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Abstract. New security threats arise frequently and impact on enterprise 
software security requirements. However, most existing security engineering 
approaches focus on capturing and enforcing security requirements at design 
time. Many do not address how a system should be adapted to cope with new 
unanticipated security requirements that arise at runtime. We describe a new 
approach - Model Driven Security Engineering at Runtime (MDSE@R) - 
enabling security engineers to dynamically specify and enforce system security 
requirements based on current needs. We introduce a new domain-specific 
visual language to model customer security requirements in a given application. 
Moreover, we introduce a new UML profile to help capturing system 
architectural characteristics along with security specifications mapped to system 
entities. Our MDSE@R toolset supports refinement and merger of these visual 
models and uses model-driven engineering to take the merged model and 
specify security controls to be enforced on the target system components. A 
combination of interceptors (via generated configurations) and injected code 
(using aspect-oriented programming) are used to integrate the specified security 
controls within the target system. We describe MDSE@R, give an example of 
using it in securing an ERP system, describe its implementation, and discuss an 
evaluation of applying MDSE@R on a set of open source applications. 

Keywords: Security engineering, model-driven engineering, domain-specific visual languages, 
aspect-oriented programming 

1   Introduction 

Security engineering [1] focuses on delivering secure applications that maintain their 
operations and achieve desired goals even if under attack. Unfortunately both security 
goals and attacks frequently change over time [16]. Thus security engineering cannot 
be a one-time process. Software enforced security needs to be revisited and updated 
whenever new security requirements or challenges arise.  

On the other hand, most current security engineering processes are conducted side 
by side with the system engineering process [2]. This requires having system 
engineers deeply involved in engineering security of their systems. However, system 
engineers often lack experience in identifying, and sometimes in protecting against, 
possible security issues. They may also lack knowledge about customers’ security 
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needs as some potential customers may not even be known at design time. Thus the 
final product will often be incomplete from a security perspective. Moreover, such 
systems usually have security hardcoded in their source code either as security 
realization functions [3, 4] or as security annotation attributes that are translated at 
runtime into security controls delivered by an underlying security platform [5]. In 
either case, unanticipated security requirements are not usually considered. Software 
maintenance is usually required to address such emerging security vulnerabilities and 
new security requirements raised by customers. Maintenance may take much more 
time than acceptable where discovered vulnerabilities can be exploited [6, 17]. 
Moreover, sometimes the system vendor may no longer even exist. Thus post-
deployment discovery of security issues or changed application environment security 
needs are hard to address using existing software security engineering approaches. 

Existing security engineering efforts focus on how to identify, capture, and model 
security objectives and requirements and then how to map such requirements to 
system entities at design time, for example KAOS, UMLSec, secureUML [3, 11, 12, 
13, 15]. These security engineering approaches typically result in systems with fixed 
and built-in security, limited integration with third party security controls, and very 
limited flexibility in terms of adaptation and integration with the software operational 
environment security management systems. Component-based (CBSE) and service-
oriented (SOA) security engineering approaches generate security code, using Aspect-
oriented Programming (AOP) or WS-Security [7, 9], mostly based on design-time or 
deployment-time captured security requirements. These approaches benefit from, and 
are limited to, the underlying system architecture (CBSE, SOA) to deliver flexible 
and adaptable security. Some adaptive security engineering approaches have been 
investigated. However most focus on low-level details or is limited to specific 
security properties – e.g. delivering adaptive access control [10]. These efforts require 
preparing systems at design time to support runtime adaptation. 

We introduce a novel approach, Model Driven Security Engineering at Runtime 
(MDSE@R), which promotes security engineering from design time to runtime to 
eliminate problems that arise from the unanticipated requirements. MDSE@R is 
based on externalizing security from the target system. Thus security to be enforced 
and critical system entities to be secured can change at runtime to reflect current risks. 
Moreover, the system does not need to know how security is defined or enforced. At 
the same time, it still performs normally – e.g. system can use current user-identity to 
filter data specific to current user without knowing how identity was set. 

The software vendor, at design or deployment time, develops a system description 
model – SDM – using our new UML profile. This model captures system features, 
components, classes, behaviour, and deployment details. The system SDM is 
delivered as part of the system delivery package. System customers or the software 
vendor’s security engineers develop, at runtime, a security specification model – SSM 
– using our new security DSVL. The SSM captures current security goals and 
objectives, requirements, architecture, and controls that should be used in securing the 
target software system. Using this set of system and security models (SDMs and 
SSMs); MDSE@R derives a detailed, merged system security model for the target 
software systems. This merged system-security model is then used to automatically, 
dynamically, and at runtime, inject security extensions into target system to achieve 
the required security capabilities. 



Security SSMs are managed and updated at runtime by the software customers, to 
reflect changes in their operational environment and newly discovered security 
threats. To support integrating a third party security control with the target system, we 
introduce a standard security interface with a set of operations e.g. AuthenticateUser, 
AuthorizeUser, IsAuthenticated, Encrypt, etc. The security control vendor has to 
develop an adapter that realizes our security interface. Thus MDSE@R platform can 
easily consume such controls at runtime. We have validated our approach on eight 
significant open source applications. We conducted a performance evaluation and 
preliminary user evaluation. 

Section 2 explains a motivating example for our research and identifies key 
challenges and requirements that must be satisfied by a dynamic security engineering 
approach. Section 3 provides an overview of our MDSE@R approach. Section 4 
describes a usage example of our MDSE@R framework and toolset. Section 5 
describes our framework architecture and implementation details. Section 6 shows our 
evaluation of MDSE@R. Section 7 discusses key strengths and weaknesses, and 
further research areas. Section 8 reviews key related work. 

2   Motivation 

Consider SwinSoft, a software company that is building a large web-based ERP 
system - “Galactic”. Galactic provides customer management, order management, and 
employee management modules. SwinSoft targets different markets in different 
countries for Galactic. However, such markets, domains and likely customers have 
different regulations and information security standards that must be satisfied. 
Galactic must integrate with diverse customers’ existing security solutions and other 
application security. Moreover, SwinSoft has found that customers' security 
requirements that Galactic must meet may change dramatically over time.  

Swinburne University, a new prospect from the education sector, wants to purchase 
a new ERP solution in order to improve its internal enterprise management processes. 
Swinburne has special security requirements because it is ISO27000 certified. Its 
enterprise security architects conduct periodic risk assessment. This may result in a 
requirement to reconfigure the deployed applications’ security to block newly 
discovered threats. Swinburne also wants to have its ERP system security flexible 
enough as it is planning to integrate it with the existing and future partners. This 
implies that Galactic security will change over time after the deployment.  

At the same time, SwinMarket, a big brand supermarket chain, has decided to 
purchase Galactic. SwinMarket also has a need for highly customizable security 
options on different system features that Galactic must satisfy. SwinMarket expects 
security solutions deployed in its application operational environment to change over 
time. Galactic must support quick realization of security updates. Any delay in 
patching newly discovered vulnerabilities means a loss of money. SwinSoft tried both 
existing traditional security engineering and Software Product Lines approaches to 
deliver an efficient customized security. However, these approaches could not help to 
deliver adaptable security within an acceptable cost and time. 



3. Our Approach 

The MDSE@R approach is based on two key concepts: (i) externalizing security 
management and enforcement from the system to be secured while being able to 
intercept calls to any arbitrary critical system entity at runtime. Thus the system does 
not need to be overwhelmed with how security is defined, enforced, or modified; and 
(ii) Model-Driven Engineering (MDE), using DSVL models to describe system and 
security properties at different levels of abstraction. Figure 1 shows an overview, and 
steps, of how to apply MDSE@R in runtime system security engineering: 
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Figure 1.  Overview of MDSE@R dynamic security engineering approach 
 
 

1. Build System Description Model (SDM): A detailed system description model 
(Fig.1-1) is delivered by the system provider. The SDM, an example is shown in 
Figure 2, describes various details of the target system. Our system description model 
covers: system features (using use case diagrams), system architecture (using 
component diagrams), system classes (using class diagrams), system behaviour (using 
sequence diagrams), and system deployment (using deployment diagrams). These 
models cover most of the perspectives that may be required in securing a given 
system. Not all these models are mandatory. It depends on the system vendor and the 
customer agreements. Customer security engineers may need to specify security on 
system entities (using system components and/or classes models), on system status 
(using system behaviour model), on hosting nodes (using system deployment model), 
or on external system interactions (using system context model). Moreover, they may 
specify their security requirements on coarse-grained level (using system features and 
components models), or on fine-grained ones (using system class diagrams). The 
system SDMs can be synchronized with the running instance using models@runtime 
synchronization techniques, or manually by the system vendor. Some of the system 
description detail, specifically the system class diagram, can be reverse-engineered, if 
not available, from the target system (Fig.1-2). We developed a new UML profile 
(Fig 2-A) to extend UML models with architectural and security stereotypes that help 
in: (i) capturing relations between different system entities in different models – e.g. a 
feature entity in a feature model with its related components in the component model 
and a component entity with its related classes in the class diagram; and (ii) capturing 
security entities (requirements, controls, etc.) mapped to a system entity, see step 3. 
 



2. Build Security Specification Model (SSM): A set of models developed and 
managed by customer security engineers (Fig.1-3) to specify the current security 
needs that must be satisfied in the target system, an example is shown in Figure 3. It 
covers the details required during the security engineering process including: security 
goals and objectives, security risks and threats, security requirements, security 
architecture for the operational environment. and security controls to be enforced. 
These models capture different levels of abstractions. The security controls model is 
mandatory. It is used in generating security realization and integration code. 
3. Weave System and Security Models: A many-to-many mapping between the 
system description model (SDM) entities and security specification model (SSM) 
entitles is managed by the customer security engineers (Fig.1-4). One or more 
security entities (security objective, requirement and/or control) are mapped to one or 
more system model entity (feature, component, class and/or method). Mapping a 
security concept on an abstract system entity – e.g. system feature - implies a 
delegation of the same security concept to the concrete entities – e.g. the feature 
realization classes and methods. This is achieved using our UML profile (Fig2-A). 
Moreover, mapping an abstract security concept – e.g. security objective – to a system 
entity – e.g. system class – implies mapping all security requirements, services, and 
controls that realize this security objective to that class. 
 

4. Enforce specified security on target system entities: In the previous steps, both 
security details and critical system entities emerge at runtime. MDSE@R automates 
the realization of the specified security on the critical system entities without any 
involvement from the security or system engineers. Whenever a mapping is 
defined\updated between an SSM entity and an SDM entity, the underlying 
MDSE@R platform propagates these changes as follows: (i) Update the Live System 
Interceptors’ Document (Fig.1-5) which maintains a list of critical entities (system 
entities that have mapped security entities) where security controls should be weaved 
or integrated; (ii) Update the Live Security Specification Document (Fig.1-6) – which 
maintains the list of security controls to be applied at every critical entity; (iii) Update 
the System Container (Fig. 1-7) - the container is responsible for intercepting system 
calls to critical system entities at runtime and redirecting them to a default handler. 
5. Test System-Security Integration: Before putting modifications online (activating 
the specified security adaptations), MDSE@R verifies that the target system is 
correctly enforcing the specified security level. We do not have to test the security 
control itself, however we need to make sure that the right security control is correctly 
integrated within the right system entity as specified. The MDSE@R security testing 
component (Fig.1-8) generates and fires a set of security integration scripts (test 
cases). These test cases simulate requests to system entities that have security 
specifications and compare the security context after calls (actual results) with the 
expected results – e.g. user identity is correctly set, permissions are set as specified, 
etc. A log of the test cases’ firing results is generated to the security engineers 
showing the test cases and their status pass/fail. 
6. Security Services (Fig.1-10) - In MDSE@R, we need to be independent of any 
security platform (java, spring, Microsft WIF, etc.) or security mechanism and 
support easy integration of third-party security controls selected or specified by the 
customer. We define a standard security interface for every security attribute 
(authentication, authorization…). This interface specifies parameters expected by 



each security control, based on security function, in order to perform its task – e.g. 
user identity, credentials, roles, permissions, claims, etc. A security control or service 
vendor must implement this interface in their connector or adapter to integrate with 
MDSE@R. This helps security vendors develop one adaptor for all systems.  
7. Security Enforcement Point - SEP - (Fig.1-9) – this works as a bridge between the 
system container and the deployed security controls. SEP queries the security 
specification document for controls to enforce at every intercepted request. It then 
initiates calls (using the security interface) to the designated security controls’ clients. 
Moreover, the SEP assigns results returned by such controls to the system context e.g. 
an authentication control returns userID of the requesting user after being 
authenticated. The SEP creates an Identity object from this userID and assigns it to 
the current thread’ user identity attribute. Thus a secured application can work 
normally as if it has authenticated the user by itself. An application may use such 
information in its operations e.g. to insert a record in the DB, it uses the user identity 
to set the “EnteredBy” DB field. 

4. Usage Example 

Here we demonstrate how the system vendor and customers can use our MDSE@R, 
and the provided platform toolsets, in engineering security of their system at runtime. 
Moreover, we highlight the involved stakeholders and their responsibilities, and the 
expected outcomes of every step. We use the motivating example from Section 2, 
Galactic system developed by SwinSoft and procured by Swinburne and SwinMarket. 
The two customers have their own security requirements to be enforced on their 
Galactic ERP application instances. We illustrate our usage example using screen 
dumps from our toolset. 
1.  Model Galactic System Description 
This task is done during or after the system is developed. SwinSoft, the service 
vendor, decides the level of application details to provide to its customers in the 
Galactic SDM. Figure 2 shows that SwinSoft provides its customers with description 
of system features including customer, employee and order management features 
(Fig. 2-b), system architecture including presentation, business and data access layers 
(Fig. 2-c), system classes including CustomerBLL, OrderBLL, EmployeeBLL (Fig.2-
d), and system deployment including web server, application server, and data access 
server (Fig. 2-e). SwinSoft uses our UML profile (Fig. 2-a) to capture dependences 
and relations between system features and components, and components and classes.  
2.  Model Swinburne Security Needs  
This task is conducted by Swinburne security engineers during their security 
management process to define and refine organizational security needs starting from 
security objectives down to realization security controls. This model should be 
repeatedly revisited to incorporate any emerging changes in Swinburne security 
objectives. In this scenario, Swinburne engineers document Swinburne security 
objectives that must be satisfied by Galactic (Fig. 3-a). Security engineers then refine 
these security objectives in terms of security requirements that must be implemented 
by the Galactic system, developing a security requirements model (Fig. 3-b).  
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Figure 2.  Examples of the Galactic system description model 

E

2

D

3

C

B

1

A
Data$Integrity

Medium

Confidentiality
High

Availability
High

Accountability
Low

C

 

Figure 3.  Examples of Swinburne security specification model 
 

This model keeps track of the security requirements and their link back to the high 
level security objectives. In this example we show that the AuthenticateUser 



requirement is to be enforced on Galactic along with its detailed sub-requirements. 
Swinburne security engineers next develop a detailed security architecture including 
services and security mechanisms to be used in securing Galactic (Fig. 3-c). In this 
example we show the different security zones (big boxes) that cover Swinburne 
network and the allocation of IT systems, including Galactic. The security 
architecture also shows the security services, security mechanisms and standards that 
should be deployed. Swinburne security engineers finally specify the security controls 
(i.e. the real implementations) for the security services modelled in the security 
architecture model (Fig. 3-d). This includes SwinIPS Host Intrusion Prevention 
System, LDAP access control and SwinAntivirus. Each security control entity defined 
in the security controls model specifies its family (authentication, authorization, audit, 
etc.) and the deployment path of its adaptor. Each security specification model 
maintains traceability information to parent model entities.  In figure 3-d, we specify 
that LDAP “realizes” the AuthenticateUser requirement. Whenever MDSE@R finds a 
system entity with a mapped security requirement AuthenticateUser it adds LDAP as 
its realization control i.e. an LDAP authentication check will run before the entity is 
accessed - e.g. before a method is called or a module loaded. 
3.  Weave System SDM and Security SSM 
After developing the system SDMs – done by SwinSoft, and the security SSMs – 
done by Swinburne security engineers, the Swinburne security engineers can map 
security attributes (in terms of objectives, requirements and controls) to Galactic 
system specification details (in terms of features, components, classes). This is 
achieved by drag and drop of security attributes to system entities in our toolset. Any 
system feature, structure or behaviour can dynamically and at runtime reflect different 
levels of security based on the currently mapped security attributes on it. Figure 3-e 
shows a part of Galactic class diagram where CustomerBLL, a UML class entity, is 
extended with security objectives, requirements and controls compartments. In this 
example the security engineers have specified AuthenticateUser as one of the security 
requirement to be enforced on the CustomerBLL class (1). Such a requirement is 
achieved indirectly using LDAP control (3). Moreover, they have specified Forms-
based authentication on the GetCustomers method (2). This means that a request to a 
method in the CustomerBLL class will be authenticated by the caller’s Windows 
identity (LDAP), but a request to the GetCustomers method will be authenticated with 
a Forms-based identity. MDSE@R uses the security attributes mapped to system 
entities to generate the full set of methods’ call interceptors and entities’ required 
security controls, as in Fig. 4-1, 2.  
4.  Galactic Security Testing 
Once security has been specified, and interceptors and configurations generated, 
MDSE@R verifies that the system is correctly enforcing security as specified. 
MDSE@R generates and fires a set of required security integration test cases. Our test 
case generator uses the system interceptors and security specification documents to 
generate a set of test cases for each method listed in the interception document. The 
generated test case contains a set of security assertions (one for each security property 
specified on a given system entity). Security engineers should check the security test 
cases firing log to verify that no errors introduced during the security controls 
integration with Galactic entities.  



public'IMethodReturn'Invoke('IMethodInvocation'input,'GetNextHandlerDelegate'getNext)'''{
EntitySecurity'entity'='LoadMethodSecurityAttributes('…);
if'(entity'=='null'||'entity.HasSecurityRequirements()'=='false)'{

return'getNext().Invoke(input,'getNext);
}
//logging'Before'Call
this.source.TraceInformation("Invoking'{0}",'input.Arguments[0].ToString());
//Check'for'Authentication
if'(entity.GetAuthenticationMethod()'!='AuthenticationMethod.None)'{

.'.'.
}
//Check'for'Authorization
if'('entity.GetAuthorizationMethod()'!='AuthorizationMethod.None )''{

.'.'.
}

}

.'.'.
<systemlevel>
<Entitylevel>1</Entitylevel>
.'.'.
<componentlevel>
<objectname>
.".".

<classlevel>
<objectname>
.".".

<methodlevel>
.'.'.
<'ObjectName>'GetCustomers </ObjectName>
<Authentication_Method>Forms</Authentication_Method>
<Authorization_Method>RBAC_Impersonate</Authorization_Method>
.'.'.

.'.'.
<extension'type="Interception"'/>
<register'type="PresentationLayer.CustomerBLL,'PresentationLayer'">
.".".
<interception>
<policy'name="PolicyCustomersBLL">
<matchingRule'name="MatchingRuleCustomersBLL“'
Type="MemberNameMatchingRule">
<constructor>
<param'name="nameToMatch"'value="GetCustomers"'/>
<param'name="nameToMatch"'value="GetCustomerByName"'/>
.".".

<callHandler'name="callhandlerCustBLL"t
Type="SecurityKernel.SecurityCallHandler,'SecurityKernel">

.".".

1

2

3

 
Figure 4.  Examples of the interceptors and security specification files 
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Figure 5.  MDSE@R architecture, tools and sequence of operation 
 

5. ARCHITECTURE AND IMPLEMENTATION 

The architecture of the MDSE@R platform, shown in Figure 5, consists of: 
- System description modeller (1) is developed as an extension of Microsoft 

VS2010 modeller with an UML profile (Fig. 2-A) to enable system engineers 
modelling their systems’ details with different perspectives including system features, 
components, deployment, and classes. The UML profile defines stereotypes and 
attributes to maintain the track back and foreword relations between entities from 
different models. Moreover, a set of security attributes to maintain the security 
concepts (objectives, requirements and controls) mapped to every system entity. 

- Security specification modeller (2) is developed as a DSVL using Microsoft 
VS2010 plug-in. It enables application customers, represented by their security 
engineers, to specify the security attributes and capabilities that must be enforced on 
the system and/or its operational environment. The security modeller delivers a set of 



complete security DSVLs. This DSVL captures customer’s security objectives and 
relationships between them, security requirements and relationships (including 
composition and referencing relations), security architecture and design (including 
security zones, security services, mechanisms to be deployed in each zone), security 
controls details and relationships to corresponding security requirements. 

- Models Repository: Both modelling tools use a repository (3) to maintain models 
developed either by the system engineers or the security engineers. This repository 
also maintains the live system interceptors’ document and security specification 
document. An example of these documents is shown in Fig 4. This example shows a 
sample of the Galactic interceptors’ document generated from the specified security-
system mapping. It informs the system container to intercept GetCstomerByName & 
GetCustomers methods (1); a sample of Swinburne security specification file defining 
the security controls to be enforced on every intercepted point (2); and a sample of the 
security enforcement point API that injects the necessary security control calls before 
and after application code is run (3) 

- Security Controls Database: is a library of available and registered security 
patterns and controls. It can be extended by the system providers or by a third party 
security provider. A security control must implement certain APIs defined by the 
security enforcement point in order to be able to integrate with the target system. 
Having a single enforcement point with a predefined security interface for each 
security controls family enables security providers to integrate with systems without 
having to redevelop adopters for every system.  We adopted OWASP Enterprise 
Security API (ESAPI) library as our security controls database. It provides a set of 
authentication, authorization, encryption, etc. controls that we used in our testing. 

- System Container: To support run-time security enforcement, MDSE@R uses a 
combined dependency injection and dynamic-weaving AOP approach. Whenever a 
client or application component sends a request to any critical system component 
method, this request is intercepted by the system container (Fig. 5-5). The system 
container supports wrapping of both new developments and existing systems. For new 
development, Swinsoft system engineers should use the Unity application block 
delivered by Microsoft PnP team to support intercepting any arbitrary class entity. 
Unity supports dynamic runtime injection of interceptors on methods, attributes and 
class constructors. For existing systems we adopted Yiihaw AOP, where we can 
modify application binaries (dll and exe files) to add security aspects at any arbitrary 
system method (we add a call to our security enforcement point).  

- Security Test Case Generator (6) uses the NUnit testing framework to partially 
automate security controls and system integration testing. We developed a test case 
generator library that generates a set of security test cases for authentication, 
authorization, input validation, and cryptography for every enforcement point defined 
in the interceptors’ document. MDSE@R uses NUnit library to fire the generated test 
cases and notifies security engineers via test case execution result logs.  

- Security Enforcement Point (8) is a class library that is developed to act as the 
default interception handler and the mediator between the system and the security 
controls. Whenever a request for a target application operation is received, it checks 
the system security specification document to enforce the particular system security 
controls required. It then invokes such security controls through APIs published in the 
security control database (4). The security enforcement point validates a request via 



the appropriate security control(s) specified, e.g. imposes authentication, 
authorization, encryption or decryption of message contents. The validated request is 
then propagated to the target system method for execution (9). 

 
Table 1: Results of validating MDSE@R against Group-1 and Group-2 applications 

Benchmark 
Applications 

Statistics Security Attributes 
 KLOC   Files     Classes Authn Authz. I/P Valid. Audit Crypto. 

G1 Galactic  16.2 99 101 F, C, S, M 
PetShop 7.8 15 25 F, C, S, M 

G2 Splendid 245 816 6177 C, S, M (C, S, M)* 
KOOBOO 112 1178 7851 C, S, M (C, S, M)* 
NopComm 442 3781 5127 C, S, M (C, S, M)* 
BlogEngine 25.7 151 258 C, S, M (C, S, M)* 
BugTracer 10 19 298 C, S, M (C, S, M)* 
TinyERP 6 20 22 C, S, M (C, S, M)* 

   F: Security attribute successfully applied on feature level & propagated to lower entities                 
   C:Security attribute successfully applied on component level & propagated to lower entities                              
   S:Security attribute succesfully applied on classes M:Security attribute can be applied on method level 
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     Figure 6. MDSE@R usability evaluation          Figure 7. Average performance overhead of MDSE@R 

6. Evaluation 

In our evaluation of MDSE@R we target assessing the approach capabilities and 
scalability in (1) capturing descriptions of different real systems; (2) capturing 
different security details; (3) propagating security attributes on different system 
entities (features, components, etc); and (4) enforcing unanticipated security including 
authentication, authorization, auditing, etc. at runtime within a reasonable time.  

Benchmark Applications: We used a set of eight real, different domains, and open 
source .NET applications in validating our approach capabilities. We divided the 
evaluation set into two groups: Group-1 has two applications: Galactic-ERP that we 
developed from scratch, and PetShop e-Commerce application, an open source 
application. Both applications have been modified to adopt the Unity application 
block as the system container. Group-2 has six third-party web applications: 
SplendidCRM, KOOBOO, BlogEngine, BugTracer, NopCommerce, and TinyERP. 
For this group we use Yiihaw framework as the system container. Table 1 shows 
some statistics about the selected applications including KLOC, files, and classes.  

Experimental Setup: Using MDSE@R, we developed one security specification 
model (SSM) including security objectives, requirements, and controls as in Fig. 3. 
We specified security requirements and controls for authentication, authorization, 
input validation, logging and cryptography. We used MDSE@R to model the system 



description (SDMs) for applications in Group-1, as we know the details of these 
systems. For Group-2, we used system deployment diagram for these applications and 
used MDSE@R to reverse engineer systems’ class diagram from there binaries.  

Evaluation Results: We now have the required models to manage the various 
applications’ security. Table 1 shows security attributes that MDSE@R succeeds to 
capture, at runtime, including authentication, authorization, input sanitization, audit 
and cryptography. This represents most of known security attributes. Table1 also 
shows that MSDE@R succeeds in mapping and enforcing these security attributes on 
all systems in both Group-1 and Group-2 with different levels of system abstractions 
(F: feature, C: component, S: class, and M: method). However, Group-2 applications 
do not have a system feature model to map and enforce security on this level. The 
enforcement of Cryptography has a limitation (with Group-2 applications) as it 
requires both the caller and callee to use parameters of type string.  

User Evaluation: We have carried out a user evaluation of our tools and platform 
to assess MDSE@R usability. We had seven post-graduate researchers, not involved 
in the development of the approach, to use our developed tools and platform. We had 
them explore several MDSE@R system and security DSVL specifications of the 
PetShop and Galactic applications. They then modified the security requirements and 
updated systems security specification at run-time. We conducted a usability survey 
to gain there feedback on our DSVL models, modelling tools, and security 
enforcement platform. The results, Figure 6 (1: strongly disagree, 5: strongly agree), 
show that they successfully understood and updated security models of the target 
systems. They recommend using expressive icons in security DSVL instead of boxes.  

Performance Evaluation: We have tested the performance overhead of MDSE@R 
on a desktop PC with core2 Duo processor and 4GB memory. The results, as shown 
in Figure 7, shows that the performance overhead range from 0.13 up to 35 msec for 
200 critical point and 100 concurrent users. This overhead equals time spent by SEP 
to query the security requirements to enforce on the given point, initiate and call the 
security controls specified. Moreover, we have measured the adaptation delay 
incurred by MDSE@R to realize a single simple mapping between a security entity 
and a system entity. This overhead equals avg. 2sec. This represents time to update 
the interceptors and security specification documents and time to generate and fire the 
required integration test case(s).  

7. Discussion 

Our MDSE@R approach promotes security engineering from design time to runtime. 
This is based on externalizing security engineering activities including capturing 
objectives, requirements controls, and realization from the target system 
implementation. This permits systems to support adapting security at runtime. 
Moreover, a key benefit reaped from our approach is the support of model-based 
security management. Customer security requirements, architecture and controls are 
maintained and enforced through set of centralized SSMs instead of low level 
scattered configurations and code that lack consistency and is difficult to modify. In 
our evaluation we developed one security model and used it with different systems. 



Each system enforces the security mapped to its entities. Moreover, any update to the 
security model results in updating all systems linked to it. This is a key issue in 
environments where multiple applications must enforce the same security 
requirements. Having one place to manage security reduces the probability of errors, 
delays, and inconsistencies.  

The security engineering of existing systems (extending system security 
capabilities) has three possible scenarios: (i) systems that already have their SDMs, 
we can use MDSE@R directly to specify and enforce security at runtime; (ii) systems 
without SDMs, we reverse engineer parts of system models using MDSE@R. Then 
we can use MDSE@R to engineer required system security. Finally, systems with 
built-in security, in this case we can use MDSE@R to add new security capabilities 
only. MDSE@R cannot help with modifying or disabling existing security. We are 
currently working on an extension of MDSE@R to support deletion of existing 
security methods and partial code using modified AOP techniques.  

The selection of the level of details to apply security on depends on the criticality 
of the system. In some situations like web applications, we may intercept calls to the 
presentation layer only while considering the other layers secured by default (not 
publicly accessible). In other cases, such as integration with a certain web service or 
using third party component, we may need to have security enforced at the method 
level (for certain methods only).  Security and performance trade-off is another 
dilemma to consider. The more security validations and checks the more resources 
required. This impacts application performance. We plan to extend our generated test 
cases to include performance tests in the near future, allowing MDSE@R to help 
optimizing the level of security enforced.  

MDSE@R helps in engineering security into systems at runtime, while the 
controls’ configuration and administration should be managed by security 
administrators. Moreover MDSE@R does not support defining business rules at 
runtime – e.g. employee should not be able to retrieve customers’ records of type VIP. 
The target system should have this rule while MDSE@R will provide the current user 
roles/permissions as returned by the customer security control. 

Customers who do not want extra security control or do not have enough staff can 
use security delivered by software vendors using MDSE@R. Then, they deliver both 
SDM and SSM to customers. This helps in further customizations whenever needed. 

8. Related Work 

1. Design time Security Engineering: Software security engineering aims to 
develop secure systems that remain dependable in face of attacks [1]. Security 
engineering activities include: identifying security objectives; identifying security 
risks that threaten system operation; elicitation of security requirements that should be 
enforced; developing security architectures and designs that deliver the security 
requirements; and developing, deploying security controls.  
- Early-stage security engineering approaches focus only on security requirements 
elicitation and capturing at design time. KAOS [11] was extended to capture security 
requirements in terms of obstacles to stakeholder’s goals. Obstacles are defined in 



terms of conditions that when satisfied will prevent certain goals from being achieved. 
Secure i* [12] focuses on identifying security requirements through analysing 
relationships between users, attackers, and agents of both parties. Secure Tropos [13] 
captures details about the security requirements and trust goals, introducing two 
categories of goals: hard goals that reflect system functional requirements and soft 
goals reflecting non-functional requirements (security). 
- Later-stage security engineering approaches typically focus on security 
engineering during system design. Both early and later stage approaches lack a 
complete security model that captures security details and abstraction levels. Both do 
not support generating security code that realizes the specified security requirements. 
Misuse cases [14] capture use cases that the system should not allow and may harm 
the system operation or security. UMLSec [3] introduce a UML profile that provides 
stereotypes to be used in annotating design elements with security intentions and 
requirements. UMLSec provides a comprehensive UML profile but it was developed 
mainly for use during the design phase. UMLSec has stereotypes for predefined 
security requirements only (secrecy, secure dependency, critical…). SecureUML [15] 
provides a meta-model to capture RBAC policies of target systems. Both approaches 
are tightly coupled with system models. Moreover, they focus on mapping security 
requirements on system design rather than developing security architecture, design 
and implementation details. 
 
2. Adaptive Application Security: Several research efforts try to deliver adaptable 
security capabilities. Serenity [5] enables provisioning of appropriate security and 
dependability mechanisms for Ambient Intelligence systems at runtime. Security 
attributes are specified at design time. At runtime, the framework links Serenity-
aware systems to appropriate security patterns. Serenity does not support capturing 
new unanticipated security requirements. Morin et al [10] propose a security-driven 
and model-based dynamic adaptation approach to help applications reflecting defined 
context-aware access control policies. Engineers define security policies that take into 
consideration context information. Whenever the system context changes, the 
proposed approach updates system architecture to enforce matched security policies. 
Mouelhi et al [7] introduce a model-driven security engineering approach to specify 
and enforce system access control policies at design time based on AOP-static 
weaving. These adaptive approaches require design time preparation (to write 
integration code or to use specific platform or architecture). Moreover, they support 
limited security objectives such as access control. Unanticipated security 
requirements are not supported. No validation that target systems correctly enforce 
specified security.  

9. Summary 

We introduce MDSE@R as a new model-driven approach to dynamically engineer 
security for software applications at runtime. MDSE@R is based on using a set of 
multi-level system description models, developed by system providers, to describe 
different application perspectives; a set of security specification models, developed by 



system customers, to capture security details using DSVL. MDSE@R then bridges 
the gap between these two specifications through merger of both system and security 
models into a joint system-security model. MDSE@R uses dynamic injection of 
security enforcement interceptors and code into the target system to enforce the 
security specified. Security specifications are thus externalized and loosely coupled 
with system specifications, enabling both the system and security specification to 
evolve. We have developed a modelling toolset and a prototype of MDSE@R. We 
evaluated MDSE@R on a set of eight applications. We conducted user evaluation and 
performance evaluation of the MDSE@R platform, and adaptation overhead. 
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