off	 between	 quality	 factors	 such	 as	 power	 consumption,	 scalability,	 and	 simplicity.	 The	 complexity	 of	 the	
consensus	mechanism	depends	on	the	network	type.	A	permissioned	network	needs	less	complicated	mechanisms	
due	to	restricted	network	access	and	vulnerability	to	security	attacks.	On	the	flip	side,	in	a	permission-less	network,	
an	 energy-intensive	mechanism,	 such	as	PoW	negatively	 affects	BBS	 scalability	 and	 thus	 reduces	 the	 transaction	
processing	throughput	in	contrast	to	permissioned	networks	that	tend	to	utilize	non-compute-intensive	mechanisms	
like	DPoS.		
Incentive	mechanism	design.	Due	to	the	power	consumption	and	computation	fee	charged	in	the	network	to	validate	

new	blocks	of	transactions,	some	economic	rating	and	reputation	mechanisms	are	defined	for	validators,	e.g.,	miners.	

24	

The	incentive	mechanisms	for	active	validators	can	be	defined	for	different	aspects	such	as	a	gas	fee	for	transaction	
execution,	storage	price,	security	deposit,	data	retrieval,	and	so	on	[S54].	Additional	economic	incentives	are	needed	
for	validators	if	BBS	has	computations	that	are	being	run	off-blockchain.	

5.2.3 BBS implementation and test

The	realization	of	the	designed	architecture	in	the	previous	phase	is	achieved	via	developing	software	and	hardware	
components.	According	to	the	identified	papers,	a	key	aspect	in	conjunction	with	the	implementation	and	test	is	the	
choice	of	blockchain	platform.	While	tool	support	for	the	whole	BBS	lifecycle	automation	may	not	be	feasible,	the	
review	of	selected	studies	reveals	several	popular	ones,	either	open-source	or	commercial,	which	are	used	during	this	
phase	 for	 on-blockchain	 components.	 The	 example	 of	 these,	 as	 shown	 in	 Table	 5	 and	 alphabetically	 sorted,	 are	
BigChainDB,	 Chain	 Core,	 Corda,	 Credits,	 Domus	 Tower,	 Elements,	 Ethereum,	 HydraChain,	 Hyperledger	 Fabric,	
Hyperledger	Iroha,	Hyperledger	Sawtooth	Lake,	JUICE,	Multichain,	Openchain,	Quorum,	Stellar,	Symbiont	Assembly,	and	
Truffle.	Apparently,	according	to	the	reviewed	studies,	the	most	frequently	used	platforms	are	Hyperledger	Fabric	and	
Ethereum.	 For	 instance,	 Hyperledger	 Fabric	 [63]	 is	 an	 open-source	 development	 platform,	 hosted	 by	 the	 Linux	
Foundation.	 It	 acts	 as	 enabling	 technologies	 to	model	 and	 integrate	 existing	 systems	with	 blockchain	 platforms.	
Hyperledger	 Fabric’s	 programming	 model,	 supported	 by	 technologies	 Node.js	 and	 Java,	 enables	 more	 intuitive	
development	in	a	plug-and-play	fashion.	An	analytical	comparison	of	features	offered	by	these	platforms	is	out	of	the	
scope	of	this	survey.	However,	it	has	been	a	research	query	in	the	work	by	Bettín-Díaz	et	al.	[S18]	synopsizing	their	
experience	in	BBS	engineering	–with	an	application	case	in	the	supply	chain.	The	authors	recommend	five	key	factors	
that	software	teams	should	investigate	in	their	platform	choice	and,	thereby,	make	an	alignment	between	technical	
and	managerial	decisions.	They	are	(i)	maturity	of	the	candidate	blockchain	platform	in	terms	of	how	long	it	has	been	
in	the	market,	supporting	model,	and	availability	of	documentation	and	training	materials,	(ii)	ease	of	development	
which	is	based	on	required	programming	skills	to	work	with	the	platform,	(iii)	confirmation	time	which	depends	on	
the	choice	of	consensus	mechanisms,	(iv)	security	support	between	nodes	as	a	platform	may	provide	functionalities	to	
enable	public	or	private	network	configuration,	and	(vi)	APIs	support	for	functions	related	to	audition,	authentication,	
hash	generating,	data	storage	and	retrieval,	and	smart	contract	lifecycle	management.	Furthermore,	the	literature	
suggests	the	use	of	mainstream	tools	and	programming	languages	for	coding,	scripting,	transferring/streaming,	and	
data	manipulation	for	off-blockchain	components.		

Table	5.	Sample	technologies	used	during	the	phase	of	BBS	implementation	and	test	
	 Technology	 Type	 Aim	

On
-b
lo
ck
ch
ai
n 	
co
m
po
ne
nt
s	i
m
pl
em

en
ta
tio
n 	

BigChainDB	 Blockchain	platform	 A	 big	 data	 distributed	 platform	 with	 a	 support	 of	 blockchain	
characteristics	 such	 as	 de-centralized	 control,	 immutability,	 and	
digital	data	transfer	mechanisms			

Californium	CoAP	 Development	
framework	

Securing	 data	 transfer	 between	 IoT	 device	 data	 and	 blockchain	
platforms	

Chain	Core	 Blockchain	platform	 Issuing	 and	 transferring	 financial	 assets	 on	 a	 permissioned	
blockchain	infrastructure.	

Corda	 Open	source	distributed	
ledger	

Enabling	 the	 development	 of	 smart	 contracts	 with	 a	 support	 for	
pluggable	consensus	mechanisms	and	minimizing	transaction	cost	

Credit		 Distributed	 ledger	
development	
framework		

Developing	permission	based	smart	contracts		

Domus	Tower	 Blockchain	platform	 Implementing	consortium	blockchain	with	a	focus	on	finance	domain	
functionalities		

Elements		 Open	 source	 blockchain	
platform	

Enhancing	Bitcoin	functionalities	at	the	communication	and	protocol	
levels		

Ethereum		 Blockchain	platform	 Enhancing	Bitcoin	functionalities	and	implementing	smart	contracts.	
Eris:db	 Distributed	ledger	 Enhancing	Bitcoin	functionalities	
HydraChain	 Blockchain	platform	 An	 extension	 to	 Ethereum	 platform	 for	 creating	 permissioned,	

private,	and	consortium	blockchain	
Hyperledger	
Fabric	

Open	 source	 blockchain	
platform	

Providing	 support	 for	 smart	 contract	 implementation	 and	 test	 in	
different	application	domains	

Hyperledger	Iroha	 Distributed	ledger	 Developing	smart	contracts	for	mobile-based	applications	

25	

Hyperledger	
Sawtooth	Lake	

Open	 source	 blockchain	
platform	

Providing	 support	 for	 smart	 contract	 development	 with	 specific	
support	for	decoupling	transaction	business	logic	from	the	consensus	
layer	

JUICE	 Tool	 Enabling	 the	 implementation	 and	 monitoring	 of	 Solidity	 smart	
contracts	running	on	Ethereum	platform		

Multichain	 Open	 source	 blockchain	
platform	

Supporting	 Bitcoin	 functionalities	 for	 multi-asset	 financial	
transactions	

Openchain	 Open	source	distributed	
ledger	

Issuing	and	managing	digital	assets	via	smart	contracts	

Quorum	 Distributed	ledger	 Developing	smart	contract	platform	based	on	Ethereum	
Stellar	 Distributed	ledger	 Enabling	 distributed	 payments	 infrastructure	 with	 RESTful	 HTTP	

API	servers		
Symbiont	
Assembly	

Distributed	ledger	 A	 distributed	 ledger	 based	 on	 Apache	 Kafka	 to	 develop	 smart	
contracts	

Truffle	 	 Framework	 Compilation,	test,	integration,	and	deployment	of	smart	contracts	
Bitcoin	Testnet	 Framework	 Testing	 smart	 contracts	 without	 changing	 real	 system	 data	 or	

transactions	
Hyperledger	Besu	 Open	 source	

development	
framework	

A	Java-based	Ethereum	client	to	develop	and	deploy	applications	to	
run	on	the	public	Ethereum	public	network	or	private	permissioned	
network	

Mininet	 Tool			 An	emulator	to	analyse	transaction	blockchain	transaction	delays	
		

Of
f-b
lo
ck
ch
ai
n	
co
m
po
ne
nt
s	i
m
pl
em

en
ta
tio
n	

	
JSON	RPC	

	
Protocol	

	
Remote	 procedure	 call	 used	 by	 Ethereum	 clients	 to	 interact	 with	
Ethereum	nodes	

Web3j	 Library	 A	 lightweight	 Java	 and	 Android	 library	 for	 working	 with	 smart	
contracts	and	integrating	with	Ethereum	platform	with	the	minimum	
overhead	for	implementing	integration	codes	

CouchDB		 Database	 A	 document	 based	 NoSQL	 database	 that	 uses	 JSON	 to	 store	 data,	
JavaScript	 as	 its	 query	 language,	 and	 commonly	 used	 with	
Hyperledger	Fabric	

Raspberry	Pi	 Toolkit	 Collection	 of	 hardware	 and	 programming	 language	 to	 develop	
blockchain-based	IoT	systems	

REST	API		 API	 To	 query	 data	 and	 test	 HTTP	 requests	 as	 well	 as	 call	 blockchain	
platform	APIs

Bluetooth,	ZigBee,	
WiFi,	2G/3G/4G	
cellular	

Hardware	 Hardware	Communication	protocols	

Apache	Tomcat,	
Eclipse	Photon	
and	WebStorm	

Platform	 Hosting	 and	 implementing	 back-end	 and	 front-end	 applications	
interaction	with	off-blockchain	components	

Testing	is	a	key	engineering	task	to	ensure	that	an	implemented	BBS	satisfies	the	specified	requirements	from	the	
analysis	phase.	BBS	testing	that	takes	into	account	factors	such	as	type	of	participants,	permissions,	 input/output	
states,	predefined	trigger	conditions	and	response	actions	of	smart	contracts,	transactions,	and	expected	outcomes	
in	testing	scenarios,	is	very	much	comparable	to	the	conventional	software	engineering	testing	and	can	be	performed	
at	three	levels:	
—unit	 testing	 that	 is	 to	 analyze	 each	 BBS	 component,	 for	 example,	 smart	 contract	 source	 code,	 to	 identify	 code	
segments	prone	to	vulnerabilities	during	transaction	execution	and	creating	the	chain	of	blocks;	
—integration	testing	that	is	to	verify	if	on-blockchain	and	off-blockchain	components	work	together	correctly;	and		
—user	acceptance	testing	that	is	to	validate	the	whole	BBS.		
Baqa	et	al.	[S44]	define	a	three-step	strategy	to	conduct	BBS	testing:		
—test	map	creates	a	map	of	on-blockchain	and	off-blockchain	components	for	which	test	is	required;	and	
—test	plan	specifies	how	each	type	of	tests,	such	as	unit	and	integration	testing,	should	be	performed	within	a	planned	
number	of	test	cases.	For	instance,	for	the	performance	test,	software	teams	need	to	include	parameters	like	measured	
execution	time	to	record	a	transaction	(time	is	spent	to	send	a	transaction	request	and	receive	confirmation	from	the	
receiver)	and	the	time	of	cryptographic	algorithm	execution	and	consensus	creation.		
—test	 run	performs	 test	 scenarios	 on	 a	 testnet,	 i.e.,	 a	 testing	 environment,	 for	 example	Bitcoin	Testnet,	 allowing	
software	teams	to	experiment	BBS	without	worrying	about	real	transactions	or	using	bitcoins.		

26	

Conventional	software	engineering	testing	techniques	such	as	code	coverage	review	and	stress	testing	may	still	
have	value	and	be	applicable	in	BBS	context,	as	acknowledged	in	[S1],[S44],[S52].	For	example,	a	performance	test	
principally	is	meant	as	the	speed	of	adding	a	new	block	to	the	chain	of	blocks,	and	throughput	of	mining,	consensus	
creation,	 and	 transaction	 validation.	 However,	 conventional	 software	 engineering	 testing	 practices	 appear	 to	 be	
insufficient	on	their	own	due	to	some	intrinsic	features	of	BBS.	Testing	smart	contracts	is	crucial	(Section	5.1	and	
5.2.2).	They	are	immutable	and	no	one	is	supposed	to	tamper	or	change	their	source	code	once	deployed	and	stored	
on	a	blockchain	platform.	Unlike	conventional	system	development,	further	updates	to	fix	identified	bugs	in	smart	
contracts	become	an	issue.	Findings	from	a	survey	of	232	smart	contract	developers,	conducted	by	Zou	et	al.	[S13],	
highlight	the	top	testing	challenges	of	smart	contracts	as	(i)	difficulty	of	identifying	test	scenarios,	(ii)	unpredictable	
flaws	in	blockchain	platforms,	virtual	machines,	and	compilers,	(iii)	the	lack	of	mature	testing	frameworks	compared	
to	well-established	languages	like	C++	and	Java,	(iv)	asynchronous	environments	of	on-blockchain	and	off-blockchain,	
and	(v)	cost	of	gas	consumption	fee	for	testing	smart	contracts.	Code	review	is	a	basic	way	to	ensure	the	validity	of	a	
smart	contract	and,	to	this	end,	software	teams	can	employ	techniques	such	as	(i)	peer	smart	contract	code	review,	
(ii)	requesting	blockchain	practitioners	from	GitHub	community	to	check	a	smart	contract,	and	(iii)	asking	third-party	
reviewers	to	audit	smart	contract	code.	Zou	et	al.	[S13],	however,	raise	issues	of	code	review	including	being	time-
consuming	 and	 difficult	 to	 find	 expert	 developers	 to	 identify	 security	 flaws	 in	 smart	 contracts.	 To	 lessen	 the	
complexity	of	code	review,	[S51]	and	[S52]	similarly	suggest	three	stages	of	testing	in	order	to	gradually	identify	and	
fix	bugs	 in	a	 smart	 contract	 code:	 (i)	deploying	contracts	on	a	 local	network,	 (ii)	deploying	contracts	on	 the	 test	
network	for	software	team	to	use,	and	(iii)	deploying	contract	on	the	live	and	main	network	and	to	execute	them	by	
users.		
Automated	testing	techniques	are	essential	to	reduce	the	complexity	of	code	review	and	to	identify	vulnerabilities	

of	a	smart	contract	before	its	deployment.	In	line	with	this,	as	mentioned	earlier	in	Section	5.1.2,	using	MDD	enables	
developers	 to	represent	 the	general	 features	of	a	system	at	a	high	abstraction	 level	without	being	constrained	to	
platform-specific	implementation	details.	A	common	technique	to	verify	a	smart	contract	is	model-checking.	Applied	
in	BBS	 context,	 it	 enables	 the	production	of	 code	 coverage	 test	 scenarios	 to	 examine	 the	 correctness	of	 function	
execution,	 sequence	 of	 functions,	 branches,	 and	 trigger	 points	 in	 smart	 contracts.	 Model-checking	 can	 be	
accommodated	 in	 the	 implementation	phase	 for	automatic	generation	of	smart	contract	codes	based	on	system's	
behavioral	state	models	and	non-trivial	environmental	interactions,	e.g.	[S31],	and	consistency	checking	between	the	
smart	contract	deployment	model	and	deployment	scripts	for	distributed	ledgers,	e.g.	[S32].	In	this	spirit,	Destefanis	
et	al.,	[S52]	propose	a	model-based	testing	technique	as	a	rigorous	mechanism	for	automated	smart	contract	tests	
where	 a	 set	 of	 particular	 fault-related	 test	 cases	 are	 generated	 from	 an	 abstract	 fault	model.	 However,	 the	 test	
scalability	of	automated	tests	in	a	large	number	of	smart	contracts	is	a	limitation.		

5.2.4 BBS maintenance

As	 the	 majority	 of	 works	 focus	 on	 analysis,	 design,	 implementation,	 and	 test	 phases,	 the	 discussion	 on	 the	
maintenance-related	tasks	is	hardly	found	in	the	current	literature.	This	is,	perhaps,	due	to	the	fact	that,	apart	from	
the	characteristics	of	BBS,	the	maintenance	for	BBS	has	no	difference	at	its	core	with	non-BBS	ones.	The	only	study	
that	provides	empirical	findings	on	the	maintenance	phase	is	by	Bosu	et	al.,	[S22],	which	highlights	the	issues	that	are	
not	noticeable	in	non-BBS	development.	That	is,	as	software	teams	can	upgrade	conventional	software	applications	
with	new	features	as	supported	by	core	technologies	like	DevOps	[52],	BBS	needs	to	wait	for	the	preparation	of	all	
nodes	around	the	network	to	upgrade	new	functionalities	which	may	cause	issues	such	as	outdated	results,	delay	in	
synchronization,	and	costly	response	to	changes	in	the	business	domain.	As	mentioned	earlier	(Section	5.2.3),	due	to	
the	difficulty	of	making	changes	in	smart	contracts	after	deployment,	backward	compatibility,	the	capability	of	earlier	
transaction	validation,	or	roll	back	to	a	previous	version	of	smart	contracts	are	challenging.		

5.3 RQ3: What software modeling approaches and notations are applicable in BBS development lifecycle?

Our	 perspective	 on	 BBS	 engineering	 here	 is	 divided	 into	 models	 and	 modeling	 languages	 (Figure	 7).	 Models	
conceptualize	different	aspects	of	a	BBS	and	modelling	languages	determines	a	means,	i.e.	syntax	and	semantic,	to	
express	these	models.		

27	

5.3.1 Models (work-products/artefacts)

BBS	engineering	can	be	viewed	as	series	of	intermediate	models	that	are	generated	and	evolved	to	achieve	a	final	
BBS.	The	models	are	results	of	development	process	activities	performed	by	software	teams	and	they	help	trace	how	
high-level	stakeholders’	requirements	are	transformed	to	executable	BBS.	The	importance	of	models	in	BBS	context	
is	much	comparable	to	conventional	software	development.	Since	models	may	be	cost-prohibitive	to	generate,	either	
manually	 or	 automatically,	 due	 to	 their	 evolution	 and	 maintenance	 cost,	 generating	 the	 models	 during	 the	
development	process	is	situational	and	dependent	on	factors	such	as	project	requirements,	the	project	domain,	and	
developers’	opinions,	and	hence	their	generation	does	not	happen	in	a	vacuum.		
The	literature	suggests	some	notable	models	associated	with	the	analysis	phase.	Amongst	them,	a	requirements	

model,	which	has	been	 frequently	 stated	 in	 the	 reviewed	studies	by	different	 terms	such	as	user	 stories	 and	goal	
statement	[S1],	use-case	model	[S23],[S31],	collection	of	requirements	[S31],	system	requirements	[S46],	and	business	
model	[S51],	collectively,	describes	functional/non-functional	requirements	to	be	fulfilled	by	target	BBS	and	form	the	
basis	for	analyzing	the	remaining	domain.	Lin	et	al.,	[S1]	in	their	experience	of	developing	a	security	system	for	the	
telecommunication	 domain	 suggest	 documenting	 requirements	 as	 user	 stories	 where	 customers	 write	 a	 short	
description	of	a	certain	transaction	that	is	needed	to	be	delivered	by	target	BBS	in	their	own	terminology	and	index	
cards.	Marches	et	al.,	[S23]	propose	use-case	models	as	a	starting	point	to	identify	how	actors	will	interact	with	and	
send/receive	 transactions	 to	 BBS.	Use-case	 models	 should	 capture	 features	 and	 functions	 specific	 to	 processing	
regulations	 and	 technical	 requirements	 such	 as	 legal	 constraints	 and	 cryptographies.	 Requirements	 models	 are	
compiled	 in	a	 feasibility	report,	supplemented	by	a	primitive	prototype,	also	referred	to	as	blockchain	compliance	
checklist	 [S51]	 and	 theoretical	 build-up	 [S55],	 to	 get	 a	 better	 understanding	 of	 requirements	 and	 the	 technical	
feasibility	of	BBS.	As	mentioned	earlier,	prototypes	are	not	only	meant	for	requirements	elicitation	but	also	provide	
a	foundation	for	architecture	models.	

	
Fig. 7. Modeling conceptual map	

The	literature	recommends	some	models	related	to	the	design	phase	of	BBS	engineering.	Recall	from	5.1.3,	the	set	
of	well-known	software	engineering	architecture	models,	4+1	views	[58],	are	used	in	the	context	of	BBS	design	phase.	
They	describe	the	structural	relationship	and	interaction	between	software	and	hardware	components	of	BBS.	For	
instance,	a	process	view	of	the	architecture	shows	the	sequence	of	events	occurring	when	users	or	external	systems	
call	a	smart	contract	functions	(Figure	3).	Similarly,	the	deployment	model,	one	of	the	commonly	recommended	4+1	
models,	 as	 noted	 by	 Górski	 and	 Bednarski	 [S32],	 represents	 how	 (i)	 BBS	 off-blockchain	 components	 access	 on-
blockchain	components	and	(ii)	BBS	architecture	is	operationalized	with	respect	to	a	chosen	blockchain	platform,	
physical	layers,	and	installation	scripts	to	make	BBS	available	to	end-users.	Additionally,	Rocha	and	Ducasse	[S53]	
suggest	 the	 usefulness	 of	 entity-relationship	 models	 (ER-model)	 to	 represent	 conceptual	 and	 logical	 design	 for	
blockchain	data	exchange	between	on-blockchain	and	off-blockchain	components.	
Apart	from	the	well-known	models	that	are	recommended	above,	software	teams	may	generate	some	blockchain-

specific	 models	 during	 the	 development	 process.	 A	 smart	 contract	 model,	 as	 recommended	 in	
[S1],[S5],[S31],[S46],[S56],	[S57]	represents	the	functionalities	that	realize	requirements.		
The	 rationale	 for	 the	 applicability	 of	 object-oriented	 modeling	 in	 BBS	 is	 that	 a	 smart	 contract	 model	 can	 be	

analogically	viewed	as	a	Class	model	in	object-oriented	programming.	Due	to	different	options	to	call	their	function,	

28	

smart	contract	models	are	classified	into	structural,	state,	and	sequential/executional.	These	three	diverse	models	are	
to	 represent	 the	 structure	and	relationships,	 transitions	 states,	 and	sending/receiving	messages	 from/to	a	 smart	
contract,	respectively.	To	be	more	specific,	a	structural	model,	akin	to	a	class	model,	shows	data,	public,	and	private	
functions	of	a	smart	contract,	and	allows	for	reuse	and	inheritance	from	other	smart	contracts.	A	state	model	enables	
developers	to	identify	the	different	statuses	of	the	contract	in	its	whole	life	cycle	from	the	stage	of	deployment	to	sign-
in,	 execution,	 and	 termination.	 As	 such,	 different	 changes	 in	 the	 status	 of	 a	 smart	 contract,	 e.g.,	 chaining	 of	
transactions,	as	results	of	internal	operations	or	interactions	with	external	systems	can	be	identified.	The	other	useful	
model	at	 the	design	phase	 is	a	sequence	model.	 It	 represents	 interactions	 in	 the	 form	of	messages	 from	external	
systems/actors	to	BBS	or	from	smart	contracts	to	other	smart	contracts.	The	sequence	model	may	refine	architecture	
model	and	smart	contract	model	[S1],	[S3],[S23].	Bettin-Diaz	et	al	[S18]	suggest	data	flow	diagram	to	identify	how	
data	is	passed	across	running	off-blockchain	and	on-blockchain	and	where	it	is	processed.		
As	 the	 deployed	 smart	 contracts	 cannot	 call	 external	 APIs,	 interfaces	 are	 implemented	 via	 front-end	 web	

technologies,	 such	as	 JavaScript	and	HTML5,	 to	enable	on-blockchain	components	 to	 interact	with	off-blockchain	
components.	In	this	regard,	an	interaction	model	is	useful	for	identifying	important	behavioral	patterns	of	interactions	
and	 thus	 defining	 the	 integration	 points	 to	 be	 implemented	 for	 connecting	 on-blockchain	 and	 off-blockchain	
components	[S28],[S34],[S47],	[S56].		
A	blockchain-specific	work-product	during	the	design	phase,	as	a	result	of	consensus	mechanism	design	task	(as	

defined	in	section	5.2.2),	is	the	consensus	model.	It	shows	how	an	agreement	between	all	nodes	in	BBS	is	reached	to	
accept	a	new	block	to	the	blockchain.	This	model	reflects	design	decision	parameters	such	as	transaction	throughput,	
latency,	network	bandwidth,	rules,	and	incentives	that	should	be	enforced	by	a	selected	consensus	mechanism.	
Since	 software	 teams	 generate	models	 for	 a	 purpose,	 the	 traceability	 and	 dependency	 among	 them,	 i.e.,	 what	

models	 are	 predecessors/successors	 or	 master-subordinate	 to	 a	 certain	 model,	 in	 the	 whole	 BBS	 development	
process	 endeavor	 is	 intuitive.	 This	 is	 in	 line	 with	 the	 discussion	 of	 software	 requirements	 management	 and	
traceability.	Gotel	and	Finkelstein	[S58]	explain	that	traceability	is	the	ability	to	follow	requirements	in	both	forward	
and	backward	directions	starting	from	their	origins	towards	implementation,	deployment,	and	maintenance	phases.	
According	to	this	line	of	argument,	establishing	the	traceability	among	models	in	a	BBS	engineering	endeavor	enables	
better	development	process	management,	automatic	forward	and	backward	engineering,	responsibility	assignment	
to	teams,	and	error	detection.	The	review	of	the	selected	set	of	studies	shows	that	traceability	is	weakly	supported	in	
the	literature.	Only	a	few	works	define	the	chain	of	models	for	the	development	process:	[S6]	(smart	contract	template	
→	smart	contract	model→	code	model),	[S23]	(use-cases	model	[main	actors	of	BBS]	→	class	model	[BBS	relationships	
with	 actors]	→	 sequence	model	 [realization	 of	 transactions	 by	 BBS],	 [S32]	 (smart	 contract	 model	 →	 code	model,	
deployment	model→	configuration	model),	and	[S43]	(ontology	models	→	smart	contract	model).

5.3.2 Modeling languages

The	notations	and	semantic	rules	 imposed	by	a	modelling	 language	that	 is	used	 in	BBS	engineering	process	offer	
threefold	advantages	(i)	enabling	precise	expression	of	BBS	aspects	and	generated	work-products,	(ii)	providing	a	
consistent	way	of	communication	among	software	teams	and	stakeholders,	and	(iii),	increasing	the	automation	level	
of	code	generation	and	test.		
From	 the	 reviewed	 studies,	 it	 is	 found	 that	 Unified	 Modelling	 Language	 (UML)	 [64]–	 adopted	 by	 the	 Object	

Management	Group	(OMG)	in	1997	as	a	de-facto	for	object-oriented	modelling–	is	the	most	often	adopted	modeling	
language	in	BBS	development	process	[S1],[S5],[S6],[S17],[S23],[S28],[S32],[S34],[S46],[S56].	An	advantage	of	using	
UML	class	diagrams	to	represent	the	internal	structure	of	a	smart	contract	such	as	functions	and	data	attributes	is	
automatic	 smart	 contract	 code	 generation.	 Extending	 UML	 through	 stereotypes	 to	 cater	 necessary	 BBS-specific	
modeling	requirements	in	BBS	development	is	intuitive	[S46].	The	lack	of	capability	for	modeling	different	types	of	
distributed	ledger	technologies	has	motivated	Gorski	and	Bednarski	[S32]	to	propose	UML	stereotypes	and	tagged	
values	 for	 generating	 deployment	 scripts	 and	 configuration	 files,	 organized	 as	UML	profile	 for	distributed	 ledger	
deployment.	Apart	from	UML,	it	can	be	seen	that	BPMN	(Business	Process	Modeling	Notation)	[65],	a	de-facto	for	flow-
oriented	representation	of	core	constructs	of	business	processes,	is	used	as	a	complementary	to	UML	for	business	
people.	 In	 this	 regard,	 a	 first	 promising	 attempt	 by	 Rocha	 and	 Ducasse	 [S53]	 suggests	 that	 using	 BPMN	 in	 BBS	
development	 process	 has	 advantages	 to	 identify	 (i)	 transactions,	 functions,	 and	 actors	 in	 collaborative	 business	
processes	to	map	them	to	smart	contracts	and	(ii)	interactions	–integration	paint	points–	between	off-blockchain	and	

29	

on-blockchain	components.	For	example,	the	swimlane	notation	which	is	the	named	box	container	can	be	used	to	
specify	interactions	between	legacy	systems	and	BBS.	Other	alternatives	notations	to	BPMN	for	the	same	purpose	of	
business	processes	modeling,	suggested	by	Almeida	et	al.	[S51],	are	BDF	(Block	Diagram	Flow)	and	BFPD	(Block	Flow	
Process	Diagram).		
Recall	 from	 Section	 5.1,	 it	 tends	 to	 be	 seen	 that	 ontologies	 and	 related	 technologies	 including	Web	 Ontology	

Language	(WOL)	and	Semantic	Web	Rule	Language	(SWRL)	are	suitable	for	modeling	smart	contracts	[S42],[S43].	In	
their	work,	Choudhury	et	al.,	[S43]	provide	a	modeling	framework	for	the	automatic	generation	of	smart	contracts.	
The	 framework	 adopts	 ontologies	 to	 represent	 and	 encode	 business	 constraints	 and	 semantic	 rules	 available	 in	
unstructured	business	documents	(legal	contracts,	tables,	and	charts).	This	standard	representation	via	SWRL	rules	
ensures	accurate	parsing	and	enables	the	automatic	generation	and	test	of	smart	contract	templates	in	a	given	BBS	
application	domain.				

5.4 RQ4: What key roles are in a BBS development endeavor and what do they play?

The	BBS	development	can	be	centered	on	the	view	of	bringing	people	who	collaborate	to	reach	the	final	BBS	frontier.	
They	can	be	either	producers	in	a	software	team	who	are	responsible	for	creating,	assessing,	iterating,	maintaining	
models/work-products	or	end-users	who	interact	with	BBS.	BBS	engineering	relies	on	the	availability	of	roles	with	
technical	expertise,	business	acuity,	and	well-defined	skill	portfolios	that	should	be	acquired	and	to	ensure	that	they	
have	 a	 clear	 understanding	 of	 their	 roles.	Development	 roles	 need	 to	 be	 tailored	 in	 accordance	with	 the	project	
settings.	 For	 example,	 the	 development	 of	 a	 BBS	 for	 public	 blockchain,	 as	 pointed	 out	 in	 Section	 5.2.2,	 requires	
different	BBS-specific	 roles	with	a	 smart	contract	development	aiming	at	designing,	 testing,	and	deploying	smart	
contracts	to	potentially	unknown	users	of	smart	contracts	participating	at	a	peer-to-peer	public	network.	Unlike	a	
limited	number	of	roles	that	are	involved	in	BBS	development	for	private	blockchain	type,	more	cooperation	effort	
might	be	required	for	BBS	development	for	a	public	blockchain.	That	is,	broad	arrangements	between	parties	about	
the	content	and	objectives	of	smart	contracts	should	be	made	to	ensure	 that	preconditions	are	met	before	smart	
contracts	are	turned	to	executable	codes.	
Apart	from	the	commonly-known	roles	in	non-blockchain	software	engineering	such	as	project	manager/technical	

leaders	developer,	network	administrator	and	data	modeler,	as	equally	emphasized	in	BBS	[S1],[S13]	there	are	a	few	
new	roles	introduced	in	BBS	engineering.	As	shown	in	Figure	8,	they	are	broadly	split	into	five	distinct	groups	of	(i)	
core	blockchain	developer,	(ii)	blockchain	software	developer,	(iii)	systems	integration	engineer,	(iv)	legal	professional,	
and	(v)	blockchain	user	[S1],[S6],[S13],[S45],[S52],[S55],[S56].	Each	role	is	associated	with	different	responsibilities	
during	the	development	lifecycle	and	all	roles	collaborate	as	a	whole	to	accomplish	the	development	of	BBS.	The	role	
of	a	core	blockchain	developer	refers	to	a	development	party	who	is	responsible	for	designing	blockchain	platforms,	
APIs,	 protocols,	 network	 architecture,	 and	 security	 patterns	 related	 to	 blockchain	 technology.	 The	 blockchain	
software	developer	role,	on	the	other	hand,	utilizes	enabling	foundations	provided	by	the	core	blockchain	developer	
to	 implement	BBS	running	on	blockchain	platforms.	Typically,	a	blockchain	software	developer	 is	responsible	 for	
writing	 smart	 contracts	 that	 codify	 critical	 business	 logic	 in	 a	 secure	 way,	 implementing	 interactive	 front-end	
interface	with	BBS,	backend	systems,	and	maintaining	the	full	stack	of	running	BBS.	Bosu	et	al.	[S22]	highlight	three	
essential	 skills	 for	 blockchain	 software	 and	 core	 developers:	 (i)	 strong	 security	 programming	 background,	 (ii)	
networking	knowledge	for	secure	design	of	communication	between	distributed	off-blockchain	and	on-blockchain	
components,	(iii)	cryptography	mathematics	for	designing	BBS	algorithms	and	protocols.	In	conjunction	with	these	
skills,	in-depth	knowledge	about	scalable	architecture	design	is	an	essential	skill	for	the	role	of	developers	[S1],[S5].	
Systems	 integration	engineers	play	an	 important	 role.	They	are	 in	charge	of	 integrating	all	on-blockchain	and	off-
blockchain	components,	assuring	the	satisfaction	of	interoperability	requirements,	seeking	approvals	of	component	
changes,	and	ensuring	the	entire	BBS	functions	correctly	[S16].	

30	

	
Fig. 8. Role conceptual map	

Apart	from	the	technical	roles,	BBS	engineering	also	entails	a	portfolio	of	roles	with	expertise	in	finance	and	law	
domains.	 Legal	 professionals	 are	 needed	 between	 business-focused	 contractors	 and	 technical-focused	 software	
teams.	This	role	is	responsible	for	identifying	potential	contractors	and	partners.	Giancaspro	et	al.	[S46]	and	Almeida	
et	al.	[S51]	highlight	a	need	for	a	new	generation	of	IT	lawyer	role	in	software	teams	for	complex	business	transactions	
embarking	on	blockchain.	The	role	that	comes	into	play	across	different	phases	of	the	development	process	should	
have	basic	proficiency	in	programming	and	be	responsible	for	drafting	legal	contracts	and	ensuring	their	clauses	are	
adequately	translated	into	relevant	smart	contract	code.	Rocha	et	al.	[S53]	point	out	that	legal	expertise	is	crucial	to	
ensure	test	cases	cover	and	verify	the	prose	of	a	legal	contract	in	smart	contracts.	
Finally,	the	role	of	blockchain	user	 in	a	business	model	integrated	with	blockchain	eco-system	is	to	consume	or	

produce	data	and	contribute	to	resources	that	are	beneficial	to	others	[S2],[S12],[S17],[S31],[S34].	Blockchain	users,	
join	together	to	form	a	network	and	define	a	set	of	policies	and	permissions	agreed	by	all	as	a	consortium	or	private	
blockchain	type	architecture.			

6 FUTURE RESEARCH DIRECTIONS

The	review	of	the	literature	in	Section	5	not	only	presents	an	overview	of	concepts	and	fundamental	understanding	
of	BBS	engineering	that	is	portrayed	by	our	conceptual	framework,	but	also	reveals	symptomatic	of	the	needs	for		
holistic	and	integrated	engineering	approaches	in	the	future.	The	situation,	literally,	needs	further	research	works	to	
ameliorate	the	status	quo	of	software	engineering	for	BBS.	The	following	research	gaps,	related	to	each	aspect	of	the	
framework	deserve	further	exploration.	

6.1 Absence of process tailoring

It	 has	 been	 well-recognized	 that	 software	 engineering	 approaches	 should	 be	 tailored	 to	 the	 circumstances	
surrounding	a	project,	the	essence	of	which	is	truly	stated	by	Sommerville	and	Ransom	[66],	p.93:	it	is	a	truism	that	
any	method	has	to	be	adapted	for	the	particular	circumstances	of	use.	The	view	that	Brook	[67]	calls	as	the	silver	bullet,	
i.e.	 one-size-fits-all	 assumption,	 is	 not	 a	 practical	 choice,	 continues	 to	 hold	 true	 and	 a	 persistent	 theme	 in	 BBS	
engineering.	 In	 recognition	 of	 this,	 Miraz	 and	 Ali	 [68]	 examine	 the	 suitability	 of	 adopting	 traditional	 software	
development	lifecycles	in	BBS	context	and	conclude	that	software	teams	may	omit	certain	aspects	in	an	engineering	
approach	not	from	a	position	of	ignorance,	but	from	the	pragmatic	base	that	those	aspects	are	not	relevant	to	the	
functions	of	a	selected	blockchain	platform,	the	choice	of	blockchain	type,	or	project’s	setting	itself.	No	matter	how	
well-crafted,	it	might	be	impractical	to	find	or	design	a	single	engineering	approach	applicable	to	all	BBS	projects	and	
in	 totality	 as	 imposed	 from	 above.	 Software	 teams	may	 have	 their	 in-house	 approach	 for	 software	 development,	

31	

however,	it	may	confine	its	focus	on	some	BBS	development	tasks	and	ignore	others.	For	example,	at	the	early	phases,	
if	a	software	team	looks	for	recommendations	on	the	feasibility	of	a	BBS	instance	in	a	certain	organization,	the	findings	
in	[S24],[S46],[S47]	are	quite	relevant	to	be	considered	by	the	team.	On	the	other	hand,	if	the	team	is	rather	in	the	
design	 phase	 and	 seeks	 smart	 contract	 design	 techniques,	 then	 a	 piece	 of	 advice	 in	 the	 work	 by	 Frantz	 and	
Nowostawski	[S57]	for	high-level	design	as	well	as	work	by	[S31],	[S46],[S47]	for	low-level	design	is	applicable.		
Given	 the	specific	situational	 factors	and	architectural	decisions	of	BBS	development	context,	as	some	 listed	 in	

sections	5.2.1	and	5.2.2,	one	may	logically	conclude	that	BBS	engineering	approaches	should	be	malleable	or	selected	
from	a	portfolio	of	approaches.	A	suggested	solution	in	software	engineering,	which	can	be	equally	applied	in	BBS	
engineering,	 is	 situational	method	 engineering	 (SME)	 [69].	 SME	 is	 to	 tailor	 or	 create	 project-specific	 engineering	
methodologies	via	selecting	appropriate	method	fragments	from	a	method	base	and	assembling	them	to	construct	a	
highly	customized	methodology.	However,	to	the	best	of	our	knowledge,	little	research	exists	on	process	tailoring	for	
BBS	development.	Questions	like	what	key	method	fragments,	e.g.	process	patterns	(Section	5.1),	are	required	to	be	
populated	in	a	method	base,	and	how	they	can	be	assembled	according	to	the	project	situation	factors	to	tailor	or	
create	a	custom-specific	methodology	have	yet	to	be	addressed	in	more	depth	in	the	future.	

6.2 Requirements analysis is a dire problem

Whilst	 the	 topic	 of	 requirements	 analysis	 has	 achieved	 its	 maturity	 in	 conventional	 software	 engineering,	 it	 is	
currently	less	studied	in	BBS	engineering.	Apart	from	blockchain-specific	characteristics,	the	requirements	analysis	
for	BBS	does	not	significantly	differ	from	any	non-BBS.	Recall	from	Section	5.2.1,	software	teams	can	still	be	referred	
to	 use	 the	 conventional	 requirements	 analysis	 techniques,	 as	 suggested	by	 [S5],[S31],[S49].	On	 the	 contrary,	 the	
selected	studies	overlook	questions	like	what	requirements	contribute	value	to	BBS	stakeholders.	In	other	words,	this	
is	left	as	an	unexplored	area	in	BBS	requirements	analysis	that	what	requirements	constitute	value	and	instigate	a	
variety	of	stakeholders	with	diverging	goals	and	commitment	levels	if	they	are	addressed	by	smart	contracts.	This	is	
consistent	with	the	case	study	findings	in	Du	et	al.,	[S47]	who	accentuate	the	complexity	of	BBS	for	stakeholders	and	
the	fact	that	they	primary	care	about	if	BBS	being	useful	rather	than	what	the	underlying	technology	offers.	As	the	
definition	of	smart	contracts	and	solution	architecture	depend	on	the	elicitation	of	true	requirements	as	well	as	legal	
contracts,	a	tighter	connection	between	the	analysis	phase	and	the	design	phases	is	required	to	ensure	smart	contract	
errors	are	detected	and	fixed	as	soon	as	possible.	More	empirical	studies	are	needed	to	get	a	better	understanding	of	
the	criteria	and	techniques	for	selecting	requirements	when	fulfilled	by	BBS	will	create	added	value	for	stakeholders.		

6.3 Importance of model traceability

Some	selected	core	papers	(cf.	Section	5.3)	state	that	the	creation	of	models	has	a	vital	role	in	BBS	development	to	
manage	 complexity,	 represent	 information	 at	 a	 different	 level	 of	 abstraction,	 and	 increase	 the	 automated	model	
generation	when	the	scale	of	transactions	is	large.	However,	few	studies	such	as	[S6],[S25],[S32],[S43]	establishes	a	
chain	of	models	to	be	produced	to	reach	final	BBS.	Leveraging	well-established	state	of	the	art	in	MDE	based	software	
engineering,	 as	 pointed	 in	 Section	 5.3.1,	 keeping	 predecessor-successor	 or	 master-subordinate	 traceability	 and	
relationships	between	models	in	a	BBS	engineering	is	important	to	enable	(i)	the	evaluation	of	the	degree	to	which	
legal	contracts	and	security	requirements	are	matched	with	executable	smart	contracts,	(ii)	the	assessment	of	the	
degree	to	which	each	component	in	a	BBS	development	justifies	its	existence,	for	example,	whether	or	not	a	smart	
contract’s	function	is	traced	to	the	prose	of	a	legal	contract	that	it	satisfies,	and	(iii)	automatic	forward	and	backward	
model	transformation	of	smart	contracts.	Future	research	can	find	embarking	MDD	based	engineering	approaches	
helpful	 in	a	seamless	and	automated	transformation	of	 intermediate	BBS	models	that	are	an	important	avenue	to	
reach	the	final	BBS	product.	

6.4 Legacy system blockchain enablement is weakly supported

Legacy	software	systems	operating	and	storing	critical	organizational	data	for	years	predate	blockchain	technology	
and	the	harness	of	distributed	ledgers.	It	is	important	to	realize	that	the	term	legacy	system	is	often	collocated	with	
the	 old	 generation	 of	 technologies	 such	 as	 mainframes,	 monolithic	 architecture,	 file	 systems,	 communication	
protocols,	 and	 programming	 languages	 such	 as	 FORTRAN,	 COBOL,	 and	 C.	 A	 software	 system	 might	 have	 been	
developed	using	 common	 technologies	 such	 as	Microsoft	 .Net	 and	 J2EE,	 however,	 it	may	not	 support	blockchain	
specific	design	considerations	such	as	immutability,	stateless/stateful	smart	contracts,	off-blockchain/on-blockchain	

32	

components	as	discussed	in	Section	5.2.2.	Such	a	system	is	subsumed	under	legacy	if	it	is	going	to	be	moved	to	a	new	
blockchain	platform.	Software	re-engineering	of	these	systems,	allied	to	the	large	volume	of	organizational	data,	to	
make	 them	 blockchain-enabled	 is	 a	 crucial	 endeavor.	 This	 is	 due	 to	 reasons,	 for	 example,	 data	 migration,	
interoperability	between	blockchain	and	legacy	platforms,	mode	of	hosting,	blockchain	platform	vendor	lock-in,	and	
security	issues	of	transparency	and	openness	to	participant	nodes	in	a	blockchain	network.	According	to	these	lines	
of	argument,	migrating	large	scale	and	complex	legacy	systems	to	blockchain	platforms	needs	to	be	organized	and	
anticipated	in	a	systematic	way.		
Whether	or	not	the	above	perception	is	valid,	it	is	worth	investigating	how	and	what	new	practices	a	software	team	

should	incorporate	into	the	development	process	to	make	legacy	systems	blockchain-enabled.	A	stream	of	research	
exists	on	the	legacy	system	migration	to	SOA	[29]	and	cloud	platforms	[9],[30].	This	is	timely	to	continue	this	research	
stream	to	the	topic	of	migrating	legacy	systems	to	blockchain	platforms.	The	presented	framework	in	this	survey,	in	
light	of	the	reported	findings	in	[S38],	is	a	starting	point	to	set	the	scene	for	further	explanation.	

6.5 Need for stakeholder-driven engineering approaches

Presumably,	the	support	of	all	stakeholders,	amongst	others,	is	a	key	aspect	of	any	successful	software	engineering	
project.	This	is	equally	important	in	the	context	of	BBS	engineering	project.	Recall	from	Section	5.4,	BBS	engineering	
introduces	 more	 types	 of	 stakeholders	 as	 opposed	 to	 non-BBS	 engineering.	 These	 range	 from	 core	 blockchain	
developers	 to	 legal	 IT	professionals,	who	may	have	multiple	 roles	within	 the	development	 lifecycle	 and	have	 an	
interest	 in	or	are	 influenced	by	 the	 lifecycle.	 In	 light	of	our	general	guidelines	 for	BBS	stakeholders	presented	 in	
Section	 5.4,	 a	 stakeholder-driven	 perspective	 for	 BBS	 engineering	 with	 an	 emphasis	 on	 roles	 and	 distributed	
teams/development	 is	 beneficial	 to	 the	 project	 management	 and	 governance	 through	 the	 entire	 development	
lifecycle.	Researchers	can	also	run	empirical	studies	across	multiple	teams	and	organizations	to	identify	when	each	
stakeholder	is	involved,	what	roles	are	assigned	to,	where	and	how	stakeholders	influence	and	are	influenced	in	the	
course	of	analysis,	design,	implementation	and	operation	of	BBS.	The	results	of	these	studies	can	contribute	to	the	
identification	 of	 stakeholder-driven	 BBS	 engineering	 approaches	 that	 are	 significant	 in	 the	 areas	 of	 (i)	 BBS	
requirements	 analysis	 and	 design	 phase,	 (ii)	 BBS	 adoption	 in	 organizations,	 and	 (iii)	 project	 performance	
measurements.		

7 THREATS TO VALIDITY

We	divide	the	limitations	of	our	survey	in	terms	of	internal	and	external	validity	[70].	The	former	bears	on	factors	
that	we	might	have	been	unaware	of	or	unable	to	control	them	whilst	the	latter	concerns	with	threats	that	negatively	
affect	the	generalizability	of	our	findings.	
As	far	as	the	internal	validity	is	concerned,	due	to	a	sheer	volume	of	published	works	in	academic	and	multi-vocal	

literature	on	blockchain,	it	was	infeasible	to	conduct	an	exhaustive	literature	search	to	identify	all	works	in	the	digital	
libraries	related	to	the	research	questions	stated	in	our	work.	One	reason	for	this	issue	is	that	a	key	inclusion	criterion	
in	conducting	our	SLR	(Section	4.1).	We	have	given	the	priority	to	identify	well-cited	papers	with	a	proper	validation	
in	a	real-world	application	case	from	the	literature	in	order	to	increase	the	reliability	of	the	presented	conceptual	
framework	and	reported	findings.	We	have	been	reluctant	to	consider	opinion	papers,	technical	reports,	white	papers,	
and	books	 in	our	survey.	Moreover,	we	observed	that	some	important	papers	that	had	not	directly	discussed	the	
software	engineering	of	BBS,	nevertheless,	their	identified	challenges	and	propositions	were	truly	related	to	the	focus	
and	 scope	 of	 this	 survey.	 The	 blockchain	 field	 is	 still	 an	 immature	 area	 and	 its	 literature	 is	 overwhelmed	with	
interpretations	and	variants	of	concepts	that	might	not	necessarily	be	homogeneous.	We	found	that	some	papers	do	
not	use	the	term	of	software	engineering	 in	any	section,	but,	 they	were	 important	 in	crafting	our	 framework	and	
sharing	important	challenges	and	proposed	countermeasures	related	to	the	subject	of	this	survey.	For	instance,	any	
of	 our	 search	 queries	 combining	 the	 key	 terms	 like	 software	 engineering	 and	blockchain	over	 the	 digital	 library	
directly	results	in	identifying	papers	like	[S26],	[S30],	as	referred	to	in	Section	5.1	and	classified	under	the	design	
phase	(Section	5.2.2).	Inversely,	their	inclusion	in	the	selected	papers	was	a	result	of	several	rounds	of	the	snowballing	
technique.	Unavoidably,	the	choice	of	the	papers	might	have	been	influenced	by	subjective	bias.	To	lessen	this	issue,	
two	co-authors	conducted	the	literature	review,	paper	selection,	content	analysis,	and	framework	generation	whilst	
senior	researchers	oversaw	the	whole	survey.	We	conducted	the	purposeful	snowballing	technique	and	the	careful	
scanning	of	the	 identified	studies	from	the	 literature	to	select	the	ones	that	strictly	satisfied	the	selection	criteria	

33	

(Section	4.1).	An	observation	in	the	selected	studies	reveals	that	the	highest	number	of	the	studies	are	affiliated	with	
Australia	 as	 same	as	 the	authors’	 affiliation.	The	 reason	 is	 that	we	 started	with	an	 initial	 set	of	papers	 from	our	
domestic	academic	colleagues	and	expanded	them	to	identify	new	papers	through	reviewing	the	related	studies	and	
references	that	were	cited	in	this	set	
As	 for	 the	 external	 validity,	 we	 do	 not	 claim	 to	 provide	 complete	 coverage	 and	 inclusivity	 of	 the	 presented	

conceptual	 framework.	 A	 less	 discussed	 aspect	 in	 Section	 5.2.3,	 yet	 important,	 in	 the	 presented	 conceptual	
framework,	is	the	aspect	of	the	tool	support	for	BBS.	It	is	associated	with	the	aspects	of	process	and	modeling	in	the	
framework.	As	our	survey	intends	to	provide	an	overarching	layer	for	BBS	development	by	abstracting	pure	technical	
and	dispersed	 literature,	we	believed	 that	 the	aspect	of	 tool,	despite	 the	availability	of	 some	dedicated	BBS	 tools	
(Section	5.2.3),	can	be	either	a	discussion	on	the	way	of	operationalization	of	the	framework’s	fragments	or	a	topic	of	
future	surveys	based	on	our	proposed	framework.	Finally,	whilst	the	derivation	of	the	framework	through	Grounded	
Theory	has	been	iterative	and	with	several	refinements	in	the	literature	source	and	coding	procedures,	we	don’t	claim	
about	the	generalizability	of	the	presented	framework	and	accounted	findings	beyond	58	source	papers	in	the	current	
survey.		

8 CONCLUSION

We	presented	a	systematic	literature	review	on	software	engineering	for	BBS.	We	addressed	the	most	relevant	and	
up-to-date	survey	questions	synthesizing	published	material	available	in	this	area.	We	explored	the	current	state-of-
the	literature	and	identified	important	future	research	directions	in	light	of	the	fundamental	aspects	of	the	conceptual	
software	 engineering	 framework	 for	BBS.	 In	 terms	of	 the	process	 aspect,	 firstly,	 the	discussion	on	 requirements	
analysis	has	received	much	less	attention	from	researchers.	Further	research	can	investigate	how	or	which	added-
value	 requirements	 should	 be	 selected	 to	 realize	 by	 BBS.	 Secondly,	 some	 researchers	 have	 proposed	 situational	
characteristics	upon	which	BBS	development	process	should	be	tailored.	Whereas	the	need	for	a	flexible	and	bespoke	
BBS	development	process	is	acknowledged,	there	is	a	dearth	of	research	dealing	with	this	issue	and	little	is	known	
about	how	tailoring	is	applied	for	BBS	engineering	projects.	Thirdly,	considering	the	importance	of	legacy	software	
systems	 supporting	 back-end	 functions	 of	 IT-based	 organizations	 and	 storing	 critical	 data,	 the	 minority	 of	 the	
identified	papers	discuss	legacy	software	re-engineering	to	blockchain,	for	example,	steps	to	identify	and	integrate	
core	 business	 logic,	 e.g.	 Web-Service,	 to	 smart	 contracts.	 Migrating	 legacy	 software	 to	 blockchain	 has	 recently	
received	 attention.	 A	 future	 trend	may	 particularly	 focus	 on	 software	 re-engineering	 for	making	 legacy	 systems	
blockchain-enabled.	 Fourthly,	 in	 terms	 of	 the	 modeling	 aspect,	 several	 models	 are	 generated	 during	 a	 BBS	
development	 lifecycle	ranging	from	requirements	to	smart	contract	design	elements,	and	down	to	smart	contract	
code	 fragments.	Managing	 the	 chain	 of	 these	models	 as	 a	means	 to	 understand	 logical	 traceability	 and	bounded	
dependency	among	these	models	plays	an	important	role	to	enable	automated	BBS	design	in	view	of	requirements.	
Techniques	related	to	the	traceability	of	models	in	BBS	development	are	partially	captured	in	the	literature,	which	
stimulates	 another	 possible	 future	 research.	 Fifthly,	 from	 the	 aspect	 of	 stakeholders,	 bearing	 in	 mind	 that	 BBS	
development	 involves	more	 types	 of	 technical	 and	 non-technical	 stakeholders	 than	many	 conventional	 software	
systems,	with	diverse	goals	in	using	BBS	and	different	level	of	engagement,	stewardship,	cooperation,	and	incentives,	
this	survey	provides	input	for	future	research	with	a	focus	on	stakeholder-driven	BBS	development.			
The	eventual	upshot	 is	 that	software	engineering	 for	BBS	 is	not	as	straightforward	as	 for	many	non-BBS	ones.	

Contaminated	with	partiality	and	subjectivity,	adopting	an	ad-hoc	approach	is	hardly	safe	and	secure	for	business-
critical	BBS.	More	research	is	necessary	to	move	from	ad-hoc	BBS	development	to	more	disciplined	BBS	engineering	
and	to	enhance	the	maturity	of	this	research	field.	To	pave	this	path,	we	explored	the	current	research	state	of	the	
literature	and	identified	important	future	research	directions	in	light	of	the	presented	conceptual	framework.	We	
hope	 that	 researchers	 benefit	 from	 highlighted	 ideas	 that	 are	 shared	 in	 this	 survey	 as	 entry	 points	 to	 tackle	
unaddressed	 issues.	 The	 practitioners	 can	 incorporate	 the	 findings	 in	 this	 survey	 into	 their	 in-house	 software	
development	approach	to	enhance	its	capability	for	BBS	development.	
	
Acknowledgements	
	
Grundy	is	supported	by	ARC	Laureate	Fellowship	FL190100035.	
	

34	

Appendix A: Selected core papers
Note:	J:Journal,	C:	Conference,	S:	Symposium,	W:Workshop,	P:Pre-print,	B:Book	chapter,	M:Magazine	

#	 Author	and	Title	 Channel	 Source	 Year	 Validation	Technique	
[S1]	 C.	 Lin,	 D.	 He,	 X.	 Huang,	 BSeIn:	 A	 blockchain-based	 secure	 mutual	

authentication	with	fine-grained	access	control	system	for	industry
J	 Elsevier	 2018	 Simulation	

[S2]	 L.	 Hang,	 D.H.	 Kim,	 Design	 and	 implementation	 of	 an	 integrated	 IoT	
blockchain	platform	for	sensing	data	integrity			

J	 Sensors	 2019	 Simulation	

[S3]	 M.	 Marchesi,	 L.	 Marchesi,	 R.	 Tonelli,	 	 An	 agile	 software	 engineering	
method	to	design	blockchain	applications		

C	 ACM	 2018	 Example	scenario	

[S4]	 I.	Karamitsos,	M.	Papadaki,	N.B.	Al	Barghuthi,	Design	of	 the	blockchain	
smart	contract:	A	use	case	for	real	estate		

J	 Scientific	
Research	
Publishin

g	

2018	 Example	scenario	

[S5]	 M.	 Jurgelaitis,	 V.	 Drungilas,	 L.	 Ceponiene,	 R.	 Butkiene,	 E.	 Vaiciukynas,	
Modelling	principles	for	blockchain-based	implementation	of	business	or	
scientific	processes	

C	 IVUS	 2019	 Example	scenario	

[S6]	 Y.	 Shi,	 Z.	 Lu,	 R.	 Tao,	 Y.	 Liu,	 Z.	 Zhang,	A	 trading	 model	 based	 on	 legal	
contracts	using	smart	contract	templates	

C	 Springer	 2019	 Example	scenario,		
Theoretical	evaluation	

[S7]	 Badr,	 A.,	 Rafferty,	 L.,	 Mahmoud,	 Q.H.,	 Elgazzar,	 K.,	 Hung,	 P.C.,	 	 A	
permissioned	 blockchain	 -based	 system	 for	 verification	 of	 academic	
records	

C	 IEEE	 2019	 Simulation	

[S8]	 G.	Destefanis,	M.	Marchesi,	M.	Ortu,	Smart	contracts	vulnerabilities:	a	call	
for	blockchain	software	engineering?		

W	 IEEE	 2018	 Case	study	

[S9]	 P.	 Chakraborty,	 R.	 Shahriyar,	 A.	 Iqbal,	 A.	 Bosu,	 Understanding	 the	
software	development	practices	of	blockchain	projects:	a	survey	

C	 ACM	
	

2018	 Survey	of	practitioners	

[S10]	 C.	Udokwu,	H.	Anyanka,	A.	Norta,	Evaluation	of	Approaches	for	Designing	
and	Developing	Decentralized	Applications	

C	 ACM	 2020	 Case	study,	Theoretical	
evaluation		

[S11]	 Y.	Yuan,	F.Y.	Wang,	Towards	blockchain	-based	intelligent	transportation	
systems	

C	 IEEE	 2016	 Example	scenario	

[S12]	 W.	Dai,	 C.	Wang,	 C.	 Cui,	H.	 Jin,	 X.	 Lv,	blockchain-Based	 Smart	 Contract	
Access	Control	System	

C	 IEEE	 2019	 Simulation	

[S13]	 W.	Zou,	D.	Lo,	P.S.	Kochhar,	X.	D.	Le,	X.	Xia,	Y.	Feng,	Z.	Chen,	B.	Xu,	Smart	
contract	development:	Challenges	and	opportunities	

J	 IEEE	 2019		 Survey	and	semi-
structured	interview	of	
practitioners		

[S14]	 S.	Lilani,	D.	Malani,	 J.	Modi,	F.	Soni,	Securing	the	Software	Development	
Life	Cycle	(SDLC)	with	a	blockchain	Oriented	Development	Approach	

C	 arXiv	 2019	 Case	study	

[S15]	 B.	Marino	and	A.	Juels,	Setting	standards	for	altering	and	undoing	smart	
contracts	

S	 Springer	 2016	 Example	scenario	

[S16]	 Yue,	K.,	Blockchain-augmented	organizations	 C	 AIS	
Library	

2020	 Example	scenario	

[S17]	 L.	Luu,	D.-H.	Chu,	H.	Olickel,	Making	smart	contracts	smarter	 C	 ACM	 2016	 Simulation	
[S18]	 R.	Bettín-Díaz,	A.E.	Rojas,	Methodological	approach	to	the	definition	of	a	

blockchain	system	for	the	food	industry	supply	chain	traceability	
C	 Springer	 2018	 Case	study,	industrial	

experience	
[S19]	 X.	Xu,	Q.	Lu,	Y.	Liu,	L.	Zhu,	H.	Yao,	A.V.	Vasilakos,	Designing	blockchain	-

based	applications	a	case	study	for	imported	product	traceability	
J	 Elsevier	 2019	 Case	study	

[S20]	 W.	 Cai,	 Z.	Wang,	 J.B.	 Ernst,	 Z.	Hong,	 C.	 Feng,	 V.C.	 Leung,	Decentralized	
applications:	The	blockchain	-empowered	software	system	

J	 IEEE	 2018	 Industrial	experience	

[S21]	 N.B.	 Truong,	 K.	 Sun,	 G.M.	 Lee,	 Y.	 Guo,	 	 Gdpr-compliant	 personal	 data	
management:	A	blockchain-based	solution	

J	 IEEE	 2019	 Example	scenario	

[S22]	 A.	 Bosu,	 A.	 Iqbal,	 R.	 Shahriyar,	 P.	 Chakraborty,	 Understanding	 the	
motivations,	 challenges	 and	 needs	 of	 blockchain	 software	 developers:	 a	
survey	

J	 Springer	 2019	 Survey	of	practitioners	

[S23]	 L.	 Marchesi,	 M.	 Marchesi,	 R.	 Tonelli,	 ABCDE--Agile	 Block	 Chain	 Dapp	
Engineering	

P	 Elsevier	 2019	 Example	scenario	

[S24]	 B.	A.	Scriber,	A	framework	for	determining	blockchain	applicability	 J	 IEEE	 2018	 Semi-structured	
interviews	

[S25]	 L.	Cocco,	A.	Pinna,	G.	Meloni,	A	blockchain	Oriented	Software	Application	
in	the	Revised	Payments	Service	Directive	context		

W	 IEEE/AC
M	

2020	 Example	scenario	

[S26]	 X.	 Xu,	 C.	 Pautasso,	 L.	 Zhu,	 Q.	 Lu,	 I.	 Weber,	 A	 pattern	 collection	 for	
blockchain-based	applications		

C	 ACM	 2018	 Theoretical	evaluation	

[S27]	 G.	 Al-Mazrouai,	 S.	 Sudevan,	 Managing	 blockchain	 Projects	 with	 Agile	
Methodology	

C	 Springer	 2020	 Example	scenario	

[S28]	 N.	 Aldred,	 L.	 Baal,	 G.	 Broda,	 S.	 Trumble,	 Q.	 H.	 Mahmoud,	Design	 and	
Implementation	of	a	blockchain-based	Consent	Management	System		

P	 arXiv	 2019	 Example	scenario,	
theoretical	evaluation	

[S29]	 Q.	 Lu,	 A.	 Tran,	 I.	 Weber,	 Integrated	 Model-Driven	 Engineering	 of	
blockchain	Applications	for	Business	Processes	and	Asset	Management	

P	 arXiv	 2020	 Example	scenario	

[S30]	 I.	Weber,	 X.	 Xu,	 R.	 Riveret,	 G.	 Governatori,	Untrusted	 business	 process	
monitoring	and	execution	using	blockchain	

P	 Springer	 2016	 Simulation	

[S31]	 P.	 Garamvölgyi,	 I.	 Kocsis,	 B.	 Gehl,	 A.	 Klenik,	 Towards	 Model-Driven	
Engineering	of	Smart	Contracts	for	Cyber-Physical	Systems		

C	 IEEE/IFIP	 2018	 Example	scenario	

35	

[S32]	 T.	Górski,	J.	Bednarski,	Applying	Model-Driven	Engineering	to	Distributed	
Ledger	Deployment	

J	 IEEEE	 2020	 Example	scenario	

[S33]	 F.	 Glaser,	 Pervasive	 decentralization	 of	 digital	 infrastructures:	 a	
framework	for	blockchain	enabled	system	and	use	case	analysis	

C	 IEEE		 2017	 Theoretical	evaluation	

[S34]	 A.	 Mavridou,	 A.	 Laszka,	 E.	 Stachtiari,	 A.	 Dubey,	 VeriSolid:	 Correct-by-
design	smart	contracts	for	Ethereum	

C	 IEEE	 2019	 Example	scenario	

[S35]	 P.	Zhang,	J.	White,	D.	C.	Schmidt,	G.	Lenz,	Applying	software	patterns	to	
address	interoperability	in	blockchain-based	healthcare	apps		

P	 arXiv	 2017	 Case	study	

[S36]	 M.	Wöhrer,	U.	Zdun,	Design	patterns	for	smart	contracts	in	the	Ethereum	
ecosystem	

C	 IEEE	 2018	 Simulation	

[S37]	 Y.	Liu,	Q.	Lu,	X.	Xu,	L.,	Applying	design	patterns	in	smart	contracts	 C	 Springer	 2018	 Case	study,	Industrial	
experience	

[S38]	 H.	D.	Bandara,	X.	Xu,	I.	Weber,	Patterns	for	blockchain	Data	Migration,	in	
Proceedings	 of	 the	 European	 Conference	 on	 Pattern	 Languages	 of	
Programs.		

C	 ACM	 2020	 Theoretical	evaluation	

[S39]	 M.	Wohrer,	U.	Zdun,	Smart	contracts:	security	patterns	in	the	Ethereum	
ecosystem	and	solidity	

W	 IEEE	 2018	 Theoretical	evaluation,	
Example	scenario	

[S40]	 M.	 Bartoletti,	 L.	 Pompianu,	 An	 empirical	 analysis	 of	 smart	 contracts:	
platforms,	applications,	and	design	patterns		

C	 Springer	 2017	 Case	studies	

[S41]	 J.	De	Kruijff	,	H.	Weigand,	Understanding	the	blockchain	using	enterprise	
ontology		

C	 Springer	 2017	 Theoretical	evaluation	

[S42]	 H.	 M.	 Kim,	 M.	 Laskowski,,	 Management,	 Toward	 an	 ontology-driven	
blockchain	design	for	supply-chain	provenance	

J	 Wiley	 2018	 Example	scenario	

[S43]	 O.	Choudhury,	N.	Rudolph,	I.	Sylla,	N.	Fairoza,,	A.	Das,	Auto-generation	of	
smart	contracts	from	domain-specific	ontologies	and	semantic	rules	

C	 IEEE	 2018	 Case	study	

[S44]	 H.	Baqa,	N.	 B.	 Truong,	N.	 Crespi,	 G.	M.	 Lee,	 F.	 Le	Gall,	Semantic	 Smart	
Contracts	for	blockchain-based	Services	in	the	Internet	of	Things		

S	 IEEE	 2019	 Example	scenario	

[S45]	 G.	Governatori,	F.	Idelberger,	Z.	Milosevic,	On	legal	contracts,	imperative	
and	declarative	smart	contracts,	and	blockchain	systems		

J	 Springer	 2018	 Example	scenario,	
Theoretical	evaluation	

[S46]	 M.	Giancaspro,	 Is	a	smart	contract	 ‘really	a	smart	 idea?	Insights	 from	a	
legal	perspective	

J	 Elsevier	 2017	 Expert	validation,	
industrial	experience	

[S47]	 W.	 D.	 Du,	 S.	 L.	 Pan,	 D.	 E.	 Leidner,	 Affordances,	 experimentation	 and	
actualization	of	FinTech:	A	blockchain	implementation	study	

J	 Elsevier	 2019	 Interview	

[S48]	 A.	M.	Langer,	Blockchain	analysis	and	design		 B	 Springer	 2020	 Example	scenario	
[S49]	 C.	Hebert,	F.	Di	Cerbo,	Secure	blockchain	in	the	enterprise:	A	methodology	 j	 Elsevier	 2019	 Example	scenario	
[S50]	 J.	Plansky,	T.	O’Donnell,	K.	Richards,	A	strategist’s	guide	to	blockchain	 M	 PWC	 2016	 Industrial	experience	
[S51]	 S.	Almeida,	A.	Albuquerque,	A.	Silva,	An	approach	to	develop	software	that	

uses	blockchain	
C	 Springer	 2018	 Example	scenario,	

Theoretical	evaluation		
[S52]	 G.	Fridgen,	 J.	Lockl,	A	solution	 in	search	of	a	problem:	a	method	 for	 the	

development	of	blockchain	use	cases	
C	 AIS	e-Lib	 2018	 Case	study	

[S53]	 H.	 Rocha,	 S.	 Ducasse,	 Preliminary	 steps	 towards	 modeling	 blockchain	
oriented	software	

W	 IEEE	 2018	 Example	scenario	

[S54]	 X.	 Xu,	 C.	 Pautasso,	 L.	 Zhu,	 V.	 Gramoli,	 A.	 Ponomarev,	 S.	 Chen,	 The	
blockchain	as	a	software	connector		

W	 IEEE	 2016	 Industrial	experience	

[S55]	 X.	Xu,	 I.	Weber,	M.	Staples,	A	taxonomy	of	blockchain-based	systems	for	
architecture	design	

C	 IEEE	 2017	 Theoretical	evaluation	

[S56]	 T.	 Hardjono,	 A.	 Lipton,	 A.	 Pentland,	 Towards	 a	 design	 philosophy	 for	
interoperable	blockchain	systems	

P	 arXiv	 2018	 Example	scenario	

[S57]	 C.	 K.	 Frantz,	 M.	 Nowostawski,	 From	 institutions	 to	 code:	 Towards	
automated	generation	of	smart	contracts	

W	 IEEE	 2016	 Example	scenario	

[S58]	 C.	D.	Clack,	V.	A.	Bakshi,	L.	Braine,	Smart	contract	templates:	foundations,	
design	landscape	and	research	directions		

P	 arXiv	 2016	 Example	scenario	

36	

Appendix B: Demographic information of core papers

	 	

	

REFERENCES
[1] "Deloitte's 2019 globalc Blockchain survey-Blockchain gets down to business," 2019: Available at:

https://www2.deloitte.com/content/dam/Deloitte/se/Documents/risk/DI_2019-global-blockchain-survey.pdf
(last access October 2020).

[2] A. Bosu, A. Iqbal, R. Shahriyar, and P. Chakraborty, "Understanding the motivations, challenges and needs of
Blockchain software developers: a survey," Empirical Software Engineering journal, vol. 24, no. 4, pp. 2636-
2673, 2019.

[3] S. Porru, A. Pinna, M. Marchesi, and R. Tonelli, "Blockchain-oriented software engineering: challenges and new
directions," in 2017 IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-C),
2017: IEEE, pp. 169-171.

[4] K. Costello, "Gartner report," Jun 2019: Available at: https://www.gartner.com/en/newsroom/press-
releases/2019-07-03-gartner-predicts-90--of-current-enterprise-blockchain (last access Feb 2020).

[5] Gartner, "Gartner Predicts," Available at: https://www.gartner.com/en/newsroom/press-releases/2019-07-03-
gartner-predicts-90--of-current-enterprise-blockchain (last accessed:October 2021).

[6] M. Avital, R. Beck, J. King, M. Rossi, and R. Teigland, "Jumping on the Blockchain Bandwagon: Lessons of the
Past and Outlook to the Future," in Proceedings of the 37th International Conference on Information Systems, B.
Fitzgerald and J. Mooney (eds.), Dublin, Ireland, 2016.

[7] M. Risius and K. Spohrer, "A blockchain research framework," Journal of Business Information Systems
Engineering, vol. 59, no. 6, pp. 385-409, 2017.

[8] P. Chakraborty, R. Shahriyar, A. Iqbal, and A. Bosu, "Understanding the software development practices of
blockchain projects: a survey," in Proceedings of the 12th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, 2018, pp. 1-10.

[9] M. Fahmideh, F. Daneshgar, G. Low, and G. Beydoun, "Cloud migration process—A survey, evaluation
framework, and open challenges," Journal of Systems and Software, vol. 120, pp. 31-69, 2016.

[10] M. Fahmideh and D. Zowghi, "An exploration of IoT platform development," Information Systems, vol. 87, p.
101409, 2020.

37	

[11] L. Marchesi, M. Marchesi, and R. J. a. p. a. Tonelli, "ABCDE--Agile Block Chain Dapp Engineering," 2019.
[12] M. Swan, Blockchain: Blueprint for a new economy. " O'Reilly Media, Inc.", 2015.
[13] M. Pilkington, "11 Blockchain technology: principles and applications," Research handbook on digital

transformations, p. 225, 2016.
[14] J. Yli-Huumo, D. Ko, S. Choi, S. Park, and K. Smolander, "Where is current research on blockchain technology?—

a systematic review," PloS one, 11(10), e0163477, vol. 11, no. 10, p. e0163477, 2016.
[15] J. Liu and Z. Liu, "A survey on security verification of blockchain smart contracts," IEEE Access, vol. 7, pp. 77894-

77904, 2019.
[16] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman, "Systematic literature

reviews in software engineering – A systematic literature review," Information and software technology, vol. 51,
no. 1, pp. 7-15, 2009, doi: http://dx.doi.org/10.1016/j.infsof.2008.09.009.

[17] B. G. Glaser and A. L. Strauss, The discovery of grounded theory: Strategies for qualitative research. Transaction
Books, 2009.

[18] M. Crosby, P. Pattanayak, S. Verma, and V. Kalyanaraman, "Blockchain technology: Beyond bitcoin," Applied
Innovation, vol. 2, pp. 6-10, 2016.

[19] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, "Blockchain challenges and opportunities: A survey,"
International Journal of Web and Grid Services, vol. 14, no. 4, pp. 352-375, 2018.

[20] F. Casino, T. K. Dasaklis, and C. Patsakis, "A systematic literature review of blockchain-based applications:
current status, classification and open issues," Telematics and Informatics 36 (2019): 55-81, vol. 36, pp. 55-81,
2019.

[21] N. Szabo, "Formalizing and securing relationships on public networks," First monday, 1997.
[22] C. D. Clack, V. A. Bakshi, and L. Braine, "Smart contract templates: foundations, design landscape and research

directions," https://arxiv.org/abs/1608.00771, 2016.
[23] I. Sommerville, "Software Engineering," 7th ed. Addison-Wesley, Reading, Mass, 2004.
[24] D. H. Ingalls, "The Smalltalk-76 programming system design and implementation," in Proceedings of the 5th

ACM SIGACT-SIGPLAN symposium on Principles of programming languages, 1978, pp. 9-16.
[25] S. L. Pfleeger, "Albert Einstein and empirical software engineering," Computer, vol. 32, no. 10, pp. 32-38, 1999.
[26] G. Cugola, C. Ghezzi, and Practice, "Software Processes: a Retrospective and a Path to the Future," Software

Process: Improvement, vol. 4, no. 3, pp. 101-123, 1998.
[27] A. Fuggetta, "Software process: a roadmap," in Proceedings of the Conference on the Future of Software

Engineering, 2000, pp. 25-34.
[28] S. Lane and I. Richardson, "Process models for service-based applications: A systematic literature review,"

Journal Information and Software Technology, vol. 53, no. 5, pp. 424-439, 2011.
[29] M. Razavian and P. Lago, "A systematic literature review on SOA migration," Journal of Software: Evolution and

Process, vol. 27, no. 5, pp. 337-372, 2015.
[30] M. Fahmideh, F. Daneshgar, and F. Rabhi, "Cloud migration: methodologies: preliminary findings," in European

Conference on Service-Oriented and Cloud Computing–CloudWays 2016 Workshop, 2016d.
[31] A. Davoudian and M. Liu, "Big Data Systems: A Software Engineering Perspective," ACM Computing Surveys, vol.

53, no. 5, pp. 1-39, 2020.
[32] A. Meidan, J. A. García-García, I. Ramos, and M. J. Escalona, "Measuring software process: a systematic mapping

study," Journal of ACM Computing Surveys, vol. 51, no. 3, pp. 1-32, 2018.
[33] R. Ramsin and R. F. Paige, "Process-centered review of object oriented software development methodologies,"

ACM Computing Surveys (CSUR), vol. 40, no. 1, p. 3, 2008.
[34] A. Panarello, N. Tapas, G. Merlino, F. Longo, and A. Puliafito, "Blockchain and iot integration: A systematic

survey," Sensors, vol. 18, no. 8, p. 2575, 2018.
[35] X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen, "A survey on the security of blockchain systems," Future Generation

Computer Systems, vol. 107, pp. 841-853, 2020.
[36] B. K. Mohanta, D. Jena, S. S. Panda, and S. Sobhanayak, "Blockchain technology: A survey on applications and

security privacy challenges," Journal Internet of Things, vol. 8, p. 100107, 2019.
[37] I. Konstantinidis, G. Siaminos, C. Timplalexis, P. Zervas, V. Peristeras, and S. Decker, "Blockchain for business

applications: A systematic literature review," in International Conference on Business Information Systems,
2018: Springer, pp. 384-399.

38	

[38] A. Vacca, A. Di Sorbo, C. A. Visaggio, and G. Canfora, "A systematic literature review of blockchain and smart
contract development: Techniques, tools, and open challenges," Journal of Systems and Software, vol. 174, p.
110891, 2021.

[39] V. Braun and V. Clarke, "Using thematic analysis in psychology," Qualitative research in psychology, vol. 3, no. 2,
pp. 77-101, 2006.

[40] C. Wohlin, "Guidelines for snowballing in systematic literature studies and a replication in software
engineering," in Proceedings of the 18th international conference on evaluation and assessment in software
engineering, 2014: ACM, p. 38.

[41] M. B. Miles and A. M. Huberman, Qualitative data analysis: An expanded sourcebook. Sage, 1994.
[42] K.-J. Stol, P. Ralph, and B. Fitzgerald, "Grounded theory in software engineering research: a critical review and

guidelines," in Proceedings of the 38th International Conference on Software Engineering, 2016, pp. 120-131.
[43] A. L. Strauss and J. Corbin, Basics of Qualitative Research: Grounded Theory Procedure and Techniques. Sage

publications Newbury Park, CA, 1990.
[44] R. S. Pressman, Software engineering: a practitioner's approach. Palgrave Macmillan, 2005.
[45] D. Avison and G. Fitzgerald, Information systems development: methodologies, techniques and tools. McGraw

Hill, 2003.
[46] M. Fahmideh, F. Daneshgar, F. Rabhi, and G. Beydon, "A generic cloud migration process model," European

Journal of Information Systems, 2018.
[47] M. F. Gholami, J. Habibi, F. Shams, and S. Khoshnevis, "Criteria-Based evaluation framework for service-

oriented methodologies," in Computer Modelling and Simulation (UKSim), 2010 12th International Conference
on, 2010: IEEE, pp. 122-130.

[48] S. Lane and I. Richardson, "Process models for service-based applications: A systematic literature review,"
Information and Software Technology, vol. 53, no. 5, pp. 424-439, 2011.

[49] C. Gonzalez-Perez and B. Henderson-Sellers, Metamodelling for software engineering. Wiley Publishing, 2008.
[50] I. I. 2007, "Software Engineering -- Metamodel for Development Methodologies ISO/IEC 24744:2007," ISO/IEC

Press, 2007.
[51] K. Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cunningham, Martin Fowler, James

Grenning, "The agile manifesto," ed: February, 2001.
[52] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles, "A survey of DevOps concepts and challenges," ACM

Computing Surveys (CSUR), vol. 52, no. 6, pp. 1-35, 2019.
[53] V. Lenarduzzi, M. I. Lunesu, M. Marchesi, and R. Tonelli, "Blockchain applications for Agile methodologies," in

Proceedings of the 19th International Conference on Agile Software Development: Companion, 2018, pp. 1-3.
[54] S. Beydeda, M. Book, and V. Gruhn, Model-driven software development. Springer, 2005.
[55] C. Atkinson and T. Kuhne, "Model-driven development: a metamodeling foundation," Software, IEEE, vol. 20,

no. 5, pp. 36-41, 2003.
[56] A. G. Kleppe, J. Warmer, W. Bast, and M. Explained, "The model driven architecture: practice and promise," ed:

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 2003.
[57] D. S. Frankel, Model driven architecture applying MDA. John Wiley & Sons, 2003.
[58] P. B. Kruchten, "The 4+ 1 view model of architecture," IEEE software, vol. 12, no. 6, pp. 42-50, 1995.
[59] L. Bass, P. Clements, and R. Kazman, Software architecture in practice. Addison-Wesley Professional, 2003.
[60] J. O. Coplien and D. C. Schmidt, Pattern languages of program design. ACM Press/Addison-Wesley Publishing

Co., 1995.
[61] N. F. Noy and D. L. McGuinness, "Ontology development 101: A guide to creating your first ontology," ed:

Stanford knowledge systems laboratory technical report KSL-01-05 and …, 2001.
[62] A. De Nicola, M. Missikoff, and R. Navigli, "A software engineering approach to ontology building," Information

systems, vol. 34, no. 2, pp. 258-275, 2009.
[63] E. Androulaki et al., "Hyperledger fabric: a distributed operating system for permissioned blockchains," in

Proceedings of the thirteenth EuroSys conference, 2018, pp. 1-15.
[64] OMG, "Object Management Group (OMG). ‘Unified modeling language specification (v1.5)," 2003.
[65] O. Omg, R. Parida, and S. Mahapatra, "Business process model and notation (bpmn) version 2.0," Object

Management Group, vol. 1, no. 4, 2011.
[66] I. Sommerville and J. Ransom, "An empirical study of industrial requirements engineering process assessment

and improvement," ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 14, no. 1, pp.
85-117, 2005.

39	

[67] F. Brooks and H. Kugler, No silver bullet. April, 1987.
[68] M. H. Miraz and M. Ali, "Blockchain Enabled Smart Contract Based Applications: Deficiencies with the Software

Development Life Cycle Models," arXiv preprint arXiv:2001.10589, 2020.
[69] A. F. Harmsen, J. Brinkkemper, and J. H. Oei, Situational method engineering for information system project

approaches. University of Twente, Department of Computer Science, 1994.
[70] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, Experimentation in software

engineering. Springer Science & Business Media, 2012.

	

