
Improving Cloud-based Online Social Network Data Placement and Replication

Hourieh Khalajzadeh*, Dong Yuan+, John Grundy!, Yun Yang*
*School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, Australia

+School of Electrical and Information Engineering, the University of Sydney, Sydney, Australia
!School of Information Technology, Deakin University, Melbourne, Australia

*{hkhalajzadeh, yyang}@swin.edu.au
+dong.yuan@sydney.edu.au

!j.grundy@deakin.edu.au

Abstract—Online social networks make it easier for people to
find and communicate with other people based on shared
interests, values, membership in particular groups, etc.
Common social networks such as Facebook and Twitter have
hundreds of millions or even billions of users scattered all
around the world sharing interconnected data. Users demand
low latency access to not only their own data but also their
friends’ data, often very large, e.g. videos, pictures etc.
However, social network service providers have a limited
monetary capital to store every piece of data everywhere to
minimise users’ data access latency. Geo-distributed cloud
services with virtually unlimited capabilities are suitable for
large scale social networks data storage in different
geographical locations. Key problems including how to
optimally store and replicate these huge datasets and how to
distribute the requests to different datacenters are addressed
in this paper. A novel genetic algorithm-based approach is
used to find a near-optimal number of replicas for every user’s
data and a near-optimal placement of replicas to minimise
monetary cost while satisfying latency requirements for all
users. Experiments on a large Facebook dataset demonstrate
our technique’s effectiveness in outperforming other
representative placement and replication strategies.

Keywords-Online Social Network; Data Placement; Data
Replication; Latency; Genetic Algorithm;

I. INTRODUCTION
Online social networks usually have very large numbers

of users geographically distributed all around the world
sharing different types of data, some like videos and images
very large, with each other. The size and number of such
data items are growing dramatically every day. Furthermore,
these users have specific expectations including low latency,
data consistency and availability, and privacy requirements
from their social network service provider. Users can tolerate
a certain threshold to access their own data or their friends’
data. However, not being able to access this data in the
desired time is likely to lead users to become disappointed
about the online social network, lowering their usage and
thus advertising and other provider revenue. A possible
solution would be to store the data related to every user in

every available datacentre. However, as different copies of
user data may need updating regularly, and due to its very
large size, such a huge investment becomes infeasible and
uneconomic. Hence, there is always a trade-off between the
data storage cost and latency.

Nowadays, many social network providers use their own
private datacentres to store users’ data. However, building
private datacentres is extremely expensive and it is normally
not an option for every social network provider. Even large
providers are concerned about the rapidly increasing storage,
data transmission and datacentre energy usage and monetary
costs. To reduce the cost related to datacentre setup and
maintenance, a better solution is to make use of cloud
datacentres. Cloud computing is a technology trend where
users can rent software, hardware, and infrastructure on a per
use (compute and/or data) basis. However, as many privacy
issues exist in using cloud datacentres and social network
providers have to trust cloud providers to share their data
with, combining private and public cloud datacentres could
be a smart solution. In addition, cloud rental is also very
costly and energy expensive if naïve social media data
replication and distribution were used.

There are many cloud providers with different
datacentres around the world that facilitate the setting up,
managing, and maintaining private storage infrastructure.
Amazon S3, Google Cloud storage, and Microsoft Azure are
some examples. By using cloud datacentres, social media
service providers could store users’ data in every
geographical location to satisfy the latency requirement for
users with much lower cost. However, as use of any resource
needs to be paid for, the cost for storing data and updating
data would be still huge if they store the users’ data in all
datacentres. Hence, they need to store users’ data in such a
way for all users to access data in a tolerable time while
having a minimised cost.

For example, let us assume that we have two users, one
in Singapore and the other in California, sharing data with
each other. One solution could be storing and replicating
their data in both S3’s North California datacentre and
Singapore datacentre, and pay for the storage cost in both
datacentres. Another solution could be storing some or all

9th IEEE International Conference on Cloud Computing (IEEE CLOUD 2016), June 27 - July 2, 2016, San Francisco, USA, IEEE Press

data in just one of these datacentres to reduce the storage
cost. However, by doing so, one of the users has to suffer a
higher latency. A more appropriate solution could be to store
their data in a datacentre in between, which has relatively
low latency to both users, such as S3’s Tokyo datacentre.
Thus, both users can have a tolerable latency by paying only
one time storage cost. Hence, we need to explore all possible
placement strategies to find out the best one.

This data placement and replication challenge is currently
unsolved. The placement and replication issue involves
finding not only the best place to store the data, but also the
suitable number of replicas to ensure the latency requirement
for all users to access their own data and their friends’ data.
Taking the latency for users and all friends to access the
main user’s data into account makes our work different from
others. To minimise the monetary cost while guaranteeing
latency requirement, we used a Genetic Algorithm (GA) to
find the most suitable number of replicas and their placement
for every user. Our GA is able to find solutions which could
not be found by even complex rational strategies as it
explores different random placements in order to find the
best one. Our goal is to find a replication of a given set of
users' data with minimum storage cost while guaranteeing
that pth percentile of latencies is less than the desirable
latency, i.e. over p% of all operations are within the specified
latency requirement. The SNAP Facebook dataset [1] is used
to test our prototype and experimental results reveal the
effectiveness of our algorithm. As verified in simulation
experiments, our GA-based data placement and replication
strategy is capable of finding good solutions in most cases.

The remainder of this paper is organised as follows.
Section 2 gives a motivating example of online social
network data storage and analyses the research problem.
Section 3 introduces the system model and the cost model of
online social networks. Section 4 presents the detailed
genetic algorithm used in this paper. Section 5 demonstrates
the simulation results and the evaluation. Section 6 discusses
related work. Finally, Section 7 addresses our conclusions
and future work.

II. MOTIVATING EXAMPLE AND PROBLEM ANALYSIS

A. Motivating example
Online social networks deal with a very large scale of

users distributed all around the world sharing a growing
volume of interconnected, increasingly large data. Users
typically have friends in diverse places who expect to access
their data in a tolerable time. For instance, Facebook as the
world largest social network passes 1.55 billion monthly
active users and 1.01 billion daily active users in 2015 [2].
Based on a research in 2012 [3], 500+ Terabytes of data are
ingested to Facebook every day which is for almost 550
million daily active users out of 950 million users in 2012.

Facebook announced an investment of more than $1
billion in the infrastructure that powers its social network,
which serves more than 845 million users a month around
the globe in 2012. The company spent $606 million on
servers, storage, network gear and datacentres in 2011 and
another $500 million in 2012 [4]. Due to the growing

number of users and their data size, Facebook has more than
10 private datacentres in 2015 and it stated that it still needs
to extend its datacentres in the future to fulfil the
expectations of all users. As described above, it is obvious
that data storage in social network applications is a data
intensive job and every one cannot afford setting up many
datacentres in different locations all around the world. Many
social network providers such as Dropbox [5] are using
cloud datacentres as a more affordable solution to store their
data.

B. Problem analysis
Traditionally, due to the lack of Internet based computing

systems such as cloud computing, service providers had to
set up and maintain their own datacentres. With the advent of
cloud computing [6], online social network providers can
benefit from storage in cloud datacentres. There are some
advantages to using cloud datacentres such as being ready-
to-use, scalable, cost beneficial, reliable, and manageable.
Furthermore, they can use geo-distributed datacentres all
over the world without any extra investment to fulfil the
latency requirement for users distributed geographically all
around the world.

However, there are also some disadvantages, such as
security and privacy, limited control and flexibility, technical
difficulties and downtime, and vendor lock-in issues [7] in
the cloud which lead some providers to combine using
private and public datacentres as a hybrid infrastructure.

When using both private datacentres and geo-distributed
cloud datacentres to store social media data, every user needs
to have a primary copy of data and several secondary
replicas to ensure the latency requirement for his/her friends
who want to access his/her data. The issue that service
providers have to address is to find the most appropriate
number of replicas for every user’s data and their locations
by finding the trade-off between monetary cost and latency.
Hence, we need an algorithm to find the minimum cost
storage strategy for data placement and replication in cloud
while guaranteeing service level agreement such as latency
for all users. This is currently an unsolved problem.

III. PROBLEM FORMULATION AND COST MODEL
The research problem addressed in this paper is data

placement and geo-replication of online social network
services while optimising service provider’s monetary
expenses in using resources of geo-distributed clouds and
guaranteeing service level agreements such as latency for
service users. We do not include the data transfer cost
because data needs to be transferred to the users regardless of
where they are located, i.e. no extra data transfer cost is
involved and it is reflected in latency. The data update cost is
not considered here because our system is static and handling
updating of data is postponed to the future.

Every user has a primary copy located in their primary
datacentre, which is the nearest datacentre to their location. It
is assumed that all users read their own data from their
primary datacentre and every friend of them reads their data
from their nearest datacentre which stores any secondary
data of their data. It is also assumed that every write

operation goes to the primary datacentre. There are M
datacentres and N users, each with one dataset.

The users and their collection of datasets stored in
different datacentres are denoted respectively as:

1 2{ , ,..., }NU u u u=

1 2{ , ,..., }ND d d d=

Datacentres in the system are denoted as:

1 2{ , ,..., }MS s s s=
The solution space is a matrix X of size N×M as follows:

1 Data of user is stored in datacentre
0 Otherwise{ i j

ijx =

A. Cost Model
“Cost” as used in this work is the cost for storing data in

different datacentres. Considering N as the number of users,
and Ri as the number of replicas for user i, cost is the total
monetary cost of storing main copy and replicas of all users’
data in different datacentres for a specific duration and is
calculated as follows:

1

($)
N

i
i

Cost StorageCost
=

=∑ (1)

where

(1)
i i

i

StorageCost UnitStoragePrice StoredDataSize

R

= ×

× +

The UnitStoragePrice is the price for storing one
Gigabyte of data per month in a datacentre and
StoredDataSizei is the data size for user i. Thus, the storage
cost is the cost for storing user’s data and replicas for one
month in different datacentres.

B. Latency
Latency between users and datacentres is calculated

using an approximation based on distance. Every user has a
primary datacentre that is the nearest datacentre to their
location. We assume that every user has a latency of 20 ms
with their primary datacentre and the latencies between the
user and other datacentres are calculated based on (2) [8]:

20 User and datacentre are in same region
0.02 () 5 Otherwise

()

{ Distance km

Latency ms

× +

=

 (2)

Every user reads data from the nearest datacentre that has
a copy of the data. Thus, the final latency for every user is
the summation of the latency between them and their data
and the latency between all their friends and the nearest
secondary replicas to them. The targeted maximal average
response delay per request is set to 150 ms and 200 ms, since
latency more than 200 ms will deteriorate the user
experience significantly [8]. We can use alternative default
latency to local datacentre and alternative coefficients for
remote datacentres. We could also include time-of-day and
other refinements that impact both latency and cost.

C. Problem formulation
We aim to minimise the cost while satisfying service

level agreements, in our case primarily maximum permitted
latency. We can also include other factors such as energy
consumption (watts to store/retrieve/transmit), and reliability
(probably retrieve/transmit fails). The problem using desired
latency is formulated as follows:

minimise:
Cost S=
where

1

N

i
i

S StorageCost
=

=∑

is the cost for storing main data and its replicas, subject
to:

1

N

i
i

latency DesiredLatency
=

≤∑ (3)

This constraint means that the latency for every user must
be lower than the desired latency in order to ensure the
latency requirement for every user. The latency is the latency
for user i and all his/her friends to access his/her data. For
every user i, we have the following constraints.

1

1
M

ij
j

p i U
=

= ∀ ∈∑ (4)

 1 ,ij ijp s i U j S+ ≤ ∀ ∈ ∀ ∈ (5)

1

M

ij i
j

s R i U
=

≥ ∀ ∈∑ (6)

In these constraints, pij and sij indicate existing primary
and secondary replicas of user i’s data in datacentre j.
Constraint (4) ensures every user has a single primary replica
in all datacentres. Constraint (5) ensures that no primary and
secondary replicas of the same user are co-located in a
common datacentre. Finally, constraint (6) specifies the
minimum number of secondary replicas Ri for every user i to
ensure the data availability.

IV. A GENETIC ALGORITHM BASED PLACEMENT STRATEGY
The data placement and replication problem defined in

the previous section has many decision variables due to the
large number of social network users. A GA-based
placement and replication strategy is proposed to find the
most cost effective number of replicas for users’ data and
their placement while guaranteeing latency requirement
defined in service level agreement.

GA is a search technique often employed to find the
exact or approximate solutions for optimisation and search
problems. GA is a specific class of evolutionary algorithms
inspired by evolutionary biology. In GA, every solution is
represented with a string, also known as a chromosome,

which follows the semantics defined by the encoding
method. After encoding, the candidate solutions, i.e., the
initial population, need to be generated as the basic search
space. Within each generation, three basic GA operations,
i.e., selection, crossover, and mutation, are conducted to
imitate the process of evolution in nature. Finally, after the
stopping condition is met, the chromosome with the best
fitness value is returned, representing the best solution found
in the search space. This ends the GA process [9].

An overview of our GA-based social media data
placement and replication strategy is presented in Fig. 1. We
have the social graph of users and their connections, latency
related to different datacentres, and the desired latency
requirement to calculate and compare the latency.
Additionally, users’ data size and the storage cost are used to
determine cost. Latency and cost are calculated using the
fitness function. To avoid violating latency by GA
operations, after every crossover and mutation, latency is
being checked. Primary data cannot be mutated as the main
data have to be stored in the user’s main datacentre, the
closest to their location.
Genetic algorithm for social network data placement and replication
Input:
Rate of crossover: rc
Rate of mutation: rm
Size of population: popsize
Size of selected population: keep
Number of iterations: epoch
Output:
Solution: X
// Initialisation
1 generate popsize feasible solutions randomly;
2 save them in the population pop;
// Loop until the terminal condition
3 for i=1 to epoch do
// Crossover
4 for j=1 to popsize-1 do
5 randomly select two solutions xa and xb from pop;
6 generate xc and xd by two-point crossover from xa and xb under rate rc
7 if latency requirement is valid, save xc and xd to pool;
8 update newpop = pop + pool;
9 endfor
// Mutation
10 Len = size of newpop
11 for j=1 to Len do
12 select a solution xj from newpop
13 mutate each bit of xj under rate rm and generate a new solution x’j
14 if latency requirement is valid, update xj with x’j in newpop;
15 endfor
16 endfor
// Selection
17 using tournament selection, select keep solutions from newpop and save
them in pop;
// Returning the best solution
18 return the best solution x in pop;

Figure 1. Pseudocode of the GA algorithm

A. Initial population generation
The strategy starts with the encoding of the users’ data

replicas placement in different datacentres. Here, as depicted
in Fig. 2, what we have employed is a two-dimensional
encoding where the first dimension denotes users’
ID as an indicator of users’ data and the second dimension

denotes the ID of different datacentres. Matrix xij is
initialised with random 1s and 0s showing whether user i’s
data is stored in datacentre j or not respectively.

Figure 2. Problem encoding

The fitness function is considered as the cost of storing
data replicas of all users in different datacentres. Hence, the
fitness function is calculated as follows:

1 1
()

N M

ij i
i j

F x x UnitStoragePrice StoredDataSize
= =

= × ×∑∑

 A validation process where generated chromosomes are
checked with desired latency is done during this step. The
latency requirement is checked and the valid chromosomes
are then retained and the invalid ones are discarded and
replaced with newly generated ones.

The first genetic operation is selection, where tournament
selection is used, which involves running several
tournaments among a few chromosomes chosen at random
from the population and the winner of each tournament is
selected. The reason of using tournament selection is that it
prevents too quick convergence as rank selection while it is
computationally more efficient, as there is no need to sort the
whole population which is a potentially time consuming
procedure [9].

B. Crossover procedure
The basic idea of the GA crossover operation is that a

random crossover point is chosen first and then the segments
of parents are swapped at that point to produce new children.
Therefore, children inherit the characteristics of both parents.
For two random chromosomes, a two point crossover is
conducted with a specific probability of 80%. An example of
the crossover process is presented in Fig. 3.

Figure 3. Two point crossover used in our method

C. Mutation procedure
In GA-based mutation, which is depicted in Fig. 4, the

stored user’s replica is mutated at a randomly selected cell of
a chromosome. The mutation rate is set to a small probability
value such as 10% since mutation can easily destroy the
correct topological order and result in invalid solutions.

Figure 4. Mutation used in our method

At the end of each generation, the chromosomes with the
best fitness values of each generation are chosen and the
children with the worst fitness value are removed from the
considered population. The genetic evolution process repeats
itself until the stopping condition is satisfied. Finally, the
best solution is returned.

V. SIMULATION RESULTS AND THE EVALUATION
Our new GA-based data placement and replication

strategy is generic and can be used in any social network
application fitting our data placement approach and social
relationships graph. In this section, we demonstrate the
simulation results and comparison of our benchmark with
different placement and replication strategies. The SNAP
(Stanford Network Analysis Project) real world Facebook
dataset [1] was used to demonstrate how our algorithm finds
an efficient data placement and replication with the
minimised cost while satisfying the latency requirement.

A. Experiment dataset and setting
SNAP is an undirected Facebook dataset with 4,039 users

and 88,234 relationships which is used in the experiments.
This dataset contains a social graph of users IDs and the
relations between them. Facebook data was collected from
survey participants using their Facebook app. Two types of
experiments were conducted: Section B evaluates the cost
reduction of GA per iteration and its effectiveness while
Section C shows the efficiency of our strategy comparing
with other strategies.

As we did not have the users’ information such as
location in the introduced dataset, we generated random
locations in the US for users based on their latitude and
longitude. Moreover, 10 datacentres are assumed in the real
locations of Facebook datacentres in Oregon, North
Carolina, Altoona, Silicon Valley, Santa Clara, San Jose, San
Francisco, Ashburn, Virginia, and Council Bluffs [10]. The
nearest datacentre is chosen for every user as the primary
datacentre. Number of users around each datacentre who
choose this datacentre as their primary datacentre is shown in
Fig. 5. The unit storage cost for data storage in all
datacentres is considered as $0.125 per GB per month. This
could be refined to use different values per datacentre if
desired.

Figure 5. Number of users located around different datacentres

Based on the information explained in Section 2 that
Facebook is collecting 500 terabytes of people’s data every
day and due to the 950 million population of Facebook and
550 million daily active users in 2012 when this dataset was
collected, on average, every active user stores 900 KB (500
TB / 550 Million) information daily in a Facebook datacentre
which is the amount of 27 MB (900×30) monthly. This data
size increases every month. We generated random sizes of
data for users following a normal distribution with this
average size as the mean.

B. Evaluation of cost effectiveness
To further explain the GA setting, chromosomes are

considered as a matrix of N×M with N as the number of
users and M as the number of datacentres. N is 4039 and M is
10 in our experiments. Population size is considered as 30.
Crossover with crossover rate of 0.8 and mutation by
mutation rate of 0.1 are considered [11]. Selection is based
on the tournament selection. In each iteration, half of the best
parents and newly generated children are kept for the next
iteration. Fitness function is considered as the cost of every
solution as described before. Latency requirement is
considered as a constraint and solutions which do not meet it
had been removed.

Figure 6. Cost reduction per iteration using the genetic algorithm for

different percentiles of a desired latency of 150ms

Figure 7. Cost reduction per iteration using the genetic algorithm for

different percentiles of a desired latency of 200ms

The termination condition is based on the number of
iterations. 50 iterations were used as no more cost reduction
was observed after 50 iterations. The cost reduction per
iteration with a different percentile (50%-99%) of latencies
fulfilled (150 and 200 ms) is depicted in Figs. 6-7. For
instance, in Fig. 7, the green line shows the cost reduction
from the first iteration of GA data placement until the final
placement while 90% of users have the latency less than 200
ms for themselves and their friends to access their own data.

As an example, referring to Fig. 7 with latency
requirement of 90 percentile of latencies less than 200 ms, by
considering the user size for all 4039 users and the unit
storage cost as described previously, the initial cost resulted
by the first iteration of GA is $66.633 with average number
of replicas as 5. The minimum cost found by GA in the 50th
iteration is $21.147 with an average replica number of 2.
Moreover, the 90th percentile latencies for these two
placements are 120.7639 ms and 199.9593 ms respectively
which are both acceptable, based on the latency requirement
of 200 ms. Thus, the cost reduction for 4039 users with
average data size of 27 MB is $45.486. Time for running 50
iterations is 705.5696 minutes. We used a general purpose
EC2 instance with vCPU=2, ECU=6.5, and Memory (GB) =
8 for our simulations which costed $0.177 per hour. Thus,
705.5696 minutes, i.e. 11.75 hours, for running GA costs
around $2. Hence, the total cost reduction of $45.486 minus
the EC2 instance cost of $2.079 would be $43.407 for 4039
users. This means the cost reduction percentage of around
65% which could thus be millions of dollars per month for a
social network application with the user size of Facebook.

C. Evaluation of different strategies
Different strategies to replicate and place the described

Facebook users’ data in different datacentres which were
simulated and compared with our strategy are as follows:
• The first strategy is our GA-based algorithm in which

one copy of data is stored in the nearest datacentre.
Genetic algorithm is used to find the optimised number
of replicas and the best placement for them.

• Random placement and replication of data in different
datacentres. The minimum number of replicas is 1
because we should have one main copy of data and the
maximum is 10 as we have 10 datacentres.

• Placing one copy of data in a random datacentre.
• Placing two copies of data in two random datacentres.
• Placing three copies of data in three random datacentres.
• Full replication of every data in all datacentres.

Datacentres are sorted based on the distance for every
user in the next 3 strategies. Because long distance causes
high latency, every user prefers to have a copy of data in
his/her nearest datacentre.
• One copy of data is stored in the most preferred

datacentre of every user.
• Two copies of data are stored in the first and second

preferred datacentres.
• Three copies of data are stored in the three most

preferred datacentres.
Datacentres are sorted based on both distance as list1 and

number of friends as list2 for every user in the next two
strategies.
• One copy of data is stored in the most preferred

datacentre in list1 and one more copy is stored in the
most preferred datacentre in list2.

• One copy of data is stored in the most preferred
datacentre in list1 and two more copies are stored in the
two most preferred datacentres in list2.

Different settings are assumed to compare the results of

these strategies. These settings are based on the service level
agreements on the latency requirement for users and their
friends to access their data. Latency requirement is defined
as: “pth percentile latency must be lower than the desired
latency” which means that over p percent of the latencies are
less than the desirable latency. Requirements are assumed as
50%, 60%, 70%, 80%, 90%, and 99% of the latencies are
less than 150 ms and 200 ms.

Based on subsection B, no more significant cost
reduction was seen after 20 iterations, for the purpose of time
efficiency. To repeat the experiments five times and compare
the average results 20 iterations were used for GA in this
step. As the percentage more than 90% makes much more
sense in a most of the applications [12], the results for
99.99% latencies lower than 200 ms are depicted in the Fig.
8. We used 99.99% to ensure that nearly all of the users can
access their own data and all their friends in the desirable
latency.

As shown in Fig 7, the only strategy, except costly full
replication, that can guarantee the latency requirement of
“99.99% latencies lower than 200 ms” with a reasonable cost
is GA which shows the outstanding performance of our
strategy comparing with other strategies. Therefore, our GA
based strategy can find the minimised cost while
guaranteeing the latency requirement for nearly all users.

Figure 8. Comparison of different strategies with latency requirement of

99.99% lower than 200 ms

VI. RELATED WORK
Many papers in the literature focus on energy efficient

workload placement, virtual machine placement, applications
scheduling, load balancing, task scheduling, resource
allocation in the cloud, and job scheduling and data
replication in the grid. These are not comparable with our
work as we focus on data placement and replication in the
cloud. Therefore, in this section, we compare our work with
existing literature in three categories: first, optimising online
social networks services, second, use of evolutionary
algorithms for data placement and replication, and third, data
placement and replication in cloud.

Optimising online social networks (OSNs): For OSN at
a single site with different servers, social locality is
maintained to address this issue in literature. SPAR [13]
minimises the total number of slave replicas while
maintaining social locality for every user; S-CLONE [14]
maximises the number of users whose social locality can be
maintained, given a fixed number of replicas per user. For
OSN across multiple sites, some propose selective
replication of data across datacentres to reduce the total
inter-data-centre traffic, and others propose a framework that
captures and optimises multiple dimensions of the OSN
system objectives simultaneously [15]. Other works do not
involve QoS as in our geo-distribution case.

Using of evolutionary algorithms for data placement
and replication: To decrease the network traffic and
undesired long delays in large distributed systems such as
Internet, replicating some of the objects at multiple sites is
considered as one possible solution in [16]. The decision of
what and where to replicate is solved by genetic algorithms.
Normal GA is considered for static situations and a hybrid
GA is proposed that takes current replica distribution as
input and then computes a new one using knowledge about
the network attributes and the changes occurred.
Furthermore, problem of co-scheduling job dispatching and
data replication in wide-area distributed systems in an
integrated manner is addressed in [17]. Their system contains

three variables as the order of the jobs, the assignment of the
jobs to the individual compute nodes, and the assignment of
the data objects to the local data stores. A genetic algorithm
is used to find the optimal placement. However, these do not
consider the social network data placement problem in the
cloud.

Some data placement strategies based on genetic
algorithms are proposed in [18] and [19] to reduce data
scheduling between cloud datacentres and the distributed
transaction costs as much as possible. Additionally, the
problem of placing the components of a SaaS and their
related data in the cloud is addresses in [20]. However, data
replication is not considered in these papers.

Data placement and replication in the cloud: The
inter-datacentre communication of the online social network
services is focused in [21]. Moreover, a geo-cloud based
dynamic replica creation in large global Web sites such as
Facebook is presented in [22]. Volley [23] addresses the
automated data placement challenge which deals with WAN
bandwidth costs and datacentre capacity limitations while
minimising user-perceived latency. Additionally, the cloud
storage reconfiguration while respecting application-defined
constraints to adapt to changes in users’ locations or request
rates is addressed in [24]. However, they do not consider the
monetary cost for replicating data in their work.

A mechanism for selectively replicating large databases
globally is introduced in [25] to minimise bandwidth.
However, they replicate all records in all locations either as a
full copy or as a stub. Using geo-distributed clouds for
scaling the social media streaming service is advocated in [8]
to address the challenges for storing and migrating media
data for timely response and moderate expense. They work
on videos and focus on resource and data migration. The
primary focus in [26] is to minimise the cost incurred by
latency-sensitive application providers while satisfying
consistency and fault-tolerance requirements with taking
workload properties into account. However, latency
definition in their work makes it not comparable with our
work.

The monetary expense of the OSN service with
considering its QoS, data availability requirements, inter-
cloud traffic as well as the carbon footprint of OSN services
is investigated in [15]. The social locality assumption in
which they have to keep all friends’ replica in one’s main
datacentre makes their work not comparable with ours.
Multi-objective optimisation including reducing the usage of
cloud resources, providing good service quality to users, and
minimising the carbon footprint is studied in [27]. However,
they consider latency as an objective instead of constraint
which makes it not comparable with our work.

Placing and replicating the data related to social networks
is an issue that is addressed in the reviewed literature. As
there are millions of users who are scattered all around the
world, finding an optimal way to place and replicate the data
related to them in a cost effective way while guaranteeing
service level agreements is still a challenge. Social networks
data replication in cloud is not addressed using evolutionary
algorithms such as a genetic algorithm.

VII. CONCLUSIONS AND FUTURE WORK
Novel use of a genetic algorithm for optimising social

media data placement and replication in cloud datacentres is
presented in this paper. Comparing to different placement
strategies, our proposed algorithm can find the most
affordable placement strategy while guaranteeing latency
requirement for 99.99% of online social network users.
Simulation results on the SNAP Facebook dataset show the
effectiveness of the proposed algorithm.

We used the SNAP Facebook dataset for experiments
and based on the acceptable size of users. It is assumed that
they are located in the US and real locations of Facebook
datacentres are considered. We are conducting further
experiments for larger datasets with real cloud datacentres
such as Amazon. Moreover, social networks have a dynamic
and growing nature due to the users’ mobility and dynamic
activities. In the current work a static data placement and
replication in social networks is address which will be
extended to be applicable in dynamic environments in the
future.

ACKNOWLEDGMENT
This research is partly supported by the Australian

Research Council Linkage Projects scheme LP130100324.

REFERENCES
[1] J. Mcauley and J. Leskovec, "Learning to Discover Social Circles in

Ego Networks," Advances in Neural Information Processing Systems
25 (NIPS), 2012, pp. 539-547.

[2] E. Protalinski. (2015). Facebook Passes 1.55B Monthly Active Users
and 1.01B Daily Active Users. Available:
http://venturebeat.com/2015/11/04/facebook-passes-1-55b-monthly-
active-users-and-1-01-billion-daily-active-users/

[3] J. Constine. (2012). How Big is Facebook’s Data? 2.5 Billion Pieces
of Content and 500+ Terabytes Ingested Every Day. Available:
http://techcrunch.com/2012/08/22/how-big-is-facebooks-data-2-5-
billion-pieces-of-content-and-500-terabytes-ingested-every-day/

[4] R. Miller. (2012). Facebook’s $1 Billion Data Center Network.
Available:
http://www.datacenterknowledge.com/archives/2012/02/02/facebooks
-1-billion-data-center-network/

[5] R. Miller. (2013). How Dropbox Stores Stuff for 200 Million Users.
Available:
http://www.datacenterknowledge.com/archives/2013/10/23/how-
dropbox-stores-stuff-for-200-million-users/

[6] A. Weiss, "Computing in the clouds," Computing 16, 2007, pp. 16-25.
[7] Advantages and Disadvantages of Cloud Computing. Available:

http://www.levelcloud.net/why-levelcloud/cloud-education-
center/advantages-and-disadvantages-of-cloud-computing/

[8] Y. Wu, C. Wu,B. Li, L. Zhang, Z. Li, and F. C. M. Lau, "Scaling
social media applications into geo-distributed clouds," IEEE
Conference on Computer Communications (INFOCOM), 2012, pp.
684-692.

[9] M. Mitchell. (1998). An introduction to genetic algorithms. MIT
press.

[10] The Facebook Data Center FAQ. Available:
http://www.datacenterknowledge.com/the-facebook-data-center-faq/

[11] M. Obitko. (1998). Introduction to Genetic Algorithms. Available:
http://www.obitko.com/tutorials/genetic-
algorithms/recommendations.php

[12] X. Liu, J. Chen, and Y. Yang, "A Probabilistic Strategy for Setting
Temporal Constraints in Scientific Workflows," Concurrency and
Computation: Practice and Experience, Wiley, 23(16) , 2011, pp.
1893-1919.

[13] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P.
Chhabra, et al., "The little engine (s) that could: scaling online social
networks," ACM SIGCOMM Computer Communication Review
41(4), 2011, pp. 375-386

[14] D. A. Tran, K. Nguyen, and C. Pham, "S-CLONE: Socially-aware
data replication for social networks," Computer Networks 56, 2012,
pp. 2001-2013.

[15] L. Jiao, J. Li, T. Xu, W. Du, and X. Fu, "Optimizing Cost for Online
Social Networks on Geo-Distributed Clouds," IEEE/ACM
Transactions on Networking, 2014, pp. 99-112.

[16] T. Loukopoulos and I. Ahmad, "Static and Adaptive Distributed Data
Replication using Genetic Algorithms," Journal of Parallel and
Distributed Computing 64(11), 2004, pp. 1270-1285.

[17] T. Phan, K. Ranganathan, and R. Sion, "Evolving Toward the Perfect
Schedule: Co-scheduling Job Assignments and Data Replication in
Wide-Area Systems Using a Genetic Algorithm," Job Scheduling
Strategies for Parallel Processing 3834, 2005, pp. 173-193.

[18] W. Guo and X. Wang, "A Data Placement Strategy Based on Genetic
Algorithm in Cloud Computing Platform," 10th Web Information
System and Application Conference (WISA), 2013, pp. 369-372.

[19] Q. Xu, Z. Xu, and T. Wang, "A Data-Placement Strategy Based on
Genetic Algorithm in Cloud Computing," International Journal of
Intelligence Science 5, 2015.

[20] Z.I.M. Yusoh and M. Tang, "A penalty-based genetic algorithm for
the composite SaaS placement problem in the Cloud," IEEE Congress
on Evolutionary Computation (CEC) , 2010, pp. 1-8.

[21] G. Liu, H. Shen, and H. Chandler, "Selective Data replication for
Online Social Networks with Distributed Datacenters," 21st IEEE
International Conference on Network Protocols (ICNP), 2013, pp. 1-
10.

[22] Z. Ye, S. Li, and J. Zhou, "A Two-layer Geo-cloud based Dynamic
Replica Creation Strategy," Applied Mathematics & Information
Sciences 8(1), 2014, pp. 431-440.

[23] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H.
Bhogan, "Volley: automated data placement for geo-distributed cloud
services," 7th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2010.

[24] M. S. Ardekani and D. B. Terry, "A self-configurable geo-replicated
cloud storage system," 11th USENIX conference on Operating
Systems Design and Implementation, 2014.

[25] S. Kadambi, J. Chen, B. F. Cooper, D. Lomax, A. Silberstein, E.
Tam, et al., "Where in the World is My Data?," Very Large Data
Base Endowment Inc. (VLDB Endowment) 4(11), 2011, pp. 1040-
1050.

[26] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. V.
Madhyastha, "SPANStore: cost-effective geo-replicated storage
spanning multiple cloud services," 24th ACM Symposium on
Operating Systems Principles, 2013, pp. 292-308.

[27] L. Jiao, J. Lit, W. Du, and X. Fu, "Multi-objective data placement for
multi-cloud socially aware services," IEEE Conference on Computer
Communications (INFOCOM), 2014, pp. 28-36.

