
Providing Fairer Resource Allocation for Multi-tenant Cloud-based Systems

Jia Ru, John Grundy, Yun Yang
School of Software and Electrical Engineering

Swinburne University of Technology
Melbourne, Australia 3122

Email:{rjia, jgrundy, yyang}@swin.edu.au

Jacky Keung
Department of Computer Science

City University of Hong Kong
Hong Kong SAR

Email:Jacky.Keung@cityu.edu.hk

Li Hao
Research & Development Department

Winhong Information Technology Co.,Ltd
Guangzhou, Guangdong, China 510642

Email:liucoolhao@gmail.com

Abstract—
A fundamental premise in cloud computing is trying to provide
a more sophisticated computing resource sharing capability.
In order to provide better allocation, the Dominant Resource
Fairness (DRF) approach has been developed to address the “fair
resource allocation problem” at the application layer for multi-
tenant cloud applications. Nevertheless conventional DRF only
considers the interplay of CPU and memory, which may result
in over allocation of resources to one tenant’s application to the
detriment of others. In this paper, we propose an improved DRF
algorithm with 3-dimensional demand vector <CPU, memory,
vdisk> to support disk resources as the third dominant shared
resource, enhancing fairer resource sharing. Our technique is
integrated with LINUX ‘Cgroup’ controls resource utilisation
and realises data isolation to avoid undesirable interactions
between co-located tasks. Our method ensures all tenants receive
system resources fairly, which improves overall utilisation and
throughput as well as reducing traffic in an over-crowded system.
We evaluate the performance of different types of workload using
different algorithms and compare ours to the default algorithm.
Results show an increase of 15% resource utilisation and a
reduction of 59% completion time on average, indicating that
our DRF algorithm provides a better, smoother, fairer high-
performance resource allocation scheme for both continuous
workloads and batch jobs.

Keywords–cloud computing, scheduling, algorithm, DRF, multi-
tenancy

I. INTRODUCTION

Cloud computing enables resource sharing but different
tenants may have diverse requirements for each resource (CPU,
memory and I/O) for their hosted applications. Cloud providers
are strongly driven by consumer needs, and market-oriented
resource management strategies are becoming necessary to
regulate strong demand for resources, this is to achieve opti-
mum resource utilisation and providing to their clients/tenants
with acceptable performance [1]. But different kinds of cloud
resources exhibit different levels of dynamic and interactive
behaviours according to user demands. Large clusters running
parallel processing frameworks such as MapReduce [2] are
becoming commonly used techniques. Different applications
could be classified as communication-intensive, CPU-intensive
and data-intensive and thus the requirements of different ten-
ants become more diverse [3]. There are studies on dynamic
resource allocation and performance isolation between appli-
cations and tenants in a shared computing environment and
becoming a new challenge [4]. Both over/under-allocation of
resources are undesirable and will adversely impact the tenant
itself and others in the shared cloud environment.

The Max-min fairness algorithm is one of the most popular
resource allocation mechanisms being used, originally pro-

posed for computer networks to facilitate better scheduling
capability. Nowadays, it is being widely used in cloud com-
puting systems, with different implementations such as Choosy
[3] and DRF [5]. These are attempts to optimize the minimum
resource allocation needed and received by each prospective
tenant [5]. Moreover, the weighted max-min fairness model
focuses on data resource isolation, in that each tenant is
assured of receiving their needed share without considering
requirements of other tenants [5]. However, most of fairness
resource allocation research to date has been on homogenous
environments. Today’s computing environments are mostly
heterogeneous and thus the allocation policies implemented
by a single resource abstraction will not necessarily satisfy
the needs of different cloud applications.

Dominant Resource Fairness or DRF for short [5] is a
method to provide fair allocation for heterogeneous resources.
DRF attempts to maximise the “minimum dominant share”
of resources for all users. DRF attempts to fairly distribute
memory and CPU resources among these different types of
jobs in a mixed-workload cluster [6]. But it does not consider
disk I/O resources and network bandwidth, which is its main
weakness. Tasks consume different resources simultaneously,
and tasks may be bottlenecked and blocked on these different
resources. Without controlling the disk I/O, some tasks will
exhaust disk I/O, which will incur disk blocking of other tasks
and increase their completion time. Improved job completion
time after implementing a disk optimization approach repre-
sents a best-case scenario [7].

In this paper we present an enhancement to DRF to support
fair, efficient allocation of cloud resources to each cloud tenant.
First, our algorithm considers not only CPU and memory
resources, but also disk resources as the third candidate to
avoid over allocation. If not considering disk I/O, it is rather
easy to over allocate disk resources for the tasks that need
a relatively smaller share of CPU and memory. Second, co-
located tasks might compete for I/O resources and interfere
with each other. Isolating disk I/O resources is essential to
deliver predictable performance. Our algorithm uses ‘Cgroup’
to limit and control each job’s resource usage and I/O, aiming
to realise both logical resource isolation and physical resource
isolation. For example, according to job requirements, tasks
are configured for different I/O, then assigned to different
physical disk partitions without any interaction among the
tenants. This enables different tasks from multiple tenants
to share resources reasonably and fairly, improving overall
system resource utilisation and throughput. In reality many
tenant applications do not necessarily need a large amount
of resources allocated, and they are not concerned with how
much resource is being allocated to them. Our method is able
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to determine the dominant share level, even if the smallest
required resource level can be defined as the dominant share.
Our proposed technique provides a comprehensive handling
of multiple resource types required for multi-tenant cloud
platforms, a significant improvement over the conventional
naı̈ve DRF algorithm based on results shown in this study.

Section II discusses related work and Section III describes
the motivation for our work by an experimental example. Sec-
tion IV presents our proposed modifications to the conventional
DRF algorithm. Section V presents observations and results,
and Section VI concludes the work and outlines future work.

II. RELATED WORK

A. Max-min fairness resource allocation
Max-min fairness is a flexible resource allocation mecha-

nism used in datacenter schedulers, networks, operating sys-
tems and queueing systems [3] [8]. In heterogeneous resource
environments, an increase in the allocation to any participant
necessarily results in a decrease in the allocation to some other
participants with an equal or smaller allocation [9]. Compared
to a first-come first-served (FCFS) scheduling policy, max-min
fairness provides traffic shaping to avoid resource congestion.

B. Dominant resource fairness (DRF)
DRF uses the concept of a ”dominant resource” to compare

multi-dimensional resources. In a multi-resource environment,
resource allocation should be determined by the dominant
share of an entity (user or queue), which is the maximum share
that the entity has been allocated of any resource (memory
or CPU). In a nutshell, DRF tries to maximise the minimum
dominant share across all tasks using shared resources [6].
For instance, when user a runs CPU-heavy jobs (e.g. Storm-
on-YARN [10]) and user b runs memory-heavy jobs (e.g.
MapReduce [2]), DRF seeks to equalise the CPU share of
a with the memory share of b. Eventually, DRF will allocate
more CPU and less memory to a, and allocate less CPU and
more memory to b. In a homogeneous resource environment,
all the tasks require the same type of resources and hence
DRF reduces to max-min fairness for the resource [6] [5]. DRF
algorithm [5] identifies some significant allocation properties,
such as sharing incentive, strategy-proofness, envy-freeness
and more importantly Pareto efficiency. The strength of DRF
lies in these properties which are satisfied, especially when
these properties are trivially satisfied by max-min fairness for
a single resource, but are important in multiple resources.
DRF provides incentives for users to share resources by
guaranteeing that no user is better off in a system in which
resources are statically and equally partitioned among users.
DRF ensures that users do not gain a better allocation by lying
about their resource demands. Moreover, DRF allocates all
available resources subject to satisfying the other properties,
and without preempting existing allocations. DRF ensures that
no user prefers the allocation of another user. [5]

The Capacity Scheduler is designed to run Hadoop appli-
cations as a shared, multi-tenant cluster friendly to maximise
the throughput and utilisation of the cluster [11]. Capacity
Scheduler has two Resource Calculator implementations. A
default resource calculator is where resources are allocated
based on memory alone. The other is a Dominant Resource
Calculator based on the DRF model of resource allocation only
with consideration of CPU and memory [6]. DRF can also

work on fair scheduler, where it is set as a fairness policy at
each level of the scheduling hierarchy [12]. Its dominant share
(current usage of resources) is defined as the maximum ratio
between a resource type in the current usage and a resource
type in the cluster. However, DRF on fair scheduler does not
exactly know what the multi-resource analog to this should be
and hardly assigns each scheduled queue a fair share of each
resource [12].

C. Cgroup - Control groups
Cgroup, an acronym for ‘control groups’, is a Linux kernel

proposed by Google, that limits, accounts for and isolates the
resource usage (CPU, memory, disk I/O, network, etc.) of a
collection of processes [13]. In ‘Cgroup’, a task is referred
to as an OS process. ‘Cgroup’ associates tasks with different
parameters for one or more subsystems that use task grouping
facilities to treat groups of tasks in particular ways. The task
groups can be set to not exceed configured CPU, memory and
disk I/O boundaries to limit and isolate resources, but some
groups with higher priority can receive larger share of CPU
utilisation and disk I/O throughput [14]. ‘Cgroup’s’ subsystem
‘blkio’ implements the block I/O controller [15]. Internally,
CFS (completely fair scheduler) is a new ‘desktop’ process
scheduler [16] to maintain fairness in providing processor time
to tasks which is used in our allocation policy. Each process
should gain a fair amount of the processor. When one or more
tasks are not received a fair amount of time relative to others,
those unfair tasks should be given time to execute [17]. The
amount of time provided is measured by virtual time, the
smaller time a task is permitted access to the processor [17].
‘Cgroup’ realises resource isolation and I/O control. The tasks
with different types or of diverse tenants are set with specific
I/O by ‘Cgroup’ and assigned to physical disk partitions with
corresponding I/O without any interaction.

D. YARN - the next generation Hadoop
YARN [10], as the next-generation Hadoop [18], comput-

ing platform separates its functions into 2 layers: platform layer
for resource management and framework layer coordinating
application execution [19]. It decouples the programming
model from resource management infrastructure, orchestrates
various running applications with different resource require-
ments and arbitrates all kinds of resources to tenants. YARN’s
scheduling component is more granular and dynamic, not
strictly partitioning nodes. However, currently it is only sensi-
tive to memory and CPU [10].

III. MOTIVATING EXAMPLE

Assume a cloud system with 24 virtual CPUs (vCPUs), 36
GB RAM, 54 virtual disks (vdisks), a resource sharing degree
of Lev = 1, and 3 users (tenants). Our algorithm introduces
a “resource sharing degree” concept, in which the lower the
degree, the more dominant the resource for a task. User a
runs tasks with resource requirement 3-dimensional demand
vector <2 vCPU, 4 GB, 3 vdisk>, User b runs tasks with
requirement <3 vCPU, 2 GB, 6 vdisk>, and User c runs tasks
with requirement <1 vCPU, 3 GB, 6 vdisk>.

In our proposed DRF allocation algorithm, CPU, memory
and disk resources are all considered. The restriction of I/O
speed and amount of shared storage I/O can be set for each
task, job, tenant or group of tenants. Lev = 1 indicates the



most dominant resource value. Therefore, after calculating the
fraction of required resources to the total resource, the largest
one is selected as the dominant share. User a requires { 1

12
CPU, 1

9 memory, 1
18 vdisk}, and its dominant share is memory.

User b needs { 18 CPU, 1
18 memory, 1

9 vdisk}, and its dominant
share is CPU. User c requires { 1

24 CPU, 1
12 memory, 1

9 vdisk},
and its dominant share is disk.

This allocation can be calculated and simplified mathemat-
ically as follows. Given x, y and z respectively stand for the
number of tasks allocated by proposed DRF to user a, b and
c. User a is allocated <2x vCPU, 4x GB, 3x vdisk >, User
b is allocated <3y vCPU, 2y GB, 6y vdisk >, and User c is
allocated <z vCPU, 3z GB, 6z vdisk >. The total amount of
resources assigned to these 3 users are (2x + 3y + z) CPUs,
(4x+ 2y + 3z) GB, and (3x+ 6y + 6z) vdisks.

Our proposed enhanced DRF algorithm attempts to
equalise the dominant share of users a, b, and c: 4x

36 = 3y
24 = 6z

54 .
We should point out that DRF does not always equalise users’
dominant share, since as one user’s resource requirement is
satisfied, the extra resources will be split to other users. If one
type of resource is exhausted, the users that do not need that
type of resource will still continue receiving higher shares of
other types of resources [5].

Equation 1 provides an answer to this problem:

max(x, y, z) (maximize allocations)
constraint to

2x+ 3y + z ≤ 24 (CPU constraint)
4x+ 2y + 3z ≤ 36 (memory constraint)
3x+ 6y + 6z ≤ 54 (disk constraint)
4x
36 = 3y

24 = 6z
54 (equalise dominant share)

(1)

Solving this equation, we get x = 4, y = 3, and z = 4 (note that
one task must be processed as an entity, so the values of x,
y and z must be an integer). Consequentially, user a receives
<8 vCPU, 16 GB, 12 vdisk>, user b receives <9 vCPU, 6
GB, 18 vdisk>, and user c receives <4 vCPU, 12 GB, 24
vdisk>. Figure 1 outlines how this could be achieved. User
a receives 44.44% of the memory resource; user b receives
37.50% CPU resource; and user c receives 44.44% of the disk
resource. The system resource utilisation is considered as very
high <87.50% CPU, 94.44% memory, 100.00% disk>.

In this scenario, the original DRF algorithm does not
consider the disk I/O utilisation. User a’s dominant share is
memory ( 19 ), b’s share is CPU ( 18 ), and c share is memory ( 1

12 ).
Based on the Max-min principle, c’s task is being executed
first, and then for a’s task. b’s dominant share ratio is the
largest and runs next. After several iterations, all the disk I/O
resource is exhausted. Finally, a b and c have 3, 3, 4 tasks
executed, respectively. System utilization is <79% CPU, 83%
memory, 100% disk>, which is 10% lower than our modified
DRF method. Use of the original DRF algorithm easily results
in I/O exhaustion, which unfortunately, blocks other resource
usage. Our method solves this issue and can also control each
kind of resource’s usage to avoid some tenants occupying too
many resources, which lead to reducing others’ performance.

IV. OUR APPROACH

A. Proposed DRF algorithm
To address the said issues highlighted, our new DRF

allocation algorithm is added to the YARN capacity scheduler

to consider CPU, memory, disk resources, as shown in Figure
2. The Queue from YARN’s scheduling unit is a logical
collection of applications submitted by diverse tenants and can
also be regarded as a logical view of the resources on physical
nodes. The capacity of each queue specifies the percentage of
cluster resources that are available for applications submitted
to the queue. Tenants use Yarn to orchestrate applications with
differing resource requirements and to arbitrate resources of
all kinds. Then the capacity scheduler is enabled by using the
Dominant Resource Calculator based on our improved DRF
model for resource allocation, where our algorithm is invoked.

Capacity scheduling represents one aspect of YARN re-
source management capabilities that includes ‘Cgroup’, node
labels, archival storage, and memory as storage. ‘Cgroup’
should be used with capacity scheduling to constrain and
manage CPU processes and ‘blkio’ configures different re-
source provision for jobs based on diverse tenants’ requests.
Containers with different resource configurations grant rights
to corresponding tasks to use a specific amount of resources
and process them. Essentially, a container is a logical bundle
of resources bound to a particular cluster node. ‘Cgroup’
monitors the running status and allocated resources for each
user. It dynamically controls and tunes I/O and other resource
allocations to isolate data. With ‘Cgroup’ strict enforcement
turned on, each task gets only the resources it asks for.
Without ‘Cgroup’ turned on, the DRF scheduler will do its
best to balance allocations out, but unpredictable behaviour
may occur. Our method can force some allocation to specified
disks via I/O matching. For example, high I/O tasks will be
assigned to a disk partition with high I/O capability [6].

Algorithm 1 shows the pseudo code of our modified
DRF algorithm. A task is submitted with different resource
demands, which is depicted by a 3-dimensional demand vector.
In naı̈ve DRF algorithm, only CPU and memory are the
elements in the demand vector, for realisation of dominant
share. However, we add virtual disk to this resource demand
vector. Dosm is used to denote the demand vector of the
next task that user m wants to launch. At each iteration, the
scheduler selects the task with the lowest dominant share ready
to tun. If that user’s next ready task requirement (Demm)
can be satisfied, then the task will be executed. Next, the
scheduler updates the user’s resource utilisation and adds the
requirement of last running task (Demm) to user m’s total
allocated resources (Allm). When some tasks are finished, the
users release their corresponding resources and recalculate the
users’ total allocated resources. Our algorithm uses Lev = i
is (i = 1, 2, 3) to determine the degree of resource sharing:
high, medium, and low. When choosing Lev = 3, the smallest
amount of needed resource for a user is set as its dominant
share, which realises the lowest dominant resource share.

During each iteration, the user task with lowest dominant
share Demm is ready to run. If the equation of Line 7 is
satisfied, the task will be executed and then resource usage
is updated for Allm. When tasks finish, related allocated
resources are released. Our method can determine different
degrees of dominant share. If Lev = 3, the smallest amount
of needed resource for a user is set as its dominant share, which
realises the lowest dominant resource share. Our method uses a
binary heap to store each user’s dominant share and uses array
sort to store and determine the degree of dominant share. Each
scheduling decision takes O(n log n) time for n users.
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Table:	
  Using	
  our resource allocation	
  policy	
  in	
  a	
  cluster	
  of 24 CPUs,	
  36 GB RAM,	
  54 disks	
  with	
  3	
  users	
  running	
  tasks that	
  require <2	
  CPU,	
  4	
  GB,	
  3	
  disk>,	
  
<3	
  CPU,	
  2	
  GB,	
  6	
  disk>,	
  and	
  <1	
  CPU,	
  3	
  GB,	
  6	
  disk>	
  respectively	
  under	
  the	
  resource	
  sharing	
  degree	
   is	
  1.	
  Each	
  row	
  corresponds	
  to	
  our	
  DRF	
  making	
  a
scheduling	
  decision.	
  A	
   row	
   shows	
   the shares	
   of each user	
   for	
   each kind of resource, the user’s	
   dominant	
   share,	
   and	
   the fraction	
  of each resource
allocated	
  so far.	
  Our	
  DRF	
  repeatedly	
  selects	
  the	
  user	
  with	
  the	
  lowest	
  dominant	
  share	
  (indicated	
  in	
  bold	
  and	
  red) to	
  launch a	
  task,	
  until no	
  more	
  tasks
can	
  be	
  allocated.	
  (P.S.	
  allo.:	
  allocation dom.:dominant	
  res.:resources).

In	
  this	
  example, we	
  consider	
  a	
  special	
  scenario that User A	
  and	
  User C’s	
  dominant	
  share fraction	
  are the same.	
  Compared	
  to	
  those scenarios	
  that	
  all	
  the
users’	
  dominant	
  share fraction	
  are different,	
  this	
  case will	
  indicate	
  the generality	
  of our	
  algorithm	
  more	
  accurately,	
  since	
  the	
  realization	
  of	
  this	
  policy	
  
depends on the bottom	
  component.	
  Even	
  if the dominant	
  share fraction	
  of	
  different	
  users	
  is same, it will	
  not influence our	
  algorithm. In	
  the	
  beginning,	
  
User A	
  and	
  User C’s	
  dominant	
  share fraction	
  are smallest	
  and	
  same	
  (1/9),	
  and	
  User	
  A	
  is	
  chose	
  first.	
  Next	
  iteration,	
  User	
  C’s	
  dominant	
  share fraction	
  is	
  

Schedu
le 

User a User b User c CPU 
total 

allocation 

Memory 
total 

allocation 

Disk 
total 

allocation 
resource shares domina

nt share 
resource shares domina

nt share 
resource shares domina

nt share 
User A <2/24,4/36,3/54> 4/36 <0,0,0> 0 <0,0,0> 0 2/24 4/36 3/54 
User C <2/24,4/36,3/54> 4/36 <0,0,0> 0 <1/24,3/36,6/54> 6/54 3/24 7/36 9/54 
User B <2/24,4/36,3/54> 4/36 <3/24,2/36,6/54> 3/24 <1/24,3/36,6/54> 6/54 6/24 9/36 15/54 
User A <4/24,8/36,6/54> 8/36 <3/24,2/36,6/54> 3/24 <1/24,3/36,6/54> 6/54 8/24 13/36 18/54 
User C <4/24,8/36,6/54> 8/36 <3/24,2/36,6/54> 3/24 <2/24,6/36,12/54> 12/54 9/24 16/36 24/54 
User B <4/24,8/36,6/54> 8/36 <6/24,4/36,12/54> 6/24 <2/24,6/36,12/54> 12/54 12/24 18/36 30/54 
User A <6/24,12/36,9/54> 12/36 <6/24,4/36,12/54> 6/24 <2/24,6/36,12/54> 12/54 14/24 22/36 33/54 
User C <6/24,12/36,9/54> 12/36 <6/24,4/36,12/54> 6/24 <3/24,9/36,18/54> 18/54 15/24 25/36 39/54 
User B <6/24,12/36,9/54> 12/36 <9/24,6/36,18/54> 9/24 <3/24,9/36,18/54> 18/54 18/24 27/36 45/54 
User A <8/24,16/36,12/54> 16/36 <9/24,6/36,18/54> 9/24 <3/24,9/36,18/54> 18/54 20/24 31/36 48/54 
User C <8/24,16/36,12/54> 16/36 <9/24,6/36,18/54> 9/24 <4/24,12/36,24/54> 24/54 21/24 34/36 54/54 

Figure 1. Resource allocation example using our approach: Each row represents our DRF to making a scheduling decision. Each row shows the share of each
user for each kind of resource, the user’s dominant share, and the fraction of each resource allocated so far. Our DRF repeatedly selects the user with the lowest
dominant share (indicated in bold and red) to launch a task, until no more tasks can be allocated. In the beginning, User a and User c’s dominant share fraction
are smallest and the same (1/9), and User a is chosen first. Next iteration, User c’s dominant share fraction is the smallest, so User c is selected. In the third
iteration, User b’s dominant share fraction is 0 so far and that only User b has not been given resources, so b is selected. We repeat the iteration until the cluster
is saturated. Even if at the first iteration, where User c is being selected, and we could also get the same results.
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Figure 2. Our proposed Dominant Resource Fairness allocation algorithm

B. Weighted DRF
In practice, allocating resources should not always be

equalised between users. We should allocate more resources
to the users with priority and running more important, time-
sensitive jobs. To achieve this goal, a weighted DRF is derived
from our algorithm. In the proposed weighted DRF, each
user m has a weight vector Wm = (wm,1, wm,2, ..., wm,p),
where wm,p means the weight of user m of resource p.
When the weights of user m’s are being all equal, wm,p =
wm, the principle of user m’s dominant share changes to
Dos[ ] = sortpn=1(am,n/(rn ∗wm,n)) (line12), which ensures
the resource share between diverse users is not equalised.

V. EXPERIMENTS

To evaluate our algorithm’s performance, we employ 4
metrics: resource utilisation, resource restriction effort, com-
pletion time and data isolation to evaluate different types
of MapReduce-based workloads. Our experiments compare
our new algorithm’s performance and resource utilisation for
both single type of workload and mixed workloads to the
naı̈ve DRF. Our experiments contain 2 main parts: exemplar
benchmark applications with a single type of workload, and
real application with mixed workloads. The latter validates
our method’s performance for practical applications. Our cloud
cluster contains 5 machines each with 16GB of RAM, 2.9 GHz

Algorithm 1 Our new DRF algorithm

1: Res = (r1,r2,..., rp) → total resources capacities
2: Com = (c1,c2,..., cp) → consumed resources, initial value =

0
3: Dosm(m = 1, 2, ...q) → user m ’s dominant shares, initial

value = 0
4: Allm = (am,1, am,2, ..., am,p)(m = 1, 2, ..., q) → the re-

sources allocated to user m, initial value = 0
5: Lev = i (i = 1,2,3) → receive the resource amount according

the level. Lower the level is lower, the more dominant resource.
Level = 1 indicates the most dominant resource value.

6: Select user m with lowest dominant share Dosm
7: Demm → demand of user m’s next task
8: if Com + Demm ≤ Res then
9: Com = Com +Demm → update consumed resources

10: Allm = Allm + Demm → update user m’s resource
allocation

11: Dos[] = sortpn=1(am,n/rn)
12: Dosm = Dos[Dos.length− Lev] → determine dominant

share degree
13: else

return → the cloud cluster is full
14: end if

8 cores Intel Xeon Processors, 3 1TB disk drives with multiple
partitions and different I/O speed, running Hadoop 2.6.0 on an
Ubuntu server.

A. Exemplar benchmark applications

We selected four of Hadoop’s classical benchmarks as
follows: 1) Pi estimator is a pure CPU-intensive application
that employs a Monte Carlo method to estimate the value of
pi. It is nearly “embarrassingly parallel”: map tasks are all
independent and a single reduce task gathers very little data
from map tasks. 2) Malloc is a classical memory-intensive
task to allocate unused space for an object whose size in
bytes is specified by size and whose value is unspecified. 3)
Read/Write file is a simple I/O-intensive task that reads and
writes files repeatedly and continuously. Reading frequency
equals to writing frequency. 4) TeraSort samples the input
data and uses map/reduce to sort the data into a total order,
which is implemented as a standard MapReduce sort with a
custom partitioner that uses a sorted list of (n − 1) sampled
keys that define the key reduce.
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Figure 3. Performance of I/O control on a single job running TeraSort jobs

200 200 200 200 200 200 200 200 200 

259 
240 

300 
320 

230 

345 

290 

150 150 150 150 150 150 150 150 150 

200 
180 

110 

260 
270 

330 
310 

100 
120 
140 
160 
180 
200 
220 
240 
260 
280 
300 
320 
340 
360 

50 100 150 200 250 300 350 400 

Sp
ee

d 
(U

ni
t:

 M
 b

yt
e/

s)
 

Batch job size 
Writing speed with our proposed DRF Writing speed with Yarn default algorithm 
Reading speed with our proposed DRF Reading speed with Yarn default algorithm 

Figure 4. Performance of I/O control on batch job running TeraSort jobs

B. Exemplar benchmark application results
1) Resource utilisation restrictions and data isolation when

running TeraSort jobs: We ran TeraSort jobs to test these
metics. Figures 3 and 4 present I/O usage restriction effort. Our
method can restrict I/O usage flexibly, but the Yarn’s default
algorithm cannot change I/O arbitrarily. Without I/O control,
I/O speed is very discrete and unpredictable. We change each
job’s I/O and restrict the I/O to a fixed value (100 Mbytes/s in
this experiment). However a single job’s I/O slightly fluctuates,
not exactly 100. For the batch jobs, the entire I/O is set as 200,
and the I/O curve is flat, without any change. Our method
is more suitable for batch or group jobs. Our method can
efficiently control one job or a group of job’s I/O to avoid
excessive resource preemption. This enables other tenants’
jobs, especially small jobs, to have the same right to gain disk
I/O, otherwise these jobs would be delayed. It also prevents
I/O-heavy tasks from exhausting all the I/O resources. Tasks
with different types or from diverse tenants can be manually
assigned to different disk partitions without interacting with
others. Controlling and restricting I/O is an efficient way to
manage disk utilisation and isolate data.

Figure 5 describes the performance of CPU resource usage
restriction. After 200 seconds, using the default DRF algo-
rithm, the batch jobs are finished so CPU utilisation is 0.
The average CPU usage of the default algorithm is 76.11%.
However in our method, CPU utilisation is limited to 50%
manually and it is not allowed to allocate all CPU resources
to one group of jobs. Thus our method uses much more time
to execute jobs but it enables other jobs form different tenants
to better share the remaining available resources. After 250
seconds, the job will be finished soon and thus it cannot
consume 50% CPU resource. Compared to the naı̈ve algorithm,
for only one job, we save 31.82% CPU resource consumption,
which can be allocated to other jobs and hence more jobs will
be executed concurrently.

2) Resource utilisation of continuous mixed workload
(Pi estimator, Malloc and Read/Write file): Figure 6 shows
resource utilisation with a continuous mixed workload and
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Figure 5. Performance of CPU control on batch job running TeraSort jobs

the cluster is nearly saturated. Our method’s CPU utilisation
reaches 97.38% on average vs the naı̈ve DRF at only 85.88%,
12% lower on average. Our resource allocation is more steady
and fairer to tenants since its CPU fluctuation is only 7%.
The average memory utilisation using our algorithm is 91.63%,
7.75 % higher than the default DRF algorithm. At 600 seconds
and 2100 seconds, memory utilisation suddenly reduces to
77% and 75%, respectively. Although our method’s memory
curve is slightly unpredictable, it is still better and flatter
than the default algorithm. Disk I/O utilisation with our DRF
is 92.625% on average, but the default algorithm’s is only
65.625%, and sometimes even only at 20%, and yet our
algorithm’s utilisation rate can reach 96%. Using our DRF,
the disk I/O utilisation improves by nearly 30%.

As shown in Figure 6, a common phenomenon is that the
resource utilisation of the default algorithm is not steady, lowly
utilised and has apparent variance between peaks and troughs
whatever CPU, memory or I/O is. There are some reasons for
this, such as when a task reads data from disk and consumes
almost all disk I/O, even if there is still some CPU and memory
resources available, due to I/O blocking restrictions other tasks
cannot read/write data and thus cannot be processed. This
results in wasting CPU and memory resource and lowing the
utilisation rate. CPU conflict will also influence resource usage.
If a group of high CPU-intensive tasks are being executed,
which preempt most CPU resources. Even if memory-heavy or
I/O-heavy tasks are submitted, they cannot be processed only
using memory and I/O without consuming at least some CPU
resources. No kind of task only consumes a single resource.
The default YARN capacity scheduler only considers memory,
but when the memory resource is saturated, other kinds of
resource may not reach their full utilisation. In summary,
unreasonable resource allocation and coordination between
CPU, memory and disk I/O produces this phenomenon. If
any one type of resource is not considered or is allocated
irrationally (over-used or under-used), it will degrade the entire
system’s performance. That is also why our method handles
CPU, memory and disk together in a fair manner.

3) Completion time and resource utilisation of mixed batch
jobs (Pi estimator, Malloc and Read/Write file): Figure 7
shows the resource utilisation of mixed batch jobs. Using our
algorithm, CPU utilisation can achieve 100% at sizes of 50,
100, 300, 550, and average utilisation rate reaches 98.42%.
Memory utilisation of these size of jobs can reach at least 90%.
The memory utilisation without DRF is 82.5% on average, 10
% lower. When the job size increases, the memory utilisation
of our DRF is significantly higher. Only when the job size
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Figure 6. Resource utilisation on a continued workload of 3 types of jobs
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Figure 8. Completion time of batch jobs with 3 mixed types

is 50, the memory utilisation is exceptional. Compared with
our benchmark algorithm, memory utilisation is not low. But
compared to the other 2 kinds of resources, it is slightly lower.
In our method, when one kind of resource is fully utilised, no
more tasks will be accepted to execute until exhausted resource
is released and the cluster is not saturated. Consequently, when
CPU resources are 100% allocated, no more tasks will be
accepted, but memory and disk I/O do not get maximum usage.

Our algorithm attempts to maximise all kinds of resource
usage. That is why memory and disk I/O utilisations are not
low. The default algorithm’s CPU utilisation is rather random
and low, about 85% and sometimes just 7%. Our algorithm’s
I/O utilisation is 94.91% on average, but the utilisation without
our DRF is only 79.41%. It clearly shows our algorithm
can be highly effective in improving disk I/O utilisation.
When job size is 350, the default DRF’s I/O usage is just
60%, and default algorithm’s resource utilisation is slightly
lower and will increase the entire system’s makespan. Figure
8 shows completion time of different sizes of batch jobs.
Completion time of our algorithm is apparently smaller than
that without our DRF. The difference between our algorithm
and the default one is 457.5 seconds on average. When the size
is 600, the difference is largest as 660 seconds. When job size
increases, the difference trend is much more significantly. This
verifies our algorithm can improve system throughout greatly,
especially for large cluster computation.

C. Real applications
Case 1: Enterprise cloud application - telecommunica-

tion data analysis: Telecom providers need to find out when
and which users prefer calls, data usage, international calls,
etc. Providers then push different plans to customers. This
data analysis application mines and analyses information from
customer usage history, based on classifying and ordering user
groups, comparison of different customer behaviour, classifica-
tion of plans and other techniques. This is a CPU-memory-I/O-
intensive mixed type application. A 40G data file containing

different clients’ data and information as input is spilt into
blocks, deployed on different nodes and read into disk and
memory, so these operations consume disk I/O and memory.
Then the application scans data, and gains the index, filed
values and useful information. The complexity of classification
is O(n) and classification and analysis process consumes CPU.
The recommended plans are stored in multi-dimensional tables,
which consumes memory.

Case 2: Number plate image recognition: This License
Plate Recognition System (LPRS) recognises a vehicle plate
license from images. Edge detection is used to identify points
in the digital images with discontinuities. Edge detection
calculates every pixel of an image, with complexity O(n2).
A 40G image data file is loaded and read once from disk.
Therefore, this application is CPU-intensive.

Case 3: Hadoop log file text search: An enterprise cloud
records huge volumes of log files everyday. This application
tracks Hadoop’s logs to search for error information using a
simple lambda expression based on the “error” string, aiming
to help us know cluster’s health status and weakness. Its
complexity is very low and it only consumes little CPU
resource. A 40G log file is buffered in memory, read and
searched, which consumes little I/O and much more memory
resource. Hence, this application is Memory-intensive.

Case 4: Hadoop data migration: In a Hadoop cluster,
the input file is split into one or more blocks stored in a set
of DataNodes (running on commodity machines). When data
volume is huge, tasks split from jobs are deployed on one
node, however the needed data may be stored on different
nodes even different racks. Thus the system needs to copy
other nodes’ data to this destination node, which consumes
amount of disk I/O and increases data transmission. The
40G telecommunication data file is copied and transmitted
among nodes. The data migration application only copies data
between different nodes, and is I/O-intensive.

D. Real application results
1) Use case 1: This application is of a mixed type, so

all 3 kinds of resource utilisation are relatively high, as
shown in Figure 9. Using our DRF algorithm, CPU usage
rate reaches 95.33%, memory utilisation is 91.66% and I/O
utilisation gets 92.00% on average. During the period of
1200 to 2100 seconds, CPU is 100% fully used and memory
utilisation also gets the maximum value - 95.00% but I/O
usage looks relatively steady (92.00%). There is a warm-
up process that after running an application for a while, the
best performance (peak values) appears. That is why our
scheduler gets better performance after 900 seconds. However,
the default algorithm’s resource utilisation is slightly lower.
Its CPU usage rate only gets to 79.41% on average, which
is 16% lower than our DRF; memory and I/O utilisation is
85.00% and 81.64% respectively, which are both 10% lower
than our proposed DRF. Our method efficiently control I/O
usage, and the I/O trend is flatter and more steady with only 8%
variance (minimum is 88%, maximum is 96%). In comparison,
the default algorithm’s trend is very unpredictable with 26%
in difference.

2) Use case 2: Since this application is CPU-intensive,
CPU utilisation is higher than the other 2 kinds of resource
in both our DRF (95.33%) and default capacity scheduler
(78.67%), sometimes achieving 100% as shown in Figure 10.
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Figure 7. Resource utilisation on batch jobs of 3 mixed types
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Figure 9. Resource utilisation of running a enterprise application-telecommunication data analysis

We can see our method’s CPU utilisation is 17% higher and
more steady except at the first testing point. In the beginning,
image files are loaded into memory, so CPU and I/O usage
are both not too high. Yet, the default algorithm’s CPU usage
is unstable, suddenly changing from 100% to 45%. Memory
utilisation of our method is 82.75% higher than that of default
algorithm (73.33%). Our DRF’s I/O utilisation is 68.25% and
not very steady but still better and flatter than default one
(49.25%). This application prefers consuming CPU resource.

3) Use case 3: As this application is memory-intensive,
the memory is the highest in all of these 3 resources in both
our DRF and the default algorithm. Our algorithm’s memory,
CPU and I/O utilisations are 88.03%, 81.33% and 69.42%
respectively on average. In comparison, the default algorithm’s
memory, CPU and I/O usages are 76.58%, 69.75% and 64.58%
respectivel,y as shown in Figure 11. In the beginning, memory
utilisation for both algorithms is slightly lower (only approx-
imately 45%) than those on other detecting points. Since at
first, data is read from disks and disk I/O utilisation of our
DRF is very efficient (about 94.8%), which is 25% higher
than the average value. In the default algorithm, we can see
a similar phenomenon that I/O usage in the beginning is 16%
higher than later. Our algorithm’s memory utilisation is very
high and steady (minimum is 88% and maximum is 100%)
except 2 beginning points, but the default one is unsteady and
unpredictable. For CPU utilisation, we see similar results. With
time increasing, I/O resource utilisation reduces.

4) Use case 4: I/O utilisation is the largest for all re-
sources in our algorithm. Our method’s I/O usage is 86.75%,
11.25% higher than default one as depicted in Figure 12.
In comparison, I/O performance and stability of our DRF
is better. Our method’s CPU and memory utilisations are
63.58% and 58.92%, however the default scheduler’ CPU,
memory, and I/O usage rates are only 49.50%, 52.42% and
75.50% respectively. The reason why these two algorithms’
CPU and memory utilisations are not high and flat is that the
application is I/O-intensive. This confirms that using ‘Cgroup’
is an effective way to control CPU and I/O. The result is similar

to that of the benchmark application results. Even in a large
cloud application at the enterprise level, our DRF is able to
maximise the resource utilisation and increase the throughput
more desirably. Overall, our algorithm is generic and universal
and was not developed for a particular domain.

VI. SUMMARY

Our modified Dominant Resource Fairness (DRF) allo-
cation algorithm with <CPU, memory, vdisk> enables all
tenants to share the cloud system’s resources including CPU,
memory and disk I/O more fairly, reasonably and efficiently.
We implemented our method for YARN and combined it with
LINUX ‘Cgroup’ controls to limit different resource usage of
each tenant’s jobs. It also considers data isolation on both
logical and physical hardware layers to reduce interference
with other tenants’ workload. Our resource allocation mech-
anism provides different resource sharing degrees to satisfy
different tenant share requirements. Our experimental results
show that CPU utilisation can be increased at least 30%,
and I/O utilisation up to 45%. It also addresses the problem
when resource utilisation is becoming very unpredictable and
erratic, as well as trying to avoid some tenants preempting
too many resources. Our benchmark application experiments
show that our method has significant utilisations improvements
of 14% CPU, 8% memory, and 11% I/O. Even when running
different kinds of applications, our scheduler delivers better
performance, given that the algorithm has been designed for
universal applications and focuses on the task level, rather than
a specific application type. We will further work on scenarios
where resource requirements are not given in advance and
the requirements of tenants are varied. Combining various
machine learning classifiers and adaptive algorithms together
with our proposed DRF method could be a way to enhance its
capabilities.
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Figure 10. Resource utilisation of running an image processing application
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Figure 11. Resource utilisation of running a text search application
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Figure 12. Resource utilisation of running a data migration application

REFERENCES
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