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Abstract—Online social networks make it easier for people to 
find and communicate with other people based on shared 
interests, values, membership in particular groups, etc. 
Common social networks such as Facebook and Twitter have 
hundreds of millions or even billions of users scattered all 
around the world sharing interconnected data. Users demand 
low latency access to not only their own data but also their 
friends’ data, often very large, e.g. videos, pictures etc. 
However, social network service providers have a limited 
monetary capital to store every piece of data everywhere to 
minimise users’ data access latency. Geo-distributed cloud 
services with virtually unlimited capabilities are suitable for 
large scale social networks data storage in different 
geographical locations. Key problems including how to 
optimally store and replicate these huge datasets and how to 
distribute the requests to different datacenters are addressed 
in this paper. A novel genetic algorithm-based approach is 
used to find a near-optimal number of replicas for every user’s 
data and a near-optimal placement of replicas to minimise 
monetary cost while satisfying latency requirements for all 
users. Experiments on a large Facebook dataset demonstrate 
our technique’s effectiveness in outperforming other 
representative placement and replication strategies. 

Keywords-Online Social Network; Data Placement; Data 
Replication; Latency; Genetic Algorithm; 

I.  INTRODUCTION 
Online social networks usually have very large numbers 

of users geographically distributed all around the world 
sharing different types of data, some like videos and images 
very large, with each other. The size and number of such 
data items are growing dramatically every day. Furthermore, 
these users have specific expectations including low latency, 
data consistency and availability, and privacy requirements 
from their social network service provider. Users can tolerate 
a certain threshold to access their own data or their friends’ 
data. However, not being able to access this data in the 
desired time is likely to lead users to become disappointed 
about the online social network, lowering their usage and 
thus advertising and other provider revenue. A possible 
solution would be to store the data related to every user in 

every available datacentre. However, as different copies of 
user data may need updating regularly, and due to its very 
large size, such a huge investment becomes infeasible and 
uneconomic. Hence, there is always a trade-off between the 
data storage cost and latency. 

Nowadays, many social network providers use their own 
private datacentres to store users’ data. However, building 
private datacentres is extremely expensive and it is normally 
not an option for every social network provider. Even large 
providers are concerned about the rapidly increasing storage, 
data transmission and datacentre energy usage and monetary 
costs. To reduce the cost related to datacentre setup and 
maintenance, a better solution is to make use of cloud 
datacentres. Cloud computing is a technology trend where 
users can rent software, hardware, and infrastructure on a per 
use (compute and/or data) basis. However, as many privacy 
issues exist in using cloud datacentres and social network 
providers have to trust cloud providers to share their data 
with, combining private and public cloud datacentres could 
be a smart solution. In addition, cloud rental is also very 
costly and energy expensive if naïve social media data 
replication and distribution were used. 

There are many cloud providers with different 
datacentres around the world that facilitate the setting up, 
managing, and maintaining private storage infrastructure. 
Amazon S3, Google Cloud storage, and Microsoft Azure are 
some examples. By using cloud datacentres, social media 
service providers could store users’ data in every 
geographical location to satisfy the latency requirement for 
users with much lower cost. However, as use of any resource 
needs to be paid for, the cost for storing data and updating 
data would be still huge if they store the users’ data in all 
datacentres. Hence, they need to store users’ data in such a 
way for all users to access data in a tolerable time while 
having a minimised cost.  

For example, let us assume that we have two users, one 
in Singapore and the other in California, sharing data with 
each other. One solution could be storing and replicating 
their data in both S3’s North California datacentre and 
Singapore datacentre, and pay for the storage cost in both 
datacentres. Another solution could be storing some or all 
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data in just one of these datacentres to reduce the storage 
cost. However, by doing so, one of the users has to suffer a 
higher latency. A more appropriate solution could be to store 
their data in a datacentre in between, which has relatively 
low latency to both users, such as S3’s Tokyo datacentre. 
Thus, both users can have a tolerable latency by paying only 
one time storage cost. Hence, we need to explore all possible 
placement strategies to find out the best one. 

This data placement and replication challenge is currently 
unsolved. The placement and replication issue involves 
finding not only the best place to store the data, but also the 
suitable number of replicas to ensure the latency requirement 
for all users to access their own data and their friends’ data. 
Taking the latency for users and all friends to access the 
main user’s data into account makes our work different from 
others. To minimise the monetary cost while guaranteeing 
latency requirement, we used a Genetic Algorithm (GA) to 
find the most suitable number of replicas and their placement 
for every user. Our GA is able to find solutions which could 
not be found by even complex rational strategies as it 
explores different random placements in order to find the 
best one. Our goal is to find a replication of a given set of 
users' data with minimum storage cost while guaranteeing 
that pth percentile of latencies is less than the desirable 
latency, i.e. over p% of all operations are within the specified 
latency requirement. The SNAP Facebook dataset [1] is used 
to test our prototype and experimental results reveal the 
effectiveness of our algorithm. As verified in simulation 
experiments, our GA-based data placement and replication 
strategy is capable of finding good solutions in most cases. 

The remainder of this paper is organised as follows. 
Section 2 gives a motivating example of online social 
network data storage and analyses the research problem. 
Section 3 introduces the system model and the cost model of 
online social networks. Section 4 presents the detailed 
genetic algorithm used in this paper. Section 5 demonstrates 
the simulation results and the evaluation. Section 6 discusses 
related work. Finally, Section 7 addresses our conclusions 
and future work. 

II. MOTIVATING EXAMPLE AND PROBLEM ANALYSIS 

A. Motivating example 
Online social networks deal with a very large scale of 

users distributed all around the world sharing a growing 
volume of interconnected, increasingly large data. Users 
typically have friends in diverse places who expect to access 
their data in a tolerable time. For instance, Facebook as the 
world largest social network passes 1.55 billion monthly 
active users and 1.01 billion daily active users in 2015 [2]. 
Based on a research in 2012 [3], 500+ Terabytes of data are 
ingested to Facebook every day which is for almost 550 
million daily active users out of 950 million users in 2012.  

Facebook announced an investment of more than $1 
billion in the infrastructure that powers its social network, 
which serves more than 845 million users a month around 
the globe in 2012. The company spent $606 million on 
servers, storage, network gear and datacentres in 2011 and 
another $500 million in 2012 [4]. Due to the growing 

number of users and their data size, Facebook has more than 
10 private datacentres in 2015 and it stated that it still needs 
to extend its datacentres in the future to fulfil the 
expectations of all users. As described above, it is obvious 
that data storage in social network applications is a data 
intensive job and every one cannot afford setting up many 
datacentres in different locations all around the world. Many 
social network providers such as Dropbox [5] are using 
cloud datacentres as a more affordable solution to store their 
data. 

B. Problem analysis 
Traditionally, due to the lack of Internet based computing 

systems such as cloud computing, service providers had to 
set up and maintain their own datacentres. With the advent of 
cloud computing [6], online social network providers can 
benefit from storage in cloud datacentres. There are some 
advantages to using cloud datacentres such as being ready-
to-use, scalable, cost beneficial, reliable, and manageable. 
Furthermore, they can use geo-distributed datacentres all 
over the world without any extra investment to fulfil the 
latency requirement for users distributed geographically all 
around the world.  

However, there are also some disadvantages, such as 
security and privacy, limited control and flexibility, technical 
difficulties and downtime, and vendor lock-in issues [7] in 
the cloud which lead some providers to combine using 
private and public datacentres as a hybrid infrastructure. 

When using both private datacentres and geo-distributed 
cloud datacentres to store social media data, every user needs 
to have a primary copy of data and several secondary 
replicas to ensure the latency requirement for his/her friends 
who want to access his/her data. The issue that service 
providers have to address is to find the most appropriate 
number of replicas for every user’s data and their locations 
by finding the trade-off between monetary cost and latency. 
Hence, we need an algorithm to find the minimum cost 
storage strategy for data placement and replication in cloud 
while guaranteeing service level agreement such as latency 
for all users. This is currently an unsolved problem. 

III. PROBLEM FORMULATION AND COST MODEL 
The research problem addressed in this paper is data 

placement and geo-replication of online social network 
services while optimising service provider’s monetary 
expenses in using resources of geo-distributed clouds and 
guaranteeing service level agreements such as latency for 
service users. We do not include the data transfer cost 
because data needs to be transferred to the users regardless of 
where they are located, i.e. no extra data transfer cost is 
involved and it is reflected in latency. The data update cost is 
not considered here because our system is static and handling 
updating of data is postponed to the future.  

Every user has a primary copy located in their primary 
datacentre, which is the nearest datacentre to their location. It 
is assumed that all users read their own data from their 
primary datacentre and every friend of them reads their data 
from their nearest datacentre which stores any secondary 
data of their data. It is also assumed that every write 



operation goes to the primary datacentre. There are M 
datacentres and N users, each with one dataset.  

The users and their collection of datasets stored in 
different datacentres are denoted respectively as: 

1 2{ , ,..., }NU u u u=   

1 2{ , ,..., }ND d d d=   

Datacentres in the system are denoted as: 

1 2{ , ,..., }MS s s s=   
The solution space is a matrix X of size N×M as follows:  

1 Data of user is stored in datacentre
0 Otherwise{ i j

ijx =  

A. Cost Model 
“Cost” as used in this work is the cost for storing data in 

different datacentres. Considering N as the number of users, 
and Ri as the number of replicas for user i, cost is the total 
monetary cost of storing main copy and replicas of all users’ 
data in different datacentres for a specific duration and is 
calculated as follows: 
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The UnitStoragePrice is the price for storing one 
Gigabyte of data per month in a datacentre and 
StoredDataSizei is the data size for user i. Thus, the storage 
cost is the cost for storing user’s data and replicas for one 
month in different datacentres. 

B. Latency 
Latency between users and datacentres is calculated 

using an approximation based on distance. Every user has a 
primary datacentre that is the nearest datacentre to their 
location. We assume that every user has a latency of 20 ms 
with their primary datacentre and the latencies between the 
user and other datacentres are calculated based on (2) [8]: 

20 User and datacentre are in same region
0.02 ( ) 5 Otherwise

( )

{ Distance km

Latency ms

× +

=

 (2) 

Every user reads data from the nearest datacentre that has 
a copy of the data. Thus, the final latency for every user is 
the summation of the latency between them and their data 
and the latency between all their friends and the nearest 
secondary replicas to them. The targeted maximal average 
response delay per request is set to 150 ms and 200 ms, since 
latency more than 200 ms will deteriorate the user 
experience significantly [8]. We can use alternative default 
latency to local datacentre and alternative coefficients for 
remote datacentres. We could also include time-of-day and 
other refinements that impact both latency and cost. 

C. Problem formulation 
We aim to minimise the cost while satisfying service 

level agreements, in our case primarily maximum permitted 
latency. We can also include other factors such as energy 
consumption (watts to store/retrieve/transmit), and reliability 
(probably retrieve/transmit fails). The problem using desired 
latency is formulated as follows: 

minimise: 
Cost S=   
where 

1

N

i
i

S StorageCost
=

=∑  

is the cost for storing main data and its replicas, subject 
to: 
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latency DesiredLatency
=
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This constraint means that the latency for every user must 
be lower than the desired latency in order to ensure the 
latency requirement for every user. The latency is the latency 
for user i and all his/her friends to access his/her data. For 
every user i, we have the following constraints. 
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In these constraints, pij and sij indicate existing primary 
and secondary replicas of user i’s data in datacentre j. 
Constraint (4) ensures every user has a single primary replica 
in all datacentres. Constraint (5) ensures that no primary and 
secondary replicas of the same user are co-located in a 
common datacentre. Finally, constraint (6) specifies the 
minimum number of secondary replicas Ri for every user i to 
ensure the data availability. 

IV. A GENETIC ALGORITHM BASED PLACEMENT STRATEGY 
The data placement and replication problem defined in 

the previous section has many decision variables due to the 
large number of social network users. A GA-based 
placement and replication strategy is proposed to find the 
most cost effective number of replicas for users’ data and 
their placement while guaranteeing latency requirement 
defined in service level agreement. 

GA is a search technique often employed to find the 
exact or approximate solutions for optimisation and search 
problems. GA is a specific class of evolutionary algorithms 
inspired by evolutionary biology. In GA, every solution is 
represented with a string, also known as a chromosome, 



which follows the semantics defined by the encoding 
method. After encoding, the candidate solutions, i.e., the 
initial population, need to be generated as the basic search 
space. Within each generation, three basic GA operations, 
i.e., selection, crossover, and mutation, are conducted to 
imitate the process of evolution in nature. Finally, after the 
stopping condition is met, the chromosome with the best 
fitness value is returned, representing the best solution found 
in the search space. This ends the GA process [9]. 

An overview of our GA-based social media data 
placement and replication strategy is presented in Fig. 1. We 
have the social graph of users and their connections, latency 
related to different datacentres, and the desired latency 
requirement to calculate and compare the latency. 
Additionally, users’ data size and the storage cost are used to 
determine cost. Latency and cost are calculated using the 
fitness function. To avoid violating latency by GA 
operations, after every crossover and mutation, latency is 
being checked. Primary data cannot be mutated as the main 
data have to be stored in the user’s main datacentre, the 
closest to their location. 
Genetic algorithm for social network data placement and replication 
Input: 
Rate of crossover: rc 
Rate of mutation: rm 
Size of population: popsize 
Size of selected population: keep 
Number of iterations: epoch 
Output:  
Solution: X 
// Initialisation 
1  generate popsize feasible solutions randomly; 
2  save them in the population pop; 
// Loop until the terminal condition 
3  for i=1 to epoch do 
// Crossover 
4   for j=1 to popsize-1 do 
5    randomly select two solutions xa and xb from pop; 
6    generate xc and xd by two-point crossover from xa and xb under rate rc 
7    if latency requirement is valid, save xc and xd to pool; 
8     update newpop = pop + pool; 
9   endfor 
// Mutation 
10  Len = size of newpop 
11  for j=1 to Len do 
12   select a solution xj from newpop 
13   mutate each bit of xj under rate rm and generate a new solution x’j 
14   if latency requirement is valid, update xj with x’j in newpop; 
15   endfor 
16  endfor 
// Selection 
17  using tournament selection, select keep solutions from newpop and save 
them in pop; 
// Returning the best solution 
18 return the best solution x in pop; 

Figure 1.  Pseudocode of the GA algorithm 

A. Initial population generation 
The strategy starts with the encoding of the users’ data 

replicas placement in different datacentres. Here, as depicted 
in Fig. 2, what we have employed is a two-dimensional 
encoding where the first dimension denotes users’  
ID as an indicator of users’ data and the second dimension 

denotes the ID of different datacentres. Matrix xij is 
initialised with random 1s and 0s showing whether user i’s 
data is stored in datacentre j or not respectively. 

 
Figure 2.  Problem encoding 

The fitness function is considered as the cost of storing 
data replicas of all users in different datacentres. Hence, the 
fitness function is calculated as follows: 

1 1
( )

N M

ij i
i j

F x x UnitStoragePrice StoredDataSize
= =

= × ×∑∑  

      A validation process where generated chromosomes are 
checked with desired latency is done during this step. The 
latency requirement is checked and the valid chromosomes 
are then retained and the invalid ones are discarded and 
replaced with newly generated ones. 

The first genetic operation is selection, where tournament 
selection is used, which involves running several 
tournaments among a few chromosomes chosen at random 
from the population and the winner of each tournament is 
selected. The reason of using tournament selection is that it 
prevents too quick convergence as rank selection while it is 
computationally more efficient, as there is no need to sort the 
whole population which is a potentially time consuming 
procedure [9]. 

B. Crossover procedure 
The basic idea of the GA crossover operation is that a 

random crossover point is chosen first and then the segments 
of parents are swapped at that point to produce new children. 
Therefore, children inherit the characteristics of both parents. 
For two random chromosomes, a two point crossover is 
conducted with a specific probability of 80%. An example of 
the crossover process is presented in Fig. 3.   

 
Figure 3.  Two point crossover used in our method 

C. Mutation procedure 
In GA-based mutation, which is depicted in Fig. 4, the 

stored user’s replica is mutated at a randomly selected cell of 
a chromosome. The mutation rate is set to a small probability 
value such as 10% since mutation can easily destroy the 
correct topological order and result in invalid solutions.  



 
Figure 4.  Mutation used in our method 

At the end of each generation, the chromosomes with the 
best fitness values of each generation are chosen and the 
children with the worst fitness value are removed from the 
considered population. The genetic evolution process repeats 
itself until the stopping condition is satisfied. Finally, the 
best solution is returned. 

V. SIMULATION RESULTS AND THE EVALUATION 
Our new GA-based data placement and replication 

strategy is generic and can be used in any social network 
application fitting our data placement approach and social 
relationships graph. In this section, we demonstrate the 
simulation results and comparison of our benchmark with 
different placement and replication strategies. The SNAP 
(Stanford Network Analysis Project) real world Facebook 
dataset [1] was used to demonstrate how our algorithm finds 
an efficient data placement and replication with the 
minimised cost while satisfying the latency requirement. 

A. Experiment dataset and setting 
SNAP is an undirected Facebook dataset with 4,039 users 

and 88,234 relationships which is used in the experiments. 
This dataset contains a social graph of users IDs and the 
relations between them. Facebook data was collected from 
survey participants using their Facebook app. Two types of 
experiments were conducted: Section B evaluates the cost 
reduction of GA per iteration and its effectiveness while 
Section C shows the efficiency of our strategy comparing 
with other strategies. 

As we did not have the users’ information such as 
location in the introduced dataset, we generated random 
locations in the US for users based on their latitude and 
longitude. Moreover, 10 datacentres are assumed in the real 
locations of Facebook datacentres in Oregon, North 
Carolina, Altoona, Silicon Valley, Santa Clara, San Jose, San 
Francisco, Ashburn, Virginia, and Council Bluffs [10]. The 
nearest datacentre is chosen for every user as the primary 
datacentre. Number of users around each datacentre who 
choose this datacentre as their primary datacentre is shown in 
Fig. 5. The unit storage cost for data storage in all 
datacentres is considered as $0.125 per GB per month. This 
could be refined to use different values per datacentre if 
desired. 

 
Figure 5.  Number of users located around different datacentres 

Based on the information explained in Section 2 that 
Facebook is collecting 500 terabytes of people’s data every 
day and due to the 950 million population of Facebook and 
550 million daily active users in 2012 when this dataset was 
collected, on average, every active user stores 900 KB (500 
TB / 550 Million) information daily in a Facebook datacentre 
which is the amount of 27 MB (900×30) monthly. This data 
size increases every month. We generated random sizes of 
data for users following a normal distribution with this 
average size as the mean. 

B. Evaluation of cost effectiveness 
To further explain the GA setting, chromosomes are 

considered as a matrix of N×M with N as the number of 
users and M as the number of datacentres. N is 4039 and M is 
10 in our experiments. Population size is considered as 30. 
Crossover with crossover rate of 0.8 and mutation by 
mutation rate of 0.1 are considered [11]. Selection is based 
on the tournament selection. In each iteration, half of the best 
parents and newly generated children are kept for the next 
iteration. Fitness function is considered as the cost of every 
solution as described before. Latency requirement is 
considered as a constraint and solutions which do not meet it 
had been removed.  

 
Figure 6.  Cost reduction per iteration using the genetic algorithm for 

different percentiles of a desired latency of 150ms 



 
Figure 7.  Cost reduction per iteration using the genetic algorithm for 

different percentiles of a desired latency of 200ms 

The termination condition is based on the number of 
iterations. 50 iterations were used as no more cost reduction 
was observed after 50 iterations. The cost reduction per 
iteration with a different percentile (50%-99%) of latencies 
fulfilled (150 and 200 ms) is depicted in Figs. 6-7. For 
instance, in Fig. 7, the green line shows the cost reduction 
from the first iteration of GA data placement until the final 
placement while 90% of users have the latency less than 200 
ms for themselves and their friends to access their own data. 

As an example, referring to Fig. 7 with latency 
requirement of 90 percentile of latencies less than 200 ms, by 
considering the user size for all 4039 users and the unit 
storage cost as described previously, the initial cost resulted 
by the first iteration of GA is $66.633 with average number 
of replicas as 5. The minimum cost found by GA in the 50th 
iteration is $21.147 with an average replica number of 2. 
Moreover, the 90th percentile latencies for these two 
placements are 120.7639 ms and 199.9593 ms respectively 
which are both acceptable, based on the latency requirement 
of 200 ms. Thus, the cost reduction for 4039 users with 
average data size of 27 MB is $45.486. Time for running 50 
iterations is 705.5696 minutes. We used a general purpose 
EC2 instance with vCPU=2, ECU=6.5, and Memory (GB) = 
8 for our simulations which costed $0.177 per hour. Thus, 
705.5696 minutes, i.e. 11.75 hours, for running GA costs 
around $2. Hence, the total cost reduction of $45.486 minus 
the EC2 instance cost of $2.079 would be $43.407 for 4039 
users. This means the cost reduction percentage of around 
65% which could thus be millions of dollars per month for a 
social network application with the user size of Facebook. 

C. Evaluation of different strategies 
Different strategies to replicate and place the described 

Facebook users’ data in different datacentres which were 
simulated and compared with our strategy are as follows: 
• The first strategy is our GA-based algorithm in which 

one copy of data is stored in the nearest datacentre. 
Genetic algorithm is used to find the optimised number 
of replicas and the best placement for them. 

• Random placement and replication of data in different 
datacentres. The minimum number of replicas is 1 
because we should have one main copy of data and the 
maximum is 10 as we have 10 datacentres.  

• Placing one copy of data in a random datacentre. 
• Placing two copies of data in two random datacentres. 
• Placing three copies of data in three random datacentres. 
• Full replication of every data in all datacentres.  

Datacentres are sorted based on the distance for every 
user in the next 3 strategies. Because long distance causes 
high latency, every user prefers to have a copy of data in 
his/her nearest datacentre.  
• One copy of data is stored in the most preferred 

datacentre of every user. 
• Two copies of data are stored in the first and second 

preferred datacentres. 
• Three copies of data are stored in the three most 

preferred datacentres. 
Datacentres are sorted based on both distance as list1 and 

number of friends as list2 for every user in the next two 
strategies. 
• One copy of data is stored in the most preferred 

datacentre in list1 and one more copy is stored in the 
most preferred datacentre in list2. 

• One copy of data is stored in the most preferred 
datacentre in list1 and two more copies are stored in the 
two most preferred datacentres in list2. 

 
Different settings are assumed to compare the results of 

these strategies. These settings are based on the service level 
agreements on the latency requirement for users and their 
friends to access their data. Latency requirement is defined 
as: “pth percentile latency must be lower than the desired 
latency” which means that over p percent of the latencies are 
less than the desirable latency. Requirements are assumed as 
50%, 60%, 70%, 80%, 90%, and 99% of the latencies are 
less than 150 ms and 200 ms.  

Based on subsection B, no more significant cost 
reduction was seen after 20 iterations, for the purpose of time 
efficiency. To repeat the experiments five times and compare 
the average results 20 iterations were used for GA in this 
step. As the percentage more than 90% makes much more 
sense in a most of the applications [12], the results for 
99.99% latencies lower than 200 ms are depicted in the Fig. 
8. We used 99.99% to ensure that nearly all of the users can 
access their own data and all their friends in the desirable 
latency. 

As shown in Fig 7, the only strategy, except costly full 
replication, that can guarantee the latency requirement of 
“99.99% latencies lower than 200 ms” with a reasonable cost 
is GA which shows the outstanding performance of our 
strategy comparing with other strategies. Therefore, our GA 
based strategy can find the minimised cost while 
guaranteeing the latency requirement for nearly all users.  



 
Figure 8.  Comparison of different strategies with latency requirement of 

99.99% lower than 200 ms 

VI. RELATED WORK 
Many papers in the literature focus on energy efficient 

workload placement, virtual machine placement, applications 
scheduling, load balancing, task scheduling, resource 
allocation in the cloud, and job scheduling and data 
replication in the grid. These are not comparable with our 
work as we focus on data placement and replication in the 
cloud. Therefore, in this section, we compare our work with 
existing literature in three categories: first, optimising online 
social networks services, second, use of evolutionary 
algorithms for data placement and replication, and third, data 
placement and replication in cloud. 

Optimising online social networks (OSNs): For OSN at 
a single site with different servers, social locality is 
maintained to address this issue in literature. SPAR [13] 
minimises the total number of slave replicas while 
maintaining social locality for every user; S-CLONE [14] 
maximises the number of users whose social locality can be 
maintained, given a fixed number of replicas per user. For 
OSN across multiple sites, some propose selective 
replication of data across datacentres to reduce the total 
inter-data-centre traffic, and others propose a framework that 
captures and optimises multiple dimensions of the OSN 
system objectives simultaneously [15]. Other works do not 
involve QoS as in our geo-distribution case.  

Using of evolutionary algorithms for data placement 
and replication: To decrease the network traffic and 
undesired long delays in large distributed systems such as 
Internet, replicating some of the objects at multiple sites is 
considered as one possible solution in [16]. The decision of 
what and where to replicate is solved by genetic algorithms. 
Normal GA is considered for static situations and a hybrid 
GA is proposed that takes current replica distribution as 
input and then computes a new one using knowledge about 
the network attributes and the changes occurred. 
Furthermore, problem of co-scheduling job dispatching and 
data replication in wide-area distributed systems in an 
integrated manner is addressed in [17]. Their system contains 

three variables as the order of the jobs, the assignment of the 
jobs to the individual compute nodes, and the assignment of 
the data objects to the local data stores. A genetic algorithm 
is used to find the optimal placement. However, these do not 
consider the social network data placement problem in the 
cloud. 

Some data placement strategies based on genetic 
algorithms are proposed in [18] and [19] to reduce data 
scheduling between cloud datacentres and the distributed 
transaction costs as much as possible. Additionally, the 
problem of placing the components of a SaaS and their 
related data in the cloud is addresses in [20]. However, data 
replication is not considered in these papers. 

Data placement and replication in the cloud: The 
inter-datacentre communication of the online social network 
services is focused in [21]. Moreover, a geo-cloud based 
dynamic replica creation in large global Web sites such as 
Facebook is presented in [22]. Volley [23] addresses the 
automated data placement challenge which deals with WAN 
bandwidth costs and datacentre capacity limitations while 
minimising user-perceived latency. Additionally, the cloud 
storage reconfiguration while respecting application-defined 
constraints to adapt to changes in users’ locations or request 
rates is addressed in [24]. However, they do not consider the 
monetary cost for replicating data in their work. 

A mechanism for selectively replicating large databases 
globally is introduced in [25] to minimise bandwidth. 
However, they replicate all records in all locations either as a 
full copy or as a stub. Using geo-distributed clouds for 
scaling the social media streaming service is advocated in [8] 
to address the challenges for storing and migrating media 
data for timely response and moderate expense. They work 
on videos and focus on resource and data migration. The 
primary focus in [26] is to minimise the cost incurred by 
latency-sensitive application providers while satisfying 
consistency and fault-tolerance requirements with taking 
workload properties into account. However, latency 
definition in their work makes it not comparable with our 
work.  

The monetary expense of the OSN service with 
considering its QoS, data availability requirements, inter-
cloud traffic as well as the carbon footprint of OSN services 
is investigated in [15]. The social locality assumption in 
which they have to keep all friends’ replica in one’s main 
datacentre makes their work not comparable with ours. 
Multi-objective optimisation including reducing the usage of 
cloud resources, providing good service quality to users, and 
minimising the carbon footprint is studied in [27]. However, 
they consider latency as an objective instead of constraint 
which makes it not comparable with our work. 

Placing and replicating the data related to social networks 
is an issue that is addressed in the reviewed literature. As 
there are millions of users who are scattered all around the 
world, finding an optimal way to place and replicate the data 
related to them in a cost effective way while guaranteeing 
service level agreements is still a challenge. Social networks 
data replication in cloud is not addressed using evolutionary 
algorithms such as a genetic algorithm. 



VII. CONCLUSIONS AND FUTURE WORK 
Novel use of a genetic algorithm for optimising social 

media data placement and replication in cloud datacentres is 
presented in this paper. Comparing to different placement 
strategies, our proposed algorithm can find the most 
affordable placement strategy while guaranteeing latency 
requirement for 99.99% of online social network users. 
Simulation results on the SNAP Facebook dataset show the 
effectiveness of the proposed algorithm.  

We used the SNAP Facebook dataset for experiments 
and based on the acceptable size of users. It is assumed that 
they are located in the US and real locations of Facebook 
datacentres are considered. We are conducting further 
experiments for larger datasets with real cloud datacentres 
such as Amazon. Moreover, social networks have a dynamic 
and growing nature due to the users’ mobility and dynamic 
activities. In the current work a static data placement and 
replication in social networks is address which will be 
extended to be applicable in dynamic environments in the 
future. 
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