
iContinuum: An Emulation Toolkit for Intent-Based
Computing Across the Edge-to-Cloud Continuum

Negin Akbari∗, Adel N. Toosi∗, John Grundy∗, Hourieh Khalajzadeh†,
Mohammad S. Aslanpour∗, Shashikant Ilager‡

∗Department of Software Systems and Cybersecurity, Monash University, Australia,
{negin.akbari, adel.n.toosi, john.grundy, mohammad.aslanpour}@monash.edu

†School of Info Technology, Deakin University, Australia, hkhalajzadeh@deakin.edu.au
‡Institute of Information Systems Engineering, TU Wien, Austria, shashikant.ilager@tuwien.ac.at

Abstract—The Internet of Things (IoT) has led to a surge in
smart devices, generating vast volumes of data. Cloud computing
offers scalability but does not suffice for many real-time and
privacy-sensitive IoT applications. This limitation has prompted
a blend of both edge and cloud resources, creating the need
for seamless integration, known as the “compute continuum”.
Testing applications and resource management techniques within
this continuum is vital but can be very complex. Simulation
and emulation are preferred methods, with emulation providing
more accurate representations of real-world environments. In this
paper, we introduce iContinuum, a novel emulation toolkit facili-
tating an intent-based platform for edge-to-cloud testing and ex-
perimentation. Leveraging Software-Defined Networking (SDN)
and containerization, iContinuum enables experimentation and
performance evaluation while aligning application requirements
with actual performance. We present our detailed architecture,
implementation, and evaluation of iContinuum, showcasing how
our proposed toolkit bridges the gap between simulation and real-
world deployment within compute continuum environments, and
further demonstrate the effectiveness of Intent-Based Scheduling
through a specific use case.

Index Terms—Compute Continuum, Emulation, IBN, Intents,
SDN, Container Orchestration, Kubernetes.

I. INTRODUCTION

The rise of the Internet of Things (IoT) has led to an
explosion of smart devices generating massive amounts of
data, necessitating scalable storage and processing solutions
like cloud computing. However, cloud computing is not al-
ways optimal for real-time or privacy-sensitive applications,
prompting the emergence of “compute continuum,” [1] which
integrates edge and cloud resources for seamless operation
across a diverse spectrum of needs.

A thorough testing of applications leveraging the compute
continuum is essential before deployment in a production
environment. However, testing applications within the com-
pute continuum presents significant challenges. These are
due to its complex network setups, resource heterogeneity,
widespread distribution of resources, and diverse environ-
mental factors [2]. Additionally, it demands specialized tools
and personnel expertise with a deep understanding of the
infrastructure and application configurations. Experimentation
in a real environment is also costly due to the substantial
resources and time required for deployment and execution

under varying loads. Moreover, the unpredictability of external
variables renders experimental results non-repeatable.

Simulation and emulation are used to test and evaluate the
performance of large-scale cloud and edge applications. While
simulation relies on abstract models to represent software
and hardware entities for performance assessment, emulation
employs the actual software deployed on testbed hardware
to emulate real-world configurations during evaluation [3].
Popular simulation toolkits such as iFogSim [4], Cloudsim [5],
and EdgeCloudSim [6] have become widespread for testing
and developing application management strategies in edge-
to-cloud environments. However, simulation using these tools
presents numerous challenges, from constraints on authenticity
to concerns regarding accuracy. Additionally, many cloud
and edge simulation toolkits lack detailed network simulation
capabilities, failing to adequately capture dynamic interactions
and the impact of communications among various components
of the system [6]. Emulation, on the other hand, resembles
real-world environments [7], providing a more accurate repre-
sentation of edge-to-cloud settings.

Conventional emulation toolkits often limit their scope to
testing specific computing or networking functionalities, or
they concentrate on monitoring and assessing low-level met-
rics. However, intent-based emulation marks a departure from
this approach by shifting the focus from mere replication of
individual components or systems to the attainment of specific
high-level objectives or intents. This shift is particularly crucial
in the context of the compute continuum, characterized by the
dynamic and heterogeneous nature of edge-to-cloud environ-
ments. By prioritizing the intent or desired outcome over low-
level configurations, such approaches simplify management,
enhance automation, and bolster overall system agility.

In this paper, we propose iContinuum, an emulation toolkit
designed for constructing intent-based edge-to-cloud comput-
ing testing and experimentation platforms. The toolkit consists
of multiple layers, each comprising a set of components that
span from infrastructure to applications. Leveraging Software-
Defined Networking (SDN), we decouple the data plane from
the control plane, allowing the network controller to efficiently
regulate network flows [8]. Additionally, containerization and
orchestration technologies are employed to effectively man-
age the deployment and operation of applications across the

compute continuum. Furthermore, iContinuum enables users
to specify their desired requirements or high-level intents
for their applications, such as target response time, privacy
requirements, and energy consumption goals, while ensuring
continuous alignment between the desired application state
and its actual performance. Our evaluation demonstrates that
iContinuum accurately emulates edge-to-cloud environments,
capturing application, networking, and computing-level met-
rics. Additionally, it proves to be valuable for implementing
intent-based methods in these environments.

II. MOTIVATION

Consider a smart surveillance application in a smart factory
environment. This system uses IoT devices such as CCTV
cameras to capture real-time data on factory operations. Such
an application encompasses a range of software components,
including video preprocessing, computer vision algorithms
(e.g., object detection), alerting and notification systems, and
user interfaces. These components can be deployed across
edge devices and cloud infrastructure, facing challenges due
to resource diversity and environmental conditions. Addition-
ally, factory requirements and operations may change over
time, introducing an extra layer of complexity. Comprehensive
testing and experimentation are crucial to effectively address
the complexities associated with deploying such applications
in this environment. Direct deployment onto factory premises
carries risks due to uncertainties surrounding application per-
formance and potential impacts on the network and devices.
Emulation provides a practical alternative by replicating real-
world conditions within a controlled environment. Thus, our
aim is to provide developers with a testing toolkit to bridge
the gap between controlled testing environments and complex
edge-cloud settings, ensuring the successful deployment and
operation of such smart surveillance applications and, in
general, various edge-cloud setups.

III. OUR APPROACH

Figure 1 illustrates the key architectural layers comprising
our proposed emulation toolkit. We mainly emphasize the
middleware layer for developing the iContinuum tool.

Application layer: In this layer, users define their applica-
tion structure and configurations, choosing between a Service
Function Chains (SFC), a Directed Acyclic Graph (DAG), or
other application models. Moreover, they can specify their
high-level objectives, like optimizing response time or min-
imizing energy consumption. The application structure and
objectives can be defined in the form of intent using formats
such as YAML or JSON. These intents are monitored through
a watch loop method integrated within the middleware layer.

Middleware layer: This layer encompasses the primary
components responsible for deploying and monitoring the
application in the infrastructure layer. It features an Intent
Watch Loop Module, tasked with detecting any deviations
from predefined intents. In the event of an unsatisfied intent,
the system initiates appropriate actions through the Decision-
Making Module to rectify the issue. Positioned at the heart of

Middleware Layer- Intent-based Management and
Orchestration (MANO) module

Application Layer- IoT applications

U
se

r
Le

ve
l

Decision Making
Module

Intent Watch
Loop

Infrastructure Layer- Compute and Data Plane

S
ys

te
m

 L
ev

el

Compute Continuum

Cloud Servers Edge Computing Devices

PC

Switch

VM

LaptopPi

Network
Emulator

Control Plane

Cluster Manager /
Orchestrator

Network
Controller

Monitoring
Module

DAG Chain

Fig. 1: An overview of the proposed architecture

the middleware layer, is a central control plane integrating
both the Network Controller for network management and
the Cluster Manager for orchestrating and managing the
computing cluster and its resources. These components work
closely with an integrated Monitoring Module, responsible
for overseeing various computing and networking metrics,
including CPU, memory, bandwidth utilization, latency, etc.
While it may be easier to emulate compute nodes or utilize
real-world computing resources within an emulator toolkit,
simulating network across the continuum presents a more
formidable challenge. This gap is evident in many simulation
tools. Hence, we propose incorporating a Network Emulator
module into our middleware to address this gap.

Infrastructure layer: This layer hosts a diverse array of
computing resources, including IoT devices, edge and cloud,
as well as networking devices such as network switches and
routers. Some of these devices serve as networking nodes,
others as computational nodes, and certain units perform the
dual role of network and computation nodes. The network
topology within the infrastructure layer is constructed using
the network emulator in the middleware layer. The network
emulator creates virtual switches or network elements to
connect various devices in the infrastructure layer. In this
layer, IoT devices like CCTV cameras are attached to edge
servers, with the data generated by the IoT device undergoing
processing within the compute continuum via microservices or
containers built as part of the application. The compute nodes
in the continuum can range from conventional computers or
physical servers, and Virtual Machines (VM) to specialized
Single Board Computers (SBCs) like Raspberry Pis.

IV. iContinuum TOOLKIT

This section presents a proof of concept emulation toolkit
called iContinuum based on our proposed architecture and
concepts. We describe key design and technology choices we

made and how we realized key elements of the emulation
platform.

A. Network Controller

We rely on Open Network Operating System (ONOS)1 for
network management for the SDN controller. ONOS offers
centralized control with scalability, flexibility, and support
for network programmability. It features built-in support for
“intent-based networking”, such as ConnectivityIntent, simpli-
fying network management by abstracting low-level config-
urations [9]. ONOS also provides east and westbound inter-
faces for distributed controllers, ensuring network resilience
and enabling efficient resource management and low-latency
communication for compute continuum applications.

VM1

Mininet Topology

VM2

 OVS
 Switch s1

tap1

Controller

cni0
Bridge

Pod
veth0

P
od

 N
et

w
or

k

GRE

 OVS
 Bridge

ta
p0

tap1

br0

Kubernetes Master

 OVS
 Switch

s1
-e

th
1

s2
-e

th
1

tap1

s2

eth0

VM3

cni0
Bridge

Pod
veth0

P
od

 N
et

w
or

k

GRE

 OVS
 Bridge

ta
p0

tap1

br0

Kubernetes Worker 1

eth0

eth0

Network

S1 S2

Fig. 2: A Kubernetes cluster with two edge nodes connected
via a linear network topology and two switches in Mininet.

B. Network Emulator

We use Mininet2 for emulating network elements and
topologies, leveraging its Traffic Control Utility (TCLink)
for precise parameter settings, including bandwidth limits
and delay. With support for Open vSwitch3 (OVS) and the
OpenFlow protocol, Mininet ensures seamless integration of
SDN environments. To address host emulation limitations of
Mininet, we seamlessly integrate external computing nodes
like VMs, Raspberry Pis, or physical servers into Mininet,
enabling their use as Kubernetes cluster nodes.

As shown in Figure 2, our novel approach to connect
external hosts to Mininet topology focuses on providing
connectivity between the external hosts and the Mininet-
created network topology through Generic Routing Encap-
sulation (GRE) tunneling.4 To accomplish this, each external
host is configured with an OVS bridge featuring two virtual
interfaces, tap0 and tap1, in which tap0 acts as an internal
interface, assigning an IP address within the range allocated
by Mininet to the network hosts, and tap1, configured as a
GRE interface, linked to a tap port on an OVS switch in the

1https://opennetworking.org/onos/
2https://mininet.org/
3https://www.openvswitch.org/
4https://www.cloudflare.com/en-gb/learning/network-layer/what-is-gre-

tunneling/

Mininet topology managed by the SDN controllers such as
ONOS. These external hosts play the role of Kubernetes nodes
as explained in the following section.

C. Container Orchestration

We leverage containerization for efficient application pack-
aging and deployment, aligning with the needs of the compute
continuum. Using Kubernetes for cluster management and
orchestration, particularly the lightweight K3s5 version, we en-
sure flexibility, security, and seamless scalability. Kubernetes
automates deployment, scaling, and management, facilitating
rapid deployment and optimization of resources while ensuring
high availability and portability [10].

D. IoT Devices

To emulate IoT devices, such as CCTV cameras we utilize
Locust,6 which is a robust load generator capable of generating
HTTP or MQTT requests directed toward the application,
effectively replicating real-world traffic scenarios.

E. Monitoring Tool

We employ sFlow-RT7 as our main monitoring tool, pro-
viding a real-time monitoring solution designed to gather
telemetry data from industry-standard sFlow Agents integrated
into network devices or hosts. We utilize the open-source Host
sFlow agent,8 supporting sFlow protocol, for performance
monitoring of hosts and servers. We also utilize standard sFlow
agents to monitor Open vSwitches within the Mininet network
topology, enabling efficient network monitoring. With all these
agents in place, we are able to gather a wide range of met-
rics, including networking data such as bandwidth and delay
and host-level metrics like CPU and memory usage. Given
the application’s diverse microservices (pods), individual pod
monitoring is vital. We accomplish this by employing sidecar
containers9 with sFlow agents alongside the main application
container within each pod. To convert real-time telemetry
from sFlow agents into Prometheus-compatible metrics, we
utilize the Prometheus Exporter,10 integrated with sFlow-RT.
This integration enables Prometheus11 to retrieve and utilize
these metrics via a REST API. For enhanced visualization and
efficient management of metrics data, we leverage Grafana.12

F. Platform Automation

We have fully automated the setup of iContinuum using
Ansible,13 making it incredibly user-friendly. This allows
iContinuum users to set up a complex edge-to-cloud contin-
uum and application orchestration environment without getting

5https://k3s.io/
6https://locust.io/
7https://sflow-rt.com/
8https://sflow.net/about.php
9https://kubernetes.io/docs/concepts/workloads/pods/sidecar-containers/
10https://blog.sflow.com/2019/04/prometheus-exporter.html
11https://prometheus.io/
12https://grafana.com/
13https://www.ansible.com/

into the complexities of all the proposed tools. All associated
codes are available in our GitHub repository.14

#sudo ovs-vsctl show
5d505666-91cd-424b-b4fe-c1a407d4d8da
Bridge br1
Port tap1
Interface tap1
type: gre
options:{remote_ip="ONOS CONTROLLER IP ADDR"}

Port br1
Interface br1
type: internal
Port tap0
Interface tap0
type: internal
ovs_version: "2.13.8"

10.0.0.100 10.0.0.103

10.0.0.10210.0.0.101

S5

S1 S4

S6

S3S2

Computing Node/host Networking Node/Switch

(a) Network Topology

#sudo ovs-vsctl show
5d505666-91cd-424b-b4fe-c1a407d4d8da
Bridge br1
Port tap1
Interface tap1
type: gre
options:{remote_ip="ONOS CONTROLLER IP ADDR"}

Port br1
Interface br1
type: internal
Port tap0
Interface tap0
type: internal
ovs_version: "2.13.8"

Networking Node/Switch

(b) OVS Configuration

Fig. 3: Experimental Setup

V. EVALUATION

We evaluate iContinuum through testing and experimenta-
tion of sample applications featuring mixed cloud and edge
components. We describe a sample scenario and experimental
testbed, followed by a detailed analysis of evaluation results to
offer insights into iContinuum’s performance and capabilities.

A. Experimental Setup

Our experimental setup consists of five VMs hosted on
the Nectar cloud,15 with detailed configurations provided in
Table 1. Four VMs are designated as edge servers within
a Kubernetes cluster, comprising one Master node for the
control plane and three Worker nodes. Additionally, another
VM functions as the SDN controller, equipped with essen-
tial monitoring modules including the sFlow-RT collector,
Prometheus, and Grafana, alongside Mininet serving as the
network emulator.

VM OS Architecture RAM vCPU
Edge Servers Ubuntu 20.04 LTS amd64 8GB 4

SDN Controller Ubuntu 20.04 LTS amd64 16GB 8

Table 1: Configuration of VMs

Figure 3(a) illustrates the network topology generated by
Mininet, as visualized in the ONOS Graphical User Interface
(GUI). Each switch-to-switch connection delivers 200 Mbps
bandwidth without additional delay settings. The edge nodes
connect to the switches via GRE configuration. In Figure 3(b),
we showcase the configuration of OVS bridge, named br1,
on individual edge servers, along with their respective virtual
interfaces (tap interfaces).

Table 2 shows a detailed breakdown of the edge server
IP addresses associated with the tap0 interface in the range
of 10.0.0.0/8. The second virtual interface (tap1) operates as
a GRE type, with its remote IP address configured to the
ONOS controller’s IP address. Also, switches connected to
hosts in Figure 3(a) are equipped with a GRE interface, with
the remote IP address set to one of the edge nodes. This
configuration allows centralized cluster management through
the ONOS controller.

14https://github.com/disnetlab/iContinuum
15https://ardc.edu.au/services/ardc-nectar-research-cloud/

Edge Server/ Kubernetes cluster tap0 IP Address
Master Node 10.0.0.100/8

Worker1 Node 10.0.0.101/8
Worker2 Node 10.0.0.102/8
Worker3 Node 10.0.0.103/8

Table 2: Configuration of edge servers’ virtual interface(tap0)

We use Locust to send HTTP requests to the application.
Our image processing application, illustrated in Figure 4,
comprises four microservices available on Docker Hub.16

These microservices resize images, convert them to black-and-
white, detect objects, and trigger alarms for specific objects,
mirroring factory operations. Microservices log request times,
processing, and failures, sending data to a centralized database.
Deployed on Kubernetes, microservices run on worker nodes
(labeled W1’ to W3’ in Figure 4), avoiding overloading the
critical Master node.

Resize B&W SSD Alarm/Count

DB

http request

Locust User

Result

W2

W3 W2W1W3

Fig. 4: Image Processing Application

B. Results and Analysis

In this section, we showcase the experiments conducted
using iContinuum. Given that the proposed platform handles
both networking and computing parameters, we undertake
diverse experiments at the application level, computing level,
and networking level. This approach aims to demonstrate the
flexibility and comprehensiveness of iContinuum.

Fig. 5: CDF of response time for different concurrency levels
at the workload generator

Application Level: To stress-test the application, Locust
sends synchronous HTTP requests for 360 seconds with vary-
ing concurrent user counts, each carrying a 499.7kB JPEG
image. Our setup mirrors real-world conditions by simulating
different concurrency levels, similar to multiple CCTV cam-
eras. A spawn rate of 1 user per second dictates data generation
during testing. We measure Response Time (RT) from request

16https://hub.docker.com/repositories/negin67

receipt by Microservice 1 to completion by Microservice 4.
The CDF of RTs across user counts in Figure 5 demonstrates
performance under varying loads. Smaller variance between
results at 10 and 20 users suggests 10-user concurrency does
not saturate the system, limiting maximum throughput.

Table 3 displays application throughput and processed
requests, offering insights into performance under different
demand levels. The results reveal iContinuum’s consistent
response time variation and inversely correlated throughput,
confirming system reliability.

No. Users 10 20 30 40 50
Throughput 4.27 7.23 7.70 7.75 7.66

No. Processed Requests 1537 2712 2783 2814 2790

Table 3: Throughput and number of processed requests for
different concurrency levels at the workload generator

Computing Level: We test iContinuum’s ability to measure
computational parameters such as CPU and memory utiliza-
tion. Figure 6 shows utilization diagrams for each node and
pod during a 33-minute experiment, collecting data every
15 seconds. Annotations on the top of the plots mark the
occurrence of various injected events into the system. We
deploy the application at e1, initializing each pod. Following
this, at e2, we send requests to the application through Locust
with 50 concurrent users at a spawn rate of 1 user per second
persisting for a total of 360 seconds up to e3. Upon the
completion of this traffic, all microservices are terminated at
e4. The figure reveal higher resource usage on the Master
node, responsible for task scheduling, and on Worker3, hosting
two microservices. Worker1 processes object detection, while
Worker2 handles lower-demand tasks like alarm generation.

Networking Level: In a 360-second simulation using Lo-
cust, we tested HTTP traffic with 50 users and a spawn rate of
1 user per second to analyze the effects of bandwidth and delay
settings on application performance. Figures 7(a) and 7(b)
showcase how varying bandwidths, from 50Mbps down to
10Mbps, impact response times and throughput, respectively.
Meanwhile, Figure 7(c) explores the influence of delays rang-
ing from 5ms to 20ms on response times, maintaining a
fixed bandwidth of 50Mbps. Corresponding throughput results
are depicted in Figure 7(d). These experiments underscore
iContinuum’s adaptability to diverse networking conditions,
demonstrating its capability to dynamically adjust parameters
for realistic emulation of real-world scenarios.

C. A Use Case: Intent-based Scheduling

In this section, we showcase an intent-based scheduling
method using iContinuum, aiming to maintain application
response time (RT) below a predefined threshold. During a
360-second experiment, Locust simulates traffic with 10 users
at a spawn rate of 1 user per second, using the same image
size as before. We use the network topology in Figure 3(a).
We also set 5ms delay and 50Mbps bandwidth on all switch
interconnected links. Each microservice is configured with
a limit of 0.5 CPU core and 512MiB memory. As shown
in Figure 8, we considered an average target RT threshold

below 3 seconds as our intent, denoted as ‘Target RT’ on the
graph. We introduced several events into the system to induce
intent non-conformance. At e1, a downtime incident occurred
on the direct link between switches S2 and S4. This issue
was promptly resolved by rerouting traffic through alternative
paths: S4-S3-S2 in one direction and S2-S1-S4 in the other,
thereby preventing any violation of the intent requirement.
Subsequently, at e2, we intentionally induce syntactic con-
gestion on the newly selected link (S2-S3) by injecting iperf
traffic, resulting in a breach of the response time requirement.
However, the intent is promptly restored to the desired level
via flow scheduling. Then, at e3, we increase the concur-
rent users in Locust from 10 to 20 deliberately triggering
another violation of the intent. This is responded by scaling
up resources, leveraging Kubernetes’ scaling mechanism to
boost pods for microservice3, which needs more resources to
process, from 1 to 8 replicas, effectively reducing the average
response times to meet the desired thresholds. This experiment
clearly illustrates how intent-based scheduling algorithms can
be effectively emulated by iContinuum.

VI. RELATED WORK

The compute continuum features diverse capabilities, lo-
cations, programming models, and constraints, encompass-
ing computing power, storage, networking, and specialized
components like GPUs and AI. Developers must skillfully
use these resources to ensure smooth application migration
across networks and service providers. [11] and [12] dis-
cuss the main important features of an edge environment
emulator or simulator. These features encompass 1) detailed
deployment models for edge networks, incorporating diverse
tiers of edge and cloud nodes; 2) dynamic modeling of
edge network behavior; 3) mobility of terminals and edge
devices; 4) real-time measurement, visualization, and post-
analysis of metrics; 5) modeling of failures and reachability;
and 6) scalability and extendibility. [11] provides an overview
of available emulation and simulation tools, organizing them
based on their functionalities. Many solutions focus solely on
the IoT sector and may not readily apply to other areas. We
believe that emulation tools should be adaptable across various
application domains. iFogSim [4], specializing in fog node
placement algorithms within the IoT domain, is an adaptation
of CloudSim [5]. EdgeCloudSim [6], another adaptation of
CloudSim, offers modeling capabilities such as network con-
figuration, mobility, and traffic patterns. While Yet Another Fog
Simulator (YAFS) [13] does support edge topology simulation,
it primarily targets the IoT domain, and its execution time
is notably high, consequently leading to increased response
times [14]. However, these simulation tools have limited
capabilities to accurately and authentically replicate real-world
scenarios.

EmuFog [15] which is an emulation framework for Fog
environments, facilitates the simulation of Docker-based ap-
plications. It also offers customizable features, allowing users
to specify the placement of Fog computing nodes and define
their capabilities and workload expectations. While EmuFog

(a) CPU Utilization of Nodes (b) Memory Utilization of Nodes (c) CPU Utilization of Pods (d) Memory Utilization of Pods

Fig. 6: Nodes & Pods CPU & Mem Utilization. e1: App. Deployment e2: Traffic Gen. e3: Traffic Stop e4: App. Termination

(a) Bandwidth Impact on Application
Response Time

(b) Bandwidth Impact on Application
Throughput

(c) Delay Impact on Application Re-
sponse Time

(d) Delay Impact on Application
Throughput

Fig. 7: Impact of bandwidth and delay on application performance

Fig. 8: Application Response Time over the time when
different events are induced. Response Time (RT)- Average
Response Time (Avg. RT)

utilizes MaxiNet [16] to track local node events such as CPU
and memory consumption, it lacks a universal interface for
monitoring global metrics such as response time [17]. Fogify
[12] provides a comprehensive fog emulation framework
featuring fog topology modeling, dynamic network behavior
simulation, KPI monitoring, and seamless integration with
edge application workloads. However, its scope is limited to
the IoT/Fog domain and does not incorporate integration with
external edge resources and compute continuum [11].

The existing literature lacks an emulation framework tai-
lored specifically for edge and cloud environments, allowing
users to define their requirements while considering both
networking and computing capabilities. Thus, we proposed
iContinuum to address the needs of the edge-to-cloud envi-
ronment emulation. The proposed framework employs two
widely adopted technologies suitable for the compute con-
tinuum environment: SDN and Containerization. While SDN
provides flexible network control and intelligence, the dis-
crepancy between business needs and network capabilities
requires the underlying network to consistently adapt, protect,

and inform across all service-oriented areas. Intent-based
networking (IBN) [18] has emerged as a promising solution
for addressing the aforementioned gap by capturing business
intent and subsequently activating and ensuring it throughout
the network [19]. Recent studies are focusing on extending
IBN to the computing domain, including edge and edge-to-
cloud domains [20], [21], [22], [23]. iContinnum provides
seamless support for intents, enabling system administrators
and developers to articulate their desired outcomes without
necessitating explicit instructions on how to achieve them.

VII. CONCLUSIONS AND FUTURE WORKS

The rise of edge-to-cloud environment highlights the critical
importance of pre-deployment testing for ensuring seamless
integration of applications across the edge and cloud infras-
tructures. While emulation and simulation are commonly em-
ployed for testing purposes, emulation stands out for its ability
to provide results closely mirroring real-world conditions. In
this paper, we proposed iContinuum—an emulation toolkit
tailored for the edge-to-cloud continuum. Leveraging software-
defined networking and containerization, iContinuum offers a
flexible solution to support diverse networking and compu-
tation needs, including accommodating user-defined system
intents. We provided a comprehensive overview of iContin-
uum’s architectural framework and components, along with
evaluations demonstrating its efficacy in emulating the varied
requirements of IoT applications in edge-to-cloud environ-
ments. Additionally, we presented a use case for intent-based
scheduling using iContinuum, showcasing the comprehensive
capabilities of our proposed toolkit. In our future work, we
aim to enhance our emulation tool by integrating mobility,
wireless connectivity, and pod-to-pod network management
support. Furthermore, we plan to propose novel intent-based
scheduling methods to optimize resource allocation based on
high-level objectives using iContinuum.

ACKNOWLEDGMENT

This project is partially supported by ARC LP210200213
and ARC DP230100081 grants. Grundy is supported by an
ARC Laureate Fellowship. The authors would like to thank
Dr. Tianzhang He for his valuable assistance with this work.

REFERENCES

[1] G. R. Russo, V. Cardellini, and F. L. Presti, “Serverless functions
in the cloud-edge continuum: Challenges and opportunities,” in 2023
31st Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP). IEEE, 2023, pp. 321–328.

[2] V. Casamayor Pujol, A. Morichetta, I. Murturi, P. Kumar Donta, and
S. Dustdar, “Fundamental research challenges for distributed computing
continuum systems,” Information, vol. 14, no. 3, p. 198, 2023.

[3] J. Gustedt, E. Jeannot, and M. Quinson, “Experimental methodologies
for large-scale systems: a survey,” Parallel Processing Letters, vol. 19,
no. 03, pp. 399–418, 2009.

[4] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim: A
toolkit for modeling and simulation of resource management techniques
in the internet of things, edge and fog computing environments,”
Software: Practice and Experience, vol. 47, no. 9, pp. 1275–1296, 2017.

[5] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,
“Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Soft-
ware: Practice and experience, vol. 41, no. 1, pp. 23–50, 2011.

[6] C. Sonmez, A. Ozgovde, and C. Ersoy, “Edgecloudsim: An environment
for performance evaluation of edge computing systems,” Transactions on
Emerging Telecommunications Technologies, vol. 29, no. 11, p. e3493,
2018.

[7] W. Kiess and M. Mauve, “A survey on real-world implementations of
mobile ad-hoc networks,” Ad Hoc Networks, vol. 5, no. 3, pp. 324–339,
2007.

[8] P. K. Sharma, S. Rathore, Y.-S. Jeong, and J. H. Park, “Softedgenet:
Sdn based energy-efficient distributed network architecture for edge
computing,” IEEE Communications magazine, vol. 56, no. 12, pp. 104–
111, 2018.

[9] S. Jaberi, “Using assl as a method for intent expression to enact
autonomic networking,” Ph.D. dissertation, Concordia University, 2023.

[10] S. Pettersson, “Predictive scaling for microservices-based systems,”
p. 52, 2023.

[11] R. Gazda, M. Roy, J. Blakley, A. Sakr, and R. Schuster, “Towards open
and cross domain edge emulation–the advantedge platform,” in 2021
IEEE/ACM Symposium on Edge Computing (SEC). IEEE, 2021, pp.
339–344.

[12] M. Symeonides, Z. Georgiou, D. Trihinas, G. Pallis, and M. D.
Dikaiakos, “Fogify: A fog computing emulation framework,” in 2020
IEEE/ACM Symposium on Edge Computing (SEC). IEEE, 2020, pp.
42–54.

[13] I. Lera, C. Guerrero, and C. Juiz, “Yafs: A simulator for iot scenarios
in fog computing,” IEEE Access, vol. 7, pp. 91 745–91 758, 2019.

[14] E. Del-Pozo-Puñal, F. Garcı́a-Carballeira, and D. Camarmas-Alonso, “A
scalable simulator for cloud, fog and edge computing platforms with
mobility support,” Future Generation Computer Systems, vol. 144, pp.
117–130, 2023.

[15] R. Mayer, L. Graser, H. Gupta, E. Saurez, and U. Ramachandran, “Emu-
fog: Extensible and scalable emulation of large-scale fog computing
infrastructures,” in 2017 IEEE Fog World Congress (FWC). IEEE,
2017, pp. 1–6.

[16] P. Wette, M. Dräxler, A. Schwabe, F. Wallaschek, M. H. Zahraee, and
H. Karl, “Maxinet: Distributed emulation of software-defined networks,”
in 2014 IFIP Networking Conference. IEEE, 2014, pp. 1–9.

[17] D. P. Abreu, K. Velasquez, M. Curado, and E. Monteiro, “A comparative
analysis of simulators for the cloud to fog continuum,” Simulation
Modelling Practice and Theory, vol. 101, p. 102029, 2020.

[18] A. Clemm, L. Ciavaglia, L. Granville, and J. Tantsura, “Intent-
based networking-concepts and definitions, 2021,” URL: https://tools.
ietf. org/html/draft-irtf-nmrgibn-concepts-definitions-02, last accessed,
vol. 25, 2020.

[19] A. Singh, G. S. Aujla, and R. S. Bali, “Intent-based network for data
dissemination in software-defined vehicular edge computing,” IEEE
Transactions on Intelligent Transportation Systems, vol. 22, no. 8, pp.
5310–5318, 2020.

[20] T. He, A. N. Toosi, N. Akbari, M. T. Islam, and M. A. Cheema, “An
intent-based framework for vehicular edge computing,” in 2023 IEEE
International Conference on Pervasive Computing and Communications
(PerCom). IEEE, 2023, pp. 121–130.

[21] N. Filinis, I. Tzanettis, D. Spatharakis, E. Fotopoulou, I. Dimolitsas,
A. Zafeiropoulos, C. Vassilakis, and S. Papavassiliou, “Intent-driven
orchestration of serverless applications in the computing continuum,”
Future Generation Computer Systems, vol. 154, pp. 72–86, 2024.

[22] A. Morichetta, N. Spring, P. Raith, and S. Dustdar, “Intent-based
management for the distributed computing continuum,” in 2023 IEEE In-
ternational Conference on Service-Oriented System Engineering (SOSE).
IEEE, 2023, pp. 239–249.

[23] A. Zafeiropoulos, E. Fotopoulou, C. Vassilakis, I. Tzanettis, C. Lom-
bardo, A. Carrega, and R. Bruschi, “Intent-driven distributed applications
management over compute and network resources in the computing
continuum,” in 2023 19th International Conference on Distributed
Computing in Smart Systems and the Internet of Things (DCOSS-IoT).
IEEE, 2023, pp. 429–436.

