
A highly efficient data locality aware task scheduler
for cloud-based systems

Jia Ru∗, Yun Yang∗, John Grundy†, Jacky Keung‡ and Li Hao§
∗School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, Australia 3122

Email:{rjia, yyang}@swin.edu.au
†Faculty of Information Technology, Monash University, Melbourne, Australia 3145

Email:john.grundy@monash.edu
‡Department of Computer Science, City University of Hong Kong, Hong Kong SAR, China

Email:Jacky.Keung@cityu.edu.hk
§Amaris.AI Pte.Ltd, Singapore, 089760

Email:liucoolhao@gmail.com

Abstract—Scheduling tasks in the vicinity of stored data can
significantly diminish network traffic. Scheduling optimisation
can improve data locality by attempting to locate a task and its
related data on the same node. Existing schedulers tend to ignore
overhead and tradeoff between data transfer and task placement,
and bandwidth consumption, by only emphasising data locality
without considering other factors. We present a novel data
locality aware scheduler for balancing time consumption and
network bandwidth traffic – DLAforBT – to improve data locality
for tasks and throughput, with the optimal placement policy
exhibiting a threshold-based structure. DLAforBT uses bipartite
graph modelling to represent data placement, adopts a judgment
mechanism and a precise prediction model to determine moving
data or moving computation. It integrates an improved Dominant
Resource Fairness (DRF) resource allocation to capture tenants’
resource allocation and run as many jobs as possible. DLAforBT
improves by 16% of data locality rate, and 25% of throughput.

Index Terms—data locality, multi-tenancy, scheduling, bipar-
tite graph modelling, cloud computing

I. INTRODUCTION

With the increase in volumes of data, cloud computing has
become more important for large-scale data intensive appli-
cations, e.g. search engines and online map services. These
applications not only process but also generate very large
amount of data, which brings more complicated challenges
in the issues of data locality, computation placement and task
scheduling. Bandwidth per node within a rack is much higher
than bandwidth per node between racks. Avoiding off-switch
data exchange is critical for cloud’s performance. Putting a
task near its required data can reduce network traffic and cost.

To enhance data locality for clouds, there has been much
research into scheduling tasks close to their data [1]–[4].
BOLAS in [2] models the scheduling process as a bipartite-
graph matching problem to assign data block to the nearest
task. Work in [3] studies the data locality problem by util-
ising data migration and hotspot file prediction for lowering
task execution waiting delay. Such schedulers greedily search
for a task and allocate it to the node with required data.
Limitations are that nodes are not idle quickly enough as
assumed. If the nodes are overloaded, forcing tasks to wait
for the resource releasing would waste time. Straightforward

emphasising data locality regardless of overhead and time
cost would sacrifice system’s performance. Moreover, data
transfer time is dependent on network bandwidth, which helps
to decide task allocation. When it takes less time on data
transfer, moving computation (data locality) is not cheaper
than moving data. However, most of works do not consider the
impact of data transfer time on data locality. A key question
is how to schedule tasks in the vicinity of their inputs to
diminish shuffled data, reduce unnecessary data transfer and
network traffic, and improve system’s performance. To make
scheduling decisions, constructing a performance estimation
model that estimates the execution time and waiting time
of jobs is essential. Work in [4] calculates task’s average
completion time based on the node capacity level. However,
the accuracy of this task’s remaining time evaluation is not
high in some situations due to the data locality problem.

We propose a highly efficient data locality aware sched-
uler to balance time consumption and network bandwidth
traffic, named as DLAforBT. Our scheduler can improve
data locality, throughput, and network bandwidth usage. We
transform the data locality scheduling problem into the well-
known maximum weighted bipartite matching (MWBM) graph
problem; use a judgment mechanism to dynamically adjust
task allocation and an embedded precise prediction model to
determine moving computation or moving data; rank a list
of idle computation capacity nodes in descending order and
give different priorities to nodes, aiming to maximise resource
usage; and integrate our proposed DRF resource allocation [5]
to maximise the number of jobs being allocated.

II. PROBLEM FORMALISATION AND SOLUTION

Our task scheduling uses a bipartite graph matching ap-
proach that maps the knowledge of data block distribution
and relative performance of nodes. A job is not completed
until all the sub tasks are finished. We rank nodes based on
idleness utilisation of computation capacity in a descending
order. Usually, we choose the top node of the ranking list with
a replica. The node with highest available resource utilisation
has highest priority and will be first option to process tasks.

John Grundy
2019 IEEE International Conference on Cloud Computing, June 8-13, Milan, Italy (c) IEEE 2019

The data placement is modeled by a weighted bipartite
graph G = (T ∪ S,E), where, T is the set of tasks, S is
the set of nodes, E ⊆ T × S is the set of edges between
T and S. weii is the set of edges’ weights and indicates
remaining available resource utilisation. Resource utilisation
of node ni is uires. Available resource utilisation of node
ni is uiava res = 1 − uires, which is denoted as weight
wei(∗, i). Edge e(t, s) denotes the input data blocks of task
t ∈ T is placed on node ns ∈ S. SGpre(t) is the set of
t’s preferred nodes in G. When SGpre(t) is larger than 1,
task t selects node ns which has maximum weight weis,
ns ∈ SGpre(t), under the condition that several nodes have
the same required data. Resource allocation is described as
f : T → S that allocates task t to node nf(t). Defining α is
the allocation for t. There exist multiple edges e(t, s), between
t and nodes. To avoid overload and balance loads, choose
the node with the maximum weight wei(t, s) and mark ns
as nα(t). Task t is allocated to nα(t). Node nα(t)’s resource
utilisation is u

α(t)
res , and its available resource utilisation is

u
α(t)
ava res = 1−uα(t)res . Task allocation problem is transformed to

maximum weighted bipartite matching problem. This problem
finds a complete allocation that reduces the number of remote
tasks, and improves system’s throughput and locality rate.
Edge e(t, α(t)) indicates that nα(t) has t’s data. Putting t on
nα(t) or other node depends on uα(t)ava res. Judgment mechanism
evaluates data transfer time T trant (dt) and resource releasing
time W rel

α(t). T
tran
t (dt) of task t can be estimated as [1]:

T tran
t (dt) =

|dt|
capt

= |dt| × (
rttt(ni, nj)

twt
) (1)

where, |dt| is the size of data block dt, capt = twt

rttt(ni,nj)
is

task t’s transfer capacity, twt is the TCP window size of an
initiated TCP connection in t which specifies the maximum
number of data bytes to be received, rttt(ni, nj) is the round-
trip delay time for TCP connection between node ni and nj .

A multilayer Perceptron (MLP) model as a back-
propagation method based on neural networks is precise
enough to estimate resource releasing time i.e. the remaining
execution time of tasks. This work uses Keras [6] MLP API
to realise time prediction.

III. OUR DATA LOCALITY AWARE SCHEDULER

Fig. 1 presents our DLAforBT’s architecture. DataNodes are
spread across multiple racks and store data (1). Submitted jobs
are divided into n tasks. These n tasks need data blocks that are
mostly stored in DataNodes 1 and 2, so most of tasks should
be run on Rack 1 and the relevant containers should be created
on Rack 1. Task 1 is deployed on DataNode 1 which has 3
data blocks (2). DatasNodes are ranked based on idle resource
utilisation (3). Task 1 occupies some resources of DataNode
1. DataNode 2’s idle resource utilisation is thus higher than
DataNode 1, and has higher priority. Even if DataNodes 1
and 2 both have the same data, task 2 is still put on DataNode
2 (4). DataNodes 1 and 2 are occupied, so the new coming
task 3 cannot gain sufficient resource from these 2 DataNodes.
Thus, task 3 needs to consider waiting for DataNode 1 or

2 releasing resources, or move to another node. DLAforBT
estimates enough resource releasing time of DataNode 1 or 2
and calculates data transfer time to DataNode 3 which has the
second most required data. If our judgment mechanism finds
resource releasing time is larger than data transfer time, task 3
is allocated to DataNode 3 (5). If all nodes on Rack 1 are busy
and only DataNode 5 is idle but has 2 required data blocks
for task n (6), DLAforBT will need to transfer orange data
block from Rack 1 and yellow data block from DataNode 4
to 5 (7). Our judgment mechanism finds data transfer time to
DataNode 5 is smaller than waiting time for releasing resource
from DataNodes 1 and 2 (8). Thus task n is put on DataNode
5 (9). Our resource allocation uses our previous work (10) –
3-dimensional demand vector <CPU, memory, vdisk> DRF
algorithm [5] to optimise the number of jobs being serviced.

Algorithm 1 DLAforBT Scheduler
1: while (jobs run their sub tasks) do
2: Resnrem → remaining available resources of node nn

3: Demt → the resource demand of task t
4: for (each job j of J in the queue) do
5: Partition job j into sub tasks T
6: end for
7: // Maximum weighted bipartite graph formation to model

the connections between T and S
8: for (each task t of T) do
9: for (data locality nodes for task t) do

10: if (node ns meets task t’s data requirements) then
11: S ← S ∪ ns

12: wei(t, s) ← The edge weight is associated with
idleness utilisation for computation capacity of node ns

13: E ← E ∪ (t, s)
14: end if
15: end for
16: find feasible nodes for t, nf(t), and collect nf(t) in S
17: max wei(t, s) ← Find the maximum edge weight in E
18: end for
19: // Judgment mechanism
20: while (Res

f(t)
rem < Demt) do

21: Calculate the required data transfer time for t, T tran
t (dt)

22: Calculate nf(t)’s resource releasing time W rel
f(t)

23: if (W rel
f(t) < T tran

t (dt)) then
24: Put t on node nf(t) to wait for resources
25: else
26: Find a neighbour node nnei ← (Resnnei

rem > Demt)
27: Move t to nnei

28: end if
29: end while
30: // Resource allocation strategy
31: Call our previous work-improved DRF allocation strategy [5]
32: end while

Algorithm 1 shows the pseudo code of DLAforBT. Submitted
jobs are divided into tasks. When jobs run their tasks currently,
these running tasks are collected in task set T (Lines:1-6).
Next, DLAforBT finds the feasible nodes of each running task.
If node ns provides proper execution resources to meet the task
t’s requirements and data retrieval of the original job, ns is a
feasible node of t, and there is a corresponding edge e(t, s) in
a weighted bipartite graph G = (T ∪S,E) (Lines:10-11). We
label weight wei(t, s) as available resource utilisation of ns
(Lines:12-13). The feasible nodes are kept in set S (Line:16).

Cloud Cluster

Task 1
(Container 1)

Rack 2
DataNode 4 DataNode 5

Rack 1
DataNode 1 DataNode 2 DataNode 3

tasks has <CPU, Memory,
vdisk> demand and require
following input data blocks:

Read

...

Transfer data to DataNode 5

Estimate enough
resource releasing
time for processing
Task n on Rack 1

Calculate the data transfer time to
DataNode 5 for Task n

Judge
If resource releasing time > data transfer time, put task

n on DataNode 5, otherwise, put task n on Rack 1.

DataNode 5 is idle

 Rack 1has not enough
available resource to

process task n

...
DataNode 3
DataNode 1
DataNode 2

Idle resource
utilisation

Ranking
list

(1)

(4)

(3)

(2)

(5)

(6)

Put

Judgment
mechanism

Prediction
model

Our Improved DRF resource allocation strategy
�airer resource allocation with 3 dimensional demand vector

<CPU, memory, vdisk>

Resource layer
Perspective

Invoke 1. A greedy allocation algorithm to allocate as
many jobs as possible; ensure all the tenants

receive system's resource fairer; improve over
all utilisation and throughput

(7)

(8)

(9)

(10)

Users Task 2
(Container 2)

Task 3
(Container 3)

Task n
(Container n)

Replica

Request

Fig. 1. DLAforBT scheduler architecture: moving computation or moving data

We choose the node with maximum weighted edge in nf(t) as
first option to run t (Line:17). Yet, even if finding proper node
nf(t) for t, nf(t) may not provide enough resources for t. We
use a judgment mechanism to decide moving t to other node,
or waiting on nf(t) until nf(t) has enough resources. If W rel

f(t)

is less than T trant (dt), t costs less tradeoff on nf(t), so we
put t on nf(t) (Lines:23-24). Otherwise, t costs more to wait
for resources on nf(t), so move t to other node (Lines:26-27).

IV. EXPERIMENTS

49.78% 50.47% 50.54% 49.71% 50.21%

34.65% 34.18% 34.05% 34.22% 34.23%

0%

10%

20%

30%

40%

50%

60%

70%

6000 12000 24000 30000

Lo
ca
lit
yr
ate

18000

No. of total jobs

Locality ratewith different job sizes under TeraSort() workload

DLAforBT YARN	Capacity	 Scheduler	

Fig. 2. Locality rate on TeraSort() jobs workload

594.92 597.26 597.97 598.60 598.86

464.31
487.50 498.20

460.62 468.53

300

350

400

450

500

550

600

650

6000 12000 18000 24000 30000

Th
ro
ug
hp

ut
(u
ni
t:
no

rm
ali
se
dj
ob

un
it/
s)

No. of total jobs

Throughput of different job sizes under TeraSort() workload

DLAforBT YARN	Capacity	 Scheduler	

Fig. 3. Throughput on TeraSort() jobs workload

We compared DLAforBT’s performance to YARN Capacity
Scheduler [7]. Our experiments select TeraSort application
that is a standard MapReduce sort to sample input data
and use map/reduce to sort the data into a total order. In
Fig. 2, DLAforBT’s mean locality rate achieves 50.14%, and
Capacity scheduler’s is only 34.27%. DLAforBT gets 16%
improvement. DLAforBT both considers data locality and
focuses on reducing the tradeoff. In Fig. 3, DLAforBT’s mean

throughput achieves 597.52 job units/s. Whatever the number
of jobs changes, DLAforBT’s throughput is very steady. How-
ever, Capacity Scheduler’s throughput is not stable. When the
number of jobs is 6,000, its throughput is 464.31 job units/s,
but when the number of jobs is 18,000, its throughput can
reach 498.20 job units/s. Its average throughput is 475.83 job
units/s. In comparison, DLAforBT improves this by 25.57%.

V. CONCLUSIONS

Improving data locality for task scheduling is crucial, but
only using the principle of moving computation close to
data is inappropriate. To reduce bandwidth cost and improve
performance, we propose a highly efficient data locality aware
scheduler for balancing time consumption and network traffic,
named DLAforBT. DLAforBT uses a bipartite graph to model
task placement to improve data locality driven task allocation.
A neural network prediction model is built to estimate resource
release time. A judgment mechanism is used to decide moving
data or computation. DLAforBT integrates an improved DRF
allocation method to run as many jobs as possible. DLAforBT
improves 16% of data locality rate and 25% of throughput.

REFERENCES

[1] H. Chen, W. Lin, and Y. Kuo, “MapReduce scheduling for deadline-
constrained jobs in heterogeneous cloud computing systems,” IEEE
Transactions on Cloud Computing, vol. 6, no. 1, pp. 127–140, 2018.

[2] R. Xue, S. Gao, L. Ao, and Z. Guan, “Bolas: bipartite-graph oriented
locality-aware scheduling for mapreduce tasks,” in 14th Int. Sym. Parallel
and Distributed Computing. IEEE, 2015, pp. 37–45.

[3] C. Li, J. Zhang, T. Ma, H. Tang, L. Zhang, and Y. Luo, “Data locality
optimization based on data migration and hotspots prediction in geo-
distributed cloud environment,” Knowledge-Based Systems, vol. 165, pp.
321–334, 2019.

[4] Z. Tang, J. Zhou, K. Li, and R. Li, “A mapreduce task scheduling
algorithm for deadline constraints,” Cluster Computing, vol. 16, no. 4,
pp. 651–662, 2013.

[5] R. Jia, J. Grundy, Y. Yang, J. Keung, and H. Li, “Providing fairer resource
allocation for multi-tenant cloud-based systems,” in 7th Int. Conf. on
Cloud Computing Technology and Science. IEEE, 2015, pp. 306–313.

[6] “Keras,” in https://keras.io/.
[7] “Hadoop,” in http://hadoop.apache.org.

