
A Deadline Constrained Preemptive Scheduler
Using Queuing Systems for Multi-tenancy Clouds

Jia Ru∗, Yun Yang∗, John Grundy†, Jacky Keung‡ and Li Hao§
∗School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, Australia 3122

Email:{rjia, yyang}@swin.edu.au
†Faculty of Information Technology, Monash University, Melbourne, Australia 3145

Email:john.grundy@monash.edu
‡Department of Computer Science, City University of Hong Kong, Hong Kong SAR

Email:Jacky.Keung@cityu.edu.hk
§Amaris.AI Pte.Ltd, Singapore, 089760

Email:liucoolhao@gmail.com

Abstract—Scheduling on clouds is required so that service
providers can meet Quality of Service (QoS) requirements of
tenants. Deadline is a major criterion in judging QoS. This
work presents a real-time, preemptive, constrained scheduler
using queuing theory – PDSonQueue – which enables better
meetinhg of QoS requirements. PDSonQueue also shortens a
job’s completion time and improves system’s throughput. PDSon-
Queue, as a dynamic priority real-time greedy scheduler, builds a
queuing-based mathematical model to accurately predict a job’s
execution and waiting time, where jobs arrive by following a
stochastic process and request resources. Our scheduler intro-
duces a novel “Earliest Maximal Waiting Time First (EMWTF)”
concept to fine tune job scheduling to guarantee the job being
accomplished within the deadline. Deadline constrained jobs are
scheduled preemptively from low priority jobs with the intent of
maximising the number of jobs completed within the deadlines,
while allowing system’s resources to be shared by other regular
jobs. PDSonQueue integrates an improved Dominant Resource
Fairness (DRF) greedy resource allocation approach to capture
the essence of tenants’ resource allocation and run as many jobs
as possible. Our experimental results indicate that PDSonQueue
can improve by at least 20% of deadline-based QoS rate, and by
at least 30% for throughput.

Index Terms—deadline, multi-tenancy, scheduling, queuing
theory, resource preemption

I. INTRODUCTION

Cloud computing provides a variety of QoS sensitive ser-
vices to different tenants in a scalable and virtualised manner
[1]. E.g., financial applications such as stock trades have strict
job deadlines and cloud service consumers are willing to
pay for this. In contrast, many scientific jobs are willing to
trade a bounded delay for lower costs. The primary challenge
is to meet the Service Level Agreements (SLAs) for their
job completion deadline [2]. Scheduling mechanisms should
differentiate jobs based on their importance or priority [2].

A better scheduling policy should not only enable cloud
resources to be better provisioned according to tenants’ needs,
but also minimise the number of violated SLAs. It also enables
the cloud system to maximise resource usage and achieve
high throughput and provides end users quicker response.
Current research has paid much more attention to the multi-
tenancy scheduler, such as Fair Scheduler [3], where basic

features such as data locality, user priority, fault-tolerance and
fairness are all considered. To date only a few algorithms
handle such a deadline constraint [2], [4]. Although work in
[5] first formulates the preemptive scheduling problem under
deadline constraint, its job execution time estimator is very
simple and does not consider run time complexity and input
data size. Preemption is an important technology to avoid
delaying production jobs while allowing the system to be
shared by other non-production jobs [5]. However, existing
schedulers seldom consider preemption, so jobs have to wait
for completion of others, which may result missing their
deadlines. Accurately predicting user’s service performance
avoids over provision to meet SLAs.

This study focuses on scheduling and resource allocation for
deadline constrained jobs. We have deadline as our primary
objective to enable more deadline constrained jobs to have
their QoS met. We try to minimise the number of jobs
that miss their deadlines. This work also improves deadline-
based QoS and system’s throughput with no degradation of
SLAs. Our key contributions in this work are: 1) a precise
job service time and waiting time estimator; 2) a deadline
constrained preemptive scheduler that takes users’ deadlines
as part of input and sorts the deadline constrained jobs based
on Earliest Maximal Waiting Time First (EMWTF); 3) use of a
preemption mechanism to enable deadline constrained jobs to
preempt resource from regular jobs to guarantee deadline jobs
being completed before the deadlines; and 4) integration of a
fairer Dominant Resource Fairness (DRF) resource allocation
strategy to maximise the number of jobs being allocated.

In this paper, Section II discusses the related work. Section
III presents our preemptive deadline constrained scheduler,
PDSonQueue. Section IV presents experimental results. Sec-
tion V concludes the work and outlines future research.

II. RELATED WORK

The predictability of jobs’ service time helps deadline
constrained jobs to be finished on time. When we know a job’s
likely execution time in advance, it helps us to determine when
to run deadline constrained jobs in order to guarantee jobs’

John Grundy
2019 IEEE International Conference on Cloud Computing, June 8-13, Milan, Italy (c) IEEE 2019

QoS. A precise performance prediction model for services
including job’s execution time and waiting time is needed,
based on systematic statistical analysis and history results
by using existing performance estimation techniques, e.g.
analytical modelling, queuing modelling, task modelling, and
empirical and historical data [2], [4]. Work in [6] constructs
performance models by running the jobs on different numbers
of cluster nodes and fitting a regression model to the observed
performance. Such performance models still make many as-
sumptions that each job is run multiple times by users of the
cluster, so that the cost of experiment-driven model building
can be amortised over a large number of runs. Work in [5]
proposes a deadline job scheduling algorithm based on the
current status of the system and the job execution cost model
to obtain the sub-optimal minimal completion time within
jobs’ deadlines. However, the job execution cost model only
considers the number of available slots and input data sizes.

Earliest Deadline First (EDF) is a dynamic priority real-time
scheduling algorithm that considers time constraints of tasks in
scheduling for execution [7], [8]. Work in [7] uses a queuing
theoretic performance model for a multi-priority preemptive
M/G/1/EDF system. Their proposed model predicts the mean
waiting time for a given class based on the higher and lower
priority tasks receiving service prior to the target and the mean
residual service time experienced. Additional time caused by
preemptions is estimated as part of mean request completion
time. To our best knowledge, the preemption performance in
current preemptive schedulers such as [5], [7] is limited and
most cloud deadline schedulers rarely consider preemption.

Queuing models are widely used to model service perfor-
mance in clouds, aiming to optimise energy consumption,
resource allocation, performance prediction, resource manage-
ment, load sharing, etc. [9]. Work in [10] uses an M/M/C/C
queuing system with different priority classes to model cloud
datacenters, in order to support decision making with respect
to resource allocation for a cloud resource provider when
different clients negotiate different SLAs. Work in [9] adopts
vacation M/G/1 queuing system with exhaustive service to
model the task schedule and analyse the expectations of task’s
sojourn time and energy consumption of nodes under steady
state. However, none is currently used in deadline scheduling.

III. OUR PROPOSED PDSONQUEUE

Although EDF algorithms are popular in guaranteeing job
deadlines in real-time systems, they are not effective in dy-
namic cloud environments. For instance, a long job has a
longer deadline than that of short job, but the long job’s
execution time is also longer than a short job. According to
job’s maximal waiting time (the difference of deadline and
execution time), the long job may have less time to wait for
running. Thus, even if with a longer deadline, the long job
still needs to be executed earlier than the short job. Within
maximal waiting time, a job gets necessary resources to run,
which guarantees this job will be finished before its deadline.
As execution time varies based on different job types and input
data sizes, we introduce a new concept “Earliest Maximal

Waiting Time First” (EMWTF) instead of EDF. If using EDF,
short job are put ahead of long job to be run. This may result
in a long job failing to get resources during the waiting time
and it cannot be finished on time. If using EMWTF, a long job
that has less waiting time can be put ahead to be run before
shorter jobs. Short jobs then have more waiting time to gain
resources, so they also may be finished before their deadline.
We use an M/M/n mathematic queuing model to model job
service to estimate service time, waiting time, assuming an
exponential density function for the inter-arrival and service
times. We predict a job’s maximal waiting time before it is
executed.

A. Overview of PDSonQueue

Preemptive scheduling heuristics judiciously accept, sched-
ule and suspend real-time services to maximise a system’s
QoS performance. Complimenting previous non-preemptive
algorithms, real time jobs are scheduled preemptively with
the objective of maximising the number of jobs accomplished
before their deadlines and improving the efficiency of jobs.

PDSonQueue includes a greedy resource allocation strategy,
a preemption mechanism to preempt resources for deadline
constrained jobs when available resources are not sufficient,
and a queuing model to estimate jobs’ service time and waiting
time, as shown in Fig. 1. A tenant has a variety of users (1).
Users submit jobs to the cloud cluster (2). Jobs specify their
key resource requirements: <CPU, memory, vdisk> and QoS -
deadline. Jobs are classified as deadline jobs and regular jobs.
Regular jobs do not have deadline demand and are divided into
low and high priority jobs. Correspondingly, 2 queues are built
in our scheduler: deadline queue (3) sorts deadline jobs based
on EMWTF and regular queue (4) sorts regular jobs based
on First Come First Serve (FCFS). According to different
dominant resource consumption, our scheduler divides each
of the queues into three sub-queues (5): CPU-, memory- and
I/O-intensive sub-queues. E.g., a CPU-intensive deadline job
should be put into the CPU-intensive deadline sub-queue. The
deadline jobs with earliest waiting time should be run first.
When a job applies for resources successfully, a container is
created with a timestamp (6). A container is a logical bundle
of resources bound to a particular cluster node [1]. If deadline
jobs cannot get enough resources during their waiting time,
they preempt resources from regular, low priority jobs (7). Low
priority jobs will be suspended, the corresponding containers
will be suspended and relevant resources will be released until
deadline jobs get enough resources (8). If all low priority jobs
are suspended but there are still insufficient resources, high
priority jobs will be preempted (9). Our preemptive strategy
chooses the latest served jobs to preempt and suspends the
containers based on timestamps and dominant share resource
profile. Latest created containers with the same dominant share
as a deadline job will be suspended first. Our resource allo-
cation uses our previous work (10) – 3-dimensional demand
vector <CPU, memory, vdisk> greedy DRF algorithm [1] to
enhance fairer resource sharing and optimise the number of

Preemption mechanism

Resource allocation

Job 1
with deadline

Sort regular jobs
using FCFS

CPU-intensive
deadline sub-queue

memory-intensive
deadline sub-queue

disk I/O-intensive
deadline sub-queue

Regular queue Deadline queue

Container
ID 1

Our improved DRF resource allocation strategy
�airer resource allocation with 3 dimensional demand vector <CPU, memory, Vdisk>

Create
Container

ID 2
Container

ID m...

For regular job
with low priority

For regular job
with low priority

For regular job
with high priority

Preempt
resources

Resource layer
Perspective

Invoke 1. A greedy allocation algorithm to allocate
as many jobs as possible

2. Ensure all the tenants receive system's
resource fairer

3. Improve over all utilisation and throughput

Timestamp:
2017-07-10 10:03:01

Timestamp:
2017-07-10 08:50:05

Timestamp:
2017-07-10 09:03:01

Suspend regular
jobs and release

resource

CPU-intensive
sub-queue

memory-intensive
sub-queue

disk I/O-intensive
sub-queue

Container
ID n

Container
ID m+2

Container
ID m+1 ...

Suspend Suspend

Job 2
with deadline

Job m
with deadline Job m+1 Job m+2 Job n

User 1 User 2 User 3 ...Tenant 1 User 1 User 2 Tenant 2

jobs with resource requirements
<CPU, Memory, vdisk>

Based on dominant resource
share and consumption, divide

queues into CPU, memory, and
I/O-intensive sub queues Sort deadline jobs

using EMWTF

1st
killed

2nd
killed

Preempt resource from regular jobs with low priority first to satisfy deadline
job, and kill the newest created containers for low priorities and then kill earlier

created containers. If all low priority jobs are suspended, then preempt high
priority jobs until deadline jobs' resource is satisfied. CPU-intensive deadline

jobs preempt resource form CPU-intensive regular jobs first.

(1)

(2)

(3) (4)

(5)

(7)
Timestamp Timestamp Timestamp

(6)
(8) (9)

(10)

Fig. 1. Deadline constrained scheduling model based on M/M/n queue model

jobs being serviced in each local sub-queue, which maximises
the number of jobs in a global cloud queuing system.

B. Mathematical analysis of job scheduling

A cloud has n heterogeneous nodes, donated as N1, N2,...,
Nn. Submitted jobs are served independently by n nodes [11].
As arriving jobs come from different tenants and users, the
inter-arrival time can be modelled as an exponential random
variable. The job arrival rate and service rate on nodes can be
obtained through long-term statistical results or a number of
experiments. We assume the arrival of the jobs conforms to
a Poisson process λi. The service rate is also assumed to be
independent and exponential with parameter µk [11], where:

µk = min(kµ, nµ) =

{
kµ, for 0 ≤ k ≤ n,
nµ, for k > n

The mean service rate of node j is µ, and mean service rate of
entire cloud system is nµ. When λ

nµ
< 1, the theory [11] has proven

the cloud system being stable, marking ρ1 = λ
µ

, ρ = λ
nµ

. The service
is the same as job arrival rate that follows Poisson process.

A multi-tenant cloud provides end users with different functional-
ity but with potentially distinct QoS values, so jobs’ characteristics
and requirements are varied and heterogeneous [1]. Jobs are classified
as CPU-, memory-, and I/O intensive based on resource requirements
and consumption; jobs are preemptive, which means execution on any
node can be suspended, except deadline jobs; and the service time
of jobs are not known to the scheduler a prior. The ith job jobi is
defined as jobi = {Demi, t

arr
i , tdeai } or jobi = {Demi, t

arr
i , pi},

where Demi indicates required resource, tarri presents arrival time,
tdeai indicates deadline of the job, and specially, pi indicates the job is
regular and there is no deadline constraint. A regular job has priority:
low and high. p0 means low priority and p1 means high priority.

1) Steady state equation: A cloud system should provide its
services continually and will not restrict the number of the jobs. When
the state of the cloud system is k (0 ≤ k ≤ n), k servers are busy
and the remaining n − k servers are idle. When the state is k > n,
all the n servers are busy, and k−n jobs are waiting for the service.
When the system is stable, let ρ = λ

nµ
and stability condition ρ < 1.

Stationary probability pk for state k can be determined by solving a
set of balance equations, which state the flux into a state should be
equal to the flux out of this state when the system is stationary [10]:

pk =

{
ρk1
k!
p0 = nk

k!
ρkp0, 0 ≤ k < n

ρk1
n!nk−n p0 = nn

n!
ρkp0; k ≥ n

(1)

According to regularity condition
∞∑
k=0

pk = 1, when ρ < 1, we can

get p0 = (
n−1∑
k=0

ρk1
k!

+
ρn1
n!

1
1−ρ)−1.

2) Mean queue length, sojourn time and waiting time: The
mean number of jobs that are being serviced is below:

L̄ser = k̄ =
n∑
k=0

kpk + n
∞∑

k=n+1

pk

=
n∑
k=0

k • n
k

k!
ρkp0 +

∞∑
k=n+1

n • n
n

n!
ρkp0

= nρ(
n−1∑
k=0

pk +
∞∑
k=n

pk) = nρ = ρ1

(2)

The mean number of jobs waiting in the queue is below:

L̄wai =
∞∑
k=n

(k − n)pk =
∞∑
h=0

hph+n = ρ(nρ)n

n!
p0

∞∑
h=1

hρh−1

=
ρρn1

n!(1−ρ)2 p0 =
ρn+1
1

(n−1)!(n−ρ1)2
p0

(3)
The mean number of jobs in the system is given as follows:

L̄sys = L̄wai + L̄ser = L̄wai + ρ1 =
ρρn1 p0

n!(1− ρ)2 + ρ1 (4)

When a queuing system reaches statistical equilibrium and L =
λW̄soj , L̄wai = λW̄wai, it obeys Little’s Law [11]. Thus, we get:

W̄wai = L̄wai
λ

=
ρn1 p0

µn•n!(1−ρ)2

W̄soj =
L̄sys

λ
= W̄wai + Tser = W̄wai + 1

µ

(5)

The probability of that a job must wait in the queue to gain service
from the cloud, P (Waiting), is referred as Erlang’s C formula [11]:

P (Waiting) =

∞∑
k=n

pk =

∞∑
k=n

nn

n!
ρkp0 = C(n, ρ) (6)

C(n, ρ1) =

∞∑
k=n

pn • ρk−n =
pn

1− ρ =
npn
n− ρ1

(7)

To calculate E(Lser) for the M/M/n queue, through Little’s Law, the
mean number of busy servers is given below:

E(Lser) =
λ

µ
= ρ (8)

To calculate E(Lwai), we assume two mutually exclusive and
exhaustive events: {q ≥ n} and {q < n}, and then we get

E(Lwai) = E(Lwai|q ≥ n)P (q ≥ n)
+E(Lwai|q < n)P (q < n)

(9)

Due to E(Lwai|q < n) = 0, P (q ≥ n) = C(n, ρ), we get

E(Lwai) = C(n, ρ)
ρ

n− ρ (10)

An arriving job has to wait if at its arrival the number of jobs in
the system is at least n and the time while a customer is serviced is
exponentially distributed with parameter nµ. If there are n+ j jobs
in the system, the waiting time is Erlang distributed with parameters
(j+1, nµ). By applying the theorem of total probability to the density
function of waiting time, we get [11]

fw(x) =

∞∑
j=0

pn+j(nµ)j+1 x
j

j!
e−nµx (11)

If the arriving number of jobs in the system is smaller than n, then
the jobs will immediately get serviced. Otherwise, the jobs have to
wait and their sojourn times include waiting time and service time.
By applying the law of total probability to the density function of
sojourn time, fs(x) is given as follows:

fs(x) = P (No waiting)µe−µx + fw+ser(x) (12)

C. Schedular Algorithm
When new jobm comes, we estimate jobm’s waiting time Wwai

m

and sojourn time W soj
m (Line:4). If jobm is deadline constrained, it

is put in the deadline queue (Lines:6-7). Deadline jobi which has the
smallest Wwai

i are executed first (Line:11). Through calculating the
dominant share of each job Domjobm (Line:5), we classify deadline
queue into sub-queues: CPU-, memory- and I/O-intensive, and put
the job to the corresponding sub queue (Line:9). Within its Wwai

i ,
jobm needs to successfully apply for the required resource Demi

from the cloud system. If jobm is a normal job, it is put in a regular
queue based FCFS. When system’s available resource Resrem is
smaller than jobi’s required resource Demi (Line:18) and Wwai

i is
smaller than resource released time (the remaining service time of
next job being finished) (Line:19), the system preempts resources
from regular, low priority jobs until Resrem is larger than Demi

(Line:20). We first preempt the resource from the jobs which have the
same kind of dominant share as that of jobi. The newest, running job
jobnewlo from queue

inten[∗]
reg , should be suspended and its resources

Demnewlo are released to the system. After adding Demnewlo, if
Resrem is still smaller than Demi, we suspend second newest,
jobnew2lo to be run from queue

inten[∗]
reg . We add the released resource

Demnew2lo to the cloud, and update Resrem again. The preemption
process iterates until Resrem is larger than Demi. If jobi is a
deadline job, within Wwai

i at each iteration, the scheduler selects the

job with the lowest dominant share ready to run (Line:43). During
each iteration, the user’s task with lowest dominant share Demi is
ready to run (Line:44). If jobi as a deadline job nearly exhausts
its waiting time Wwai

i , deadline jobi which has the highest priority
gets Demi resource and runs immediately, without regarding to the
issue which user’s job has smallest dominant share and should be run
next. If all the low priority jobs from queue

inten[∗]
reg are suspended,

but updated Resrem is still smaller than Demi, the latest low priority
jobs being run from other sub queues will be suspended to satisfy
Demi. If all the low priority jobs are suspended and Resrem is
still smaller than Demi, high priority jobs from queue

inten[∗]
reg are

suspended first and then the latest high priority jobs from other
queues are suspended secondly. When Resrem is larger than Demi,
the system allocates Demi amount resource to jobi (Line:21). The
iterations of resource preemption and allocation must be finished in
Wwai
i . When Resrem is smaller than Demi and Wwai

i is smaller
than resource released time, if Demi is larger than next to be finished
job’s (jobnexfin’s) resource demand, Demnexfin, plus Resrem,
preemption starts (Lines:23-25). If Demi is smaller than Demnexfin

plus Rese, jobi waits until jobnextfin is finished (Lines:26-29).

Algorithm 1 PDSonQueue Scheduler
1: // Scheduling phase
2: while (jobs /∈ φ) do
3: record jobi={Demi, t

arr
i , tdeai } or jobi={Demi, t

arr
i , pi}

4: estimate the job waiting time Wwai
i and sojourn time W soj

i

5: calculate the dominant share of each job: Domjobi
6: if (tdeai) then /***deadline job***/
7: put jobi into the deadline queue queuedea
8: sort(queuedea, into an ascending order of Wwai)
9: extract jobi from queuedea into queueinten[∗]

dea based on
Domjobi, inten[] = {cpu, ram, io}

10: else
11: put jobi into the regular queue queuereg
12: sort queuereg in FCFS principle
13: divide jobi from queuereg into queueinten[∗]

reg based on
Domjobi, inten[] = {cpu, ram, io}

14: end if
15: end while
16: // Preemption phase
17: if (jobi is a deadline job) then
18: if (Demi > Resrem) then
19: if (Wwai

i < Resource released time) then
20: suspend the newest running low priority regular jobs

jobnewlo in the queueinten[∗]
reg until Demi resource is available

21: allocate required resource Demi to jobi
22: else
23: if (Demi > (Resrem +Demnexfin)) then
24: suspend the newest running low priority regular

jobs jobnewlo in queueinten[∗]
reg until Demi resource is available

25: allocate required resource Demi to jobi
26: else
27: jobi waits until next job being finished jobnexfin

is finished and jobnexfin’s resource is released
28: allocate required resource Demi to jobi
29: end if
30: end if
31: else /***Demi is smaller than Resrem***/
32: no preemption; allocate required resource Demi to jobi
33: end if
34: else /***jobi is a regular job***/
35: if (Demi > Resrem) then
36: jobi waits until other resource released; after releasing

enough resource, allocate required resource Demi to jobi
37: else
38: allocate required resource Demi to jobi

39: end if
40: end if
41: // Resource allocation phase
42: Call our previous work - improved DRF allocation strategy [1]
43: while (Wwai

i > 0) do
44: select user z with lowest dominant share Dosz
45: end while
46: preempt resource and allocate required resource Demi to jobi
47: return jobi begins to run

IV. EXPERIMENTS

We compare PDSonQueue’s performance to YARN Fair Scheduler
[3], using 3 metrics: deadline-based QoS, throughput and completion
rate. To test throughput metric, we use “job unit” to generalise jobs
and the normalised job unit is 10ms. The deadline setting is followed
by normal distribution. Our cloud cluster contains 5 machines each
with 16GB of RAM, 2.9 GHz 8 cores Intel Processors, 3 1TB disks,
running Hadoop 2.6.0. We select 3 benchmarks: 1) Pi estimator is a
pure CPU-intensive application that employs a Monte Carlo method
to estimate the value of Pi. 2) Malloc is a classical memory-intensive
task to allocate unused space for an object whose size in bytes is
specified by size and whose value is unspecified. 3) Read/Write file
is a simple I/O-intensive task that reads and writes files repeatedly.

92.97% 90.71% 94.02%
84.27% 81.60% 80.47%

69.34% 64.15%
74.38%

67.18%
62.10% 66.20%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

33.33% 33.33% 33.33% 50% 50% 50%

4000
(Pi:	1333,	Malloc:1333,	

R/W:	1333)

4000
(Pi:	1000,	Malloc:	2500,	

R/W:	500)

4000
(Pi:	2000,	Malloc:	0,	

R/W:	2000)

6000
(Pi:	2000,	Malloc:	2000,	

R/W:	2000)

6000
(Pi:	0,	Malloc:	4000,	

R/W:	2000)

6000
(Pi:	1000,	Malloc:	2500,	

R/W:	2500)

De
ad
lin

e-
ba
se
d
Qo

S
ra
te

Percentage	of	deadline	jobs	in	all	jobs
No. of deadline jobs

No. of differnt types of deadline jobs

Deadline-based QoS rate with different proportions of deadline jobs in mixed type workload
(No. of total jobs: 12000,	No. of Pi	jobs: 4000, No. of Malloc	jobs: 4000, No. of R/W	jobs: 4000)

PDSonQueue Default	Fair	Scheduler	

Fig. 2. Deadline-based QoS rate on a mixed workload

671.51 677.04
655.96

586.78 590.02 601.07

541.00
517.99

407.50

469.36 485.83 478.28

300

350

400

450

500

550

600

650

700

33.33% 33.33% 33.33% 50% 50% 50%

4000
(Pi:	1333,	Malloc:1333,	

R/W:	1333)

4000
(Pi:	1000,	Malloc:	2500,	

R/W:	500)

4000
(Pi:	2000,	Malloc:	0,	

R/W:	2000)

6000
(Pi:	2000,	Malloc:	2000,	

R/W:	2000)

6000
(Pi:	0,	Malloc:	4000,	

R/W:	2000)

6000
(Pi:	1000,	Malloc:	2500,	

R/W:	2500)Th
ro
ug
hp
ut
		(
un
it:
	n
or
m
ali
se
d	
jo
b	
un
it/
s)

Percentage	of	deadline	jobs	in	all	jobs
No. of deadline jobs

No. of differnt types of deadline jobs

Throughput of different proportions of deadline jobs in mixed type workload (No. of total
jobs: 12000,	No.	of	Pi	jobs:	4000,	No.	of	Malloc	jobs:	4000,	No.	of	R/W	jobs:	4000)

PDSonQueue Default	Fair	Scheduler	

Fig. 3. Throughput on a mixed workload

67.14% 65.02% 67.45%
61.63%

67.17%
63.57%

52.86%

45.25% 46.39%

55.76%

32.37%

51.22%

20%
25%
30%
35%
40%
45%
50%
55%
60%
65%
70%

33.33% 33.33% 33.33% 50% 50% 50%

4000
(Pi:	1333,	Malloc:1333,	

R/W:	1333)

4000
(Pi:	1000,	Malloc:	2500,	

R/W:	500)

4000
(Pi:	2000,	Malloc:	0,	

R/W:	2000)

6000
(Pi:	2000,	Malloc:	2000,	

R/W:	2000)

6000
(Pi:	0,	Malloc:	4000,	

R/W:	2000)

6000
(Pi:	1000,	Malloc:	2500,	

R/W:	2500)

Co
m
pl
et
io
n	
ra
te
	

(P
er
ce
nt
ag
e	
of
	c
om

pe
lte

d	
jo
bs
	in
	to

ta
l	j
ob

s)

Percentage	of	deadline	jobs	in	all	jobs
No. of deadline jobs

No. of differnt types of deadline jobs

Completion rate with different proportions of deadlines jobs in mixed type workload (No. of
total jobs: 12000,	 No.	of	Pi	 jobs:	 4000,	No.	of	Malloc	jobs:	 4000,	No.	of	R/W	jobs:	 4000)

PDSonQueue Default	Fair	Scheduler	

Fig. 4. Completion rate on a mixed workload

We set deadline jobs occupying 33% and 50% and changing the
number of deadline Pi estimation jobs, Malloc jobs and read/write
jobs. Fig. 2 shows the QoS achievement. When the proportion of
deadline jobs is 33%, the average QoS of PDSonQueue is 92.57%
regardless of the fraction of different types of deadline jobs and that of
fair scheduler is 69.29%. When deadline jobs occupy 50% of all jobs,
our scheduler’s average QoS rate is 82.11% and fair scheduler’s QoS
rate is 65.16%. With the increase of deadline jobs, our scheduler’s

QoS is decreased by 10% but average QoS achieved is still very good
at 87.34%. However, fair scheduler’s QoS fluctuates and averages
around 65%, which is lower by 22.34% than PDSonQueue, and our
algorithm’s performance is steady. In Fig. 3, PDSonQueue’s average
throughput is higher (630.39 job units/s) than that of fair scheduler
(483.32 job units/s), with 30.43% improvement. When deadline jobs
are less (33%), our algorithm’s average throughput is even higher
(668.16 job units/s). In Fig. 4, PDSonQueue’s average completion rate
is 65.33% and fair scheduler’s is 47.31%. Our algorithm has 18.02%
improvement, which shows PDSonQueue can complete more jobs in
time. PDSonQueue’s performance is much better than fair scheduler.

V. CONCLUSIONS AND FUTURE WORK

Our novel work proposes a real-time preemptive deadline con-
strained scheduler, PDSonQueue, which enables more jobs to satisfy
their deadline-based QoS requirements; allocates more jobs to be
processed; and improves system’s throughput. We use queuing model
to accurately estimate jobs’ execution time and available waiting
time. PDSonQueue uses Earliest Maximal Waiting Time First to sort
constrained jobs to guarantee deadline jobs to be executed by their
deadlines. It uses a preemption mechanism to avoid the delay of high
priority constrained jobs while allowing the system’s resource to be
shared by regular jobs. Lastly, PDSonQueue integrates an improved
DRF resource allocation approach to run as many jobs as possible.
Our experimental results show that PDSonQueue performs much
better. In future, we will extend our dynamic resource allocation
scheduler of multi-dimensional resources to tasks.

VI. ACKNOWLEDGEMENT

This work is supported in part by Swinburne University of
Technology, Monash University, the General Research Fund of the
Research Grants Council of Hong Kong (No.11208017) and the
research funds of City University of Hong Kong (9678149, 7005028,
and 9678149), and the Research Support Fund by Intel (9220097).

REFERENCES

[1] R. Jia, J. Grundy, Y. Yang, J. Keung, and H. Li, “Providing fairer
resource allocation for multi-tenant cloud-based systems,” in 2015 IEEE
7th Int. Conf. Cloud Computing Technology and Science,, pp. 306–313.

[2] H. Chen, W. Lin, and Y. Kuo, “MapReduce scheduling for deadline-
constrained jobs in heterogeneous cloud computing systems,” IEEE
Trans on Cloud Computing, vol. 6, no. 1, pp. 127–140, 2018.

[3] “Hadoop fair scheduler,” in https://hadoop.apache.org/docs/stable/
hadoop-yarn/hadoop-yarn-site/FairScheduler.html.

[4] J. Sahni and P. Vidyarthi, “A cost-effective deadline-constrained dynamic
scheduling algorithm for scientific workflows in a cloud environment,”
IEEE Trans. on Cloud Computing, vol. 6, no. 1, pp. 2–18, 2018.

[5] L. Liu, Y. Zhou, M. Liu, G. Xu, X. Chen, D. Fan, and Q. Wang,
“Preemptive Hadoop jobs scheduling under a deadline,” in 2012 8th
Int. Conf. Semantics, Knowledge and Grids,. IEEE, 2012, pp. 72–79.

[6] A. Aboulnaga, Z. Wang, and Z. Y. Zhang, “Packing the most onto your
cloud,” in 2009 ACM 1st Int. WS Cloud Data Management,. ACM,
2009, pp. 25–28.

[7] V. G. Abhaya, Z. Tari, P. Zeephongsekul, and A. Y. Zomaya, “Perfor-
mance analysis of edf scheduling in a multi-priority preemptive m/g/1
queue,” IEEE Trans. on Parallel and Distributed Systems, vol. 25, no. 8,
pp. 2149–2158, 2014.

[8] M. Khabbaz and C. Assi, “Modelling and analysis of a novel deadline-
aware scheduling scheme for cloud computing data centers,” IEEE
Trans. on Cloud Computing, vol. 6, no. 1, pp. 141–155, 2018.

[9] C. Cheng, J. Li, and Y. Wang, “An energy-saving task scheduling strat-
egy based on vacation queuing theory in cloud computing,” Tsinghua
Science and Technology, vol. 20, no. 1, pp. 28–39, 2015.

[10] W. Ellens, J. Akkerboom, R. Litjens, H. van den Berg et al., “Perfor-
mance of cloud computing centers with multiple priority classes,” in
2012 IEEE 5th Int. Conf. Cloud Computing. IEEE, 2012, pp. 245–252.

[11] J. Sztrik, “Basic queueing theory,” University of Debrecen, Faculty of
Informatics, vol. 193, 2012.

