
TOSSMA: A Tenant-Oriented SaaS Security
Management Architecture

Mohamed Almorsy, John Grundy, and Amani S. Ibrahim
Centre for Computing & Engineering Software Systems

Swinburne University of Technology
Melbourne, Australia

[malmorsy, jgrundy,aibrahim]@swin.edu.au

Abstract - Multi-tenancy helps service providers to save costs,
improve resource utilization, and reduce service customization
and maintenance time by sharing of resources and services. On
the other hand, supporting multi-tenancy adds more
complexity to the shared application’s required capabilities.
Security is a key requirement that must be addressed when
engineering new SaaS applications or when re-engineering
existing applications to support multi-tenancy. Traditional
security (re)engineering approaches do not fit with the multi-
tenancy application model where tenants and their security
requirements emerge after the system was first developed.
Enabling, runtime, adaptable and tenant-oriented application
security customization on single service instance is a key
challenging security goal in multi-tenant application
engineering. In this paper we introduce TOSSMA, a Tenant-
Oriented SaaS Security Management Architecture. TOSSMA
allows service providers to enable their tenants in defining,
customizing and enforcing their security requirements without
having to go back to application developers for maintenance or
security customizations. TOSSMA supports security
management for both new and existing systems. Service
providers are not required to write security integration code to
use a specific security platform or mechanism. In this paper,
we describe details of our approach and architecture, our
prototype implementation of TOSSMA, give a usage example
of securing a multi-tenant SaaS, and discuss our evaluation
experiments of TOSSMA.

Keywords: Cloud computing, cloud computing security,
multi-tenancy security, SaaS application security

I. INTRODUCTION
Cloud computing is a new paradigm shift in computing

platforms that delivers a new generation of internet-based,
highly scalable distributed computing platforms [1].
Software-as-a-Service (SaaS) is one of the three key
service delivery models delivered by the cloud computing
model [2]. The cloud model, including SaaS, is based on
two key characteristics: multi-tenancy, where multiple
tenants share the same service instance, and elasticity,
where tenants can scale the amount of their allocated
resources based on current demands. Although both
characteristics target improving resource utilization, cost
and service availability, these gains are threatened by
multi-tenancy security implications. Sharing applications
that process critical information with different tenants
without sufficient proven security isolation, security
SLAs or tenant control, results in “loss-of-control” and
“lack-of-trust” problems.

Existing multi-tenant SaaS engineering approaches
focus on how to deliver configurable rather than
customizable business features [3]. This simplifies the
capture of new tenants’ requirements in terms of system
configurations that are loaded based on the current user.
However, such software engineering approaches depend
on traditional security engineering techniques that focus
on design-time capture, design and implementation of
security. The resultant SaaS applications provide security
with built- in, hard-coded security controls. The delivered
security is thus limited and may turn out to be far from
eventual cloud consumers’ needs that often emerge after
application deployment. Moreover, Consumers have no
control on the security of their assets. This exacerbates the
“loss of control” problem from the customer perspective.

Current research efforts in securing multi-tenant SaaS
applications focus mainly on: (re)engineering of multi-
tenant SaaS applications to extend their security isolation
capabilities [4 , 5] ; maintaining isolation between
different tenants’ data at rest, at processing and/or at
transmission [6-8]; and developing security controls and
architectures to deliver SaaS application security functions
e.g. access control, taking into account the multi-tenancy
dimension [9 , 1 0] . Such efforts lead to built-in security.
Tackling loss-of-control problem, enforcing tenants’
security requirements rather than the service provider
security requirements, and integrating SaaS applications
with tenants’ security infrastructure are not addressed.

In this paper we introduce TOSSMA, tenant-oriented
security management architecture for multi-tenant SaaS
applications. TOSSMA is based on our new SaaS security
model “Tenant-Oriented Security” where a given service
can capture and enforce different sets of security
requirements at runtime based on its tenants. This
overcomes the existing classic model “Service-Oriented
Security” where a given service enforces one set of
security requirements usually captured and developed by
the service provider. TOSSMA enables every tenant of a
given SaaS application to specify, enforce, and monitor
the security of their cloud hosted assets. Moreover, it
enables SaaS application providers to manage security
isolation between their service tenants. TOSSMA is based
on instrumenting the application with a general security
wrapper at design time, using the inversion of control
design pattern, o r after development time, using
dynamic-weaving Aspect-Oriented Programming (AOP).

jgrundy
In proceedings of 5th IEEE Conference on Cloud computing (CLoud 2012), 24-29 June, Waikiki, Hawaii, USA, © IEEE 2012

jgrundy

This enables TOSSMA to intercept calls to any arbitrary
application resource. Based on every tenant’s defined
security requirements, TOSSMA generates a set of critical
system entry points that should be intercepted, at runtime
using the system security wrapper, to enforce the tenant
specified security. The security requirements details vary
from high-level security objectives (system should
authenticate, authorize, encrypt, digital sign, etc.) to
security controls to be used (system should use CA
identity manager, McAfee antivirus, Microsoft WIF, etc.).
Whenever a request is received for a critical system
resource (critical resources differ from tenant to another),
TOSSMA enforces security controls specified by the
current requesting tenant. This may be achieved by
utilizing external security solutions provided by the cloud
platform provider, the service provider or the service
consumer (tenant). TOSSMA can easily integrate with
third-party security controls using a predefined standard
security interface that is used to communicate with
security controls using predefined APIs signatures
implemented by security controls’ vendors.

Our approach has three main contributions in the area
of the security management of multi-tenant SaaS
applications. TOSSMA enables SaaS applications to satisfy
new security requirements at runtime defined by the SaaS
application tenants. TOSSMA enables SaaS applications to
easily integrate with the available security controls deployed
on the hosting cloud computing platform without modifying
the target application. This enables SaaS providers to focus
on application functionality and not on application security
engineering. TOSSMA mitigates the loss-of-control security
problem raised by cloud consumers when adopting the SaaS
model by our proposed tenant-oriented security model.
TOSSMA provides a security management console that
enables tenants to specify and revise their own security
requirements based on their internal security management
process. TOSSMA can addresses the security isolation
problem by enabling service providers to inject
authorization security controls that validate and authorize
users’ inputs at system critical entry points - e.g. users of
tenant T1 cannot send requests to a system resource with
malicious inputs to read tenant T2 data.

Section II presents a motivating example of this research
and overview on multi-tenancy and its impact on SaaS
applications. Section III discusses our approach. Section IV
gives details of TOSSMA architecture. Section V goes
through a usage example of the developed architecture.
Section VI discusses TOSSMA implementation details.
Section VII discusses our experimental evaluation results,
key implications and further research. Section VIII reviews
related work in SaaS application security engineering.

II. BACKGROUND

A. Motivating Scenario
Consider “SwinSoft”, a well-known software house in

developing business applications. Swinsoft has recently
developed a new cloud-based SaaS ERP solution called

“Galactic”. SwinSoft hosts Galactic on a cloud platform
delivered by “GreenCloud” (GC). GC delivers a PaaS
service delivery model with a set of business functions.
SwinSoft depends on third party services, delivered by GC,
to deliver better functionality to its customers. SwinSoft
uses the following services: Currency-Now service to get
up-to-date currency exchange rates; and Batch-MPRD to
conduct transactions’ posting using the map-reduce model
that improves and paralyzes the batch posting operations.

Sw
in

So
ft Get Currency-Now

Build Workflow

Use Galactic ERP

Execute Batch
processing

G
re

en
Cl

ou
d

Sw
in

So
ftSw

in
bu

rn
e

A
uc

kl
an

d

Figure 1: A use case diagram for our motivating example

“Swinburne University” is going to purchase a new
ERP solution in order to automate its internal process. After
investigation of available solutions, Swinburne has decided
to go for the Galactic ERP solution. This is to save upfront
investment required and keep infrastructure costs
optimized. At the same time, “Auckland University” has
also decided to purchase the Galactic ERP system.

However, each of these Galactic service consumers
has their own quite different security objectives. Swinburne
needs to maintain similar security policies on Galactic as
those used in their local environment. This includes using
active directory to support Single Sign-On (SSO), applying
a role-based access control (RBAC) model on Galactic,
their access control policies should consider end-user
location and request time, integrity of data transmitted must
be maintained, and confidentiality of Swinburne data must
be enforced. Auckland assigns high risk to Galactic
maintained assets so they have strong security constraints
that are different from their local systems. This includes
applying an attribute-based access control (ABAC) model
for access control, use of a two-factor authentication
system, transaction accountability and auditability, and all
data must be kept confidential. Both organizations thus
would like to use the multi-tenant Galactic service while
modeling and enforcing different security requirements and
integrating with different security services.

B. SaaS Applications and Multi-tenancy
A SaaS application may be hosted on top of PaaS, IaaS

or directly hosted on cloud platform infrastructure.
Although this gives flexibility in applications deployment,
it complicates the development of a complete security and
threat model [1]. Moreover, the SaaS threat model differs
from one cloud platform to another based on the cloud
platform architecture and security solutions employed [2].

Multi-tenancy implies sharing of computational
resources, storage, services, and applications between the

cloud platform tenants. Adopting multi-tenancy with SaaS
results in a set of requirements that must be addressed by
the SaaS application. We have identified two key
requirements in the area of SaaS applications’ security
engineering. The first one is the security isolation among
tenants’ assets at rest (storage), during processing (in
memory), and during transient (among application
components or between the application and the tenant site).
Second, it is required to support enforcement of different
security requirements on the same service instance at
runtime. Application customization approaches do not fit
well with runtime and multi-tenant specification and
security enforcement. These security requirements may
change over time as new risks emerge.

A multi-tenant SaaS security architecture that addresses
these challenges should allow tenants to define their
security requirements and change them over time based on
their risk management process and new security objectives.
It should allow each tenant to enforce their security
requirements independent from other tenants’ requirements.
The enforcement of these security requirements at runtime
should not require redeveloping or customizing application
instance(s) for existing or new tenants. It should support the
integration of the target SaaS application with third party
security controls. It should support weaving security
controls at any application entry point.

III. OUR APPROACH
TOSSMA is based on externalizing security realization

code and management activities from the target application.
This includes defining security, integrating and enforcing
security controls, and monitoring security of the target SaaS
application. At the same time, we update the thread security
context with security controls returned results – e.g. user
identity information. Thus SaaS applications avoid being
overwhelmed with security implementation details. Moreover,
avoid built-in, hard-coded security controls and thus enforced
security can be changed at runtime without reengineering the
SaaS application.

SaaS Application
Security Service

Client

Security Platform

2

1

3

Figure 2: Client, SaaS, Security Platform, and Security services possible

interactions, deployments and ownerships

Externalizing security requires being able to inject security
functions/controls into system functions at runtime and at any
arbitrary system entry point specified by the SaaS application
provider or consumers. This should be supported for existing
and new applications. Using web server httpModules is limited
to application URLs. Moreover, they will not help with back
end components (application tier and database tier). Thus, we
adopt aspect-oriented programming model and dependency
injection design pattern to inject security dynamically into
system functions at runtime.

To support seamless integration of third-party security
controls (specified by the service providers or consumers) with
the target system without modifying the target application, we
developed a standard security interface that defines a set of
standard security operations along with the expected
parameters for each operation – e.g. AutheticateUser,
IsAuthenitcated, AuthorizeUser, Encrypt, decrypt, etc. A
security vendor has to develop an adaptor (interface) that we
use when integrating the application with the target security
control, at runtime. The standard interface helps security
vendors to develop one adaptor for all applications.

Figure 2 shows that a security service can be delivered by
the SaaS service provider (2); the cloud platform provider (3);
a security vendor selected by the service client (1). The
interactions between a client, the SaaS application, and the
security services should proceed as follows: the client makes a
request to a resource, and then the security platform intercepts
the request and enforces the defined security including
authentication, authorization, logging, input validation, etc.
The security services then interact with the client and our
security platform to perform the defined security operations.
Finally, the security platform either proceeds with the request
(after setting the security context of the thread) or deny the
request. Thus the SaaS does not need to know how the request
has been authenticated, authorized, etc. Below we discuss a
set of key possible security attributes to show how our
approach can satisfy these requirements taking into
consideration the challenges discussed in Section II.

Identity Management: user identity is a set of
information that discriminates between different users. Identity
could be managed by every IT system individually or centrally
using an identity management system. The later scenario
requires developing a connector for every IT system to be
integrated with the identity provider. Adopting our approach
helps standardizing the connector between both entities, as we
have one standard interface defined by the security platform.

Authentication: authentication modes may be claim-based
or classic authentication. In classic authentication, applications
expect their clients to enter their identity information – e.g.
username and password. This means that the authentication
security controls are built-in. In claim-based authentication,
applications expect security tokens issued by a trusted party
that authenticated the user at early stage. This token contains a
set of claims about the user identity, roles and other
information. Our security platform can be integrated with
classic authentication controls or claim-based authentication
service. The security platform passes requests to the tenant
authentication service. Once the authentication service returns,
we use the returned information – e.g. user identity and claims
- to set the thread security information user identity and roles.

Authorization: authorization requires details about the
requested resource, the requesting user and his assigned
permissions, etc. The authorization control checks if the user is
authorized to access the requested resource. The security
platform intercepts requests and generates authorization
request with user identity, requested resource and action to the
tenant selected authorization control.

Logging: logging has different levels of verbosity.
Moreover, the details used in a logging transaction may differ
as well including current user, timestamp, resource, action,

parameters, etc. The security platform sends log requests to
tenant logging control including with required information.

Cryptography: confidentiality of data at rest, transmission
and processing can be achieved using cryptography techniques

including cryptographic algorithm and key management. The
responsibility of the security platform is to intercept requests
and initiate requests to the tenant encryptor or decryptor based
on the defined security requirements.

Component2

Component1

Component3

CLSCLS

SaaS Application

Class

App.

Comp.

Method

Security
Controls

Authn

Encrypt
I/p validation

LoggingMulti-tenant
Security

Specifications

…

…

Sy
st

em
 R

eq
ue

st
s

Validated Request

Application Security Management Console

Tenant-ZTenant-BTenant-ASP - Eng.

Sy
st

em
 W

ra
pp

er

Se
cu

ri
ty

 E
nf

or
ce

m
en

t
Po

in
t

4

2

3 6

5

SaaS
Applications
Descriptions

1

 Figure 3: TOSSMA architecture Figure 4: Part of the Galactic architecture description file

IV. TOSSMA ARCHITECTURE
TOSSMA is based on externalizing security from the

target applications. Thus applications do not need to
perform or know how security is enforced, but still can use
security information in their normal operation – e.g. to filter
data based on current requesting tenant. This is achieved by
wrapping the SaaS application with a system container that
can intercept any arbitrary application resource
(component, class, or method) at runtime. Tenants’ security
requirements are captured using a multi-tenant security
management console. Such requirements are queried and
enforced by the security platform based on the requested
resource and the requesting tenant.

The TOSSMA architecture, as shown in Figure 3,
consists of a SaaS application description database, system
wrapper, application security management console, multi-
tenant security requirements database, security controls
register, and security enforcement point.
- Application architecture description database:
TOSSMA is designed as a platform that can handle
multiple SaaS applications hosted on the same cloud
platform. Each service provider interested in integrating
their SaaS application with TOSSMA has to provide their
application’s architecture description file, as shown in
Figure4, that specifies application main components,
deployment packages, and components’ configuration files.
These architecture description files are maintained in the
application architecture description database (Figure 3-1)
and used by TOSSMA to reverse engineer system details
(classes and methods) and configure (inject/de-inject)
system interceptors.
- Application security management console (Fig 3-3): to
simplify the process of specifying SaaS applications
security requirements at the supported details level, each
tenant is introduced with an application description that is
reverse engineered from the registered application
architecture. Tenants select from the system description
(components, classes, methods, etc.) the critical points they
are worried about and specify their security requirements
on them, as shown in Figure 5.

- A multi-tenant security requirements database: the
security requirements specified by the service provider or
by a service tenant are captured and maintained in the
multi-tenant security requirements database (Fig 3-4).
Tenants and providers can view, maintain and enforce their
own security requirements without impacting others’
requirements. Each entry in the database contains a system
entry point name along with the security requirements to be
enforced on it. The priority of the specified security
requirements goes to the service provider first then its
tenants. For example, if the service provider specified a
certain authorization security requirement on a system entry
E and other tenants specified their own authorization
security requirements/controls on E as well, then TOSSMA
enforces the service provider authorization requirements
and then tenants’ authorization requirements.
- The system wrapper (Fig 3-2) is a module responsible
for injecting interceptors into the running SaaS application
at critical system entry points specified by tenants. The
system wrapper is based on dynamic-weaving AOP where
both point-cuts and aspects are specified at runtime. For
example, if tenant T1 specified certain security
requirements on Component C, this means that all methods
in this component should be intercepted to enforce security
requirements specified by T1 on C. Whenever the tenant or
the SaaS provider discover a threat or have a new security
objective for a given method M, they can extend their
enforced security at runtime with the new required security
on M. The system wrapper then intercepts requests directed
to any registered method and delegates it to the nominated
handler (security enforcement point) that enforces the latest
security requirements specified on the given method.

To support security integration with new and existing
applications, TOSSMA provides two system wrappers: (a)
design time dependency injection wrapper used by service
providers during application development; (b) static, after
development AOP-based wrapper is used to modify
existing application binaries to inject security aspects based
on tenants’ and service providers’ needs.

< SaaS-Application
SysConfigFile="C:\Galactic-ERP\Galactic.config” SysName="Galactic">

<Component>
<CompName>PresentationLayer</CompName>
<CompLoc>C:\Galactic-ERP\PL\PresentationLayer.dll</CompLoc>

<CompConfigFile>C:\Galactic-ERP\PL\web.config</CompConfigFile>
</Component>
....
<Component>
<CompName>BusinessLogicLayer</CompName>
<CompLoc>C:\Galactic-ERP\BLL\BusinessLogicLayer.dll</CompLoc>
<CompConfigFile>C:\Galactic-ERP\BLL\web.config</CompConfigFile>

</Component>
...
</SaaS-Application>

Figure 5: TOSSMA application security management console

- Security controls database: tenants, service provider,
and cloud platform providers register security controls that
can be used in securing the SaaS tenants’ data while being
stored, processed and transmitted (Fig 3-5). Each registered
security control should have its APIs, or web service URL,
and the expected parameters, so TOSSMA can
communicate with it whenever required using the standard
security interface. Each security control is mapped to a
predefined security category including authentication,
authorization, encoder, input validation, and auditing. For
each security category, TOSSMA has a predefined set data
items to be communicated with target security controls.
- Security enforcement point: requests to a critical
system resource are intercepted by the system wrapper and
delegated to the security enforcement point (Fig 3-6). This
loads the security requirements specified for the intercepted
method/resource, according to the current requester’s tenant
using from the multi-tenant security requirements database.
This means that we can enforce different tenants’ security
requirements on the same method based on the requesting
party. The security enforcement point checks the retrieved
requirements and issues requests to the corresponding
security controls with the necessary information
(parameters) required for each security control. For
example, if we have an access control requirement to use
CA Identity Manager, the security enforcement point calls
the corresponding CA identity manager client API and
passes the requester identity and the requested resource
URI. Based on the returned results, the security
enforcement point decides either to continue with the
request processing by the SaaS application or to reject the
request, as shown in Figure 3.

TOSSMA supports specifying and enforcing tenants’
security at four levels, as shown in Figures 3 and 5:
Application level where each call to any public method will
be intercepted. All methods enforce the same security
requirements; Component level where methods/services
inside a specific component are secured; Class level where
methods/services inside a specific class are secured; and
Method level where specific methods are intercepted.

V. USAGE EXAMPLE
In this usage example we focus on multi-tenant SaaS
applications where tenants share a single instance of the
service. This is the most complex scenario for any multi-
tenant SaaS application from security specification,
enforcement and management perspectives. To demonstrate
the capabilities of our new TOSSMA architecture, we
revisit the motivating example from Section II. Each tenant
has their own distinct security requirements to be enforced
on Galactic. We developed a prototype of our architecture
to help in practically evaluating the architecture. We also
developed a prototype for Galactic application as a sample
multi-tenant application.

The first step in enabling TOSSMA platform to manage
security of Galactic application is to register Galactic in
TOSSMA. To host Galactic, SwinSoft should deliver a
high level architecture of Galactic illustrating its main
components, locations and corresponding configuration
files, as shown in Fig4. Upon registering Galactic
application architecture, TOSSMA reverse engineer
Galactic to retrieve the application public classes and
methods. The results are organized and displayed in the
security management console UI, Figure5.

Once a service tenant, e.g. Swinburne or Auckland, has
registered to use Galactic, they get access to TOSSMA
security management console. Then, they can manage their
assets security at the level they would like to work on
(system/component/class/method), Fig5. TOSSMA is
responsible for (i) delegating security requirements to the
lower levels, (ii) raising and resolving conflicts of security
requirements specified at different levels – e.g. we assume
that if a tenant specified two different security requirements
one on a component C and another on one of its methods
M, this means that he is really interested in applying
different (higher/lower) security requirements on this
specific method rather than the other component’ methods.
Fig6-2 shows example of the security requirements XML
file for Swinburne. It specifies that whenever the
intercepted method is “GetCustomers” then TOSSMA
should enforce authentication using Forms-based
authentication and authorization using RBAC impersonate

control. This file is generated and maintained by the
security management console so that tenants can revise
their enforced security requirements as needed.

SwinSoft, GreenCloud, Swinburne and Auckland
register security controls that can be used in securing
Galactic and tenants’ data maintained by Galactic. Each
security control should reflect the control URL and its
category (authentication, authorization, input validation…).
Examples of registered security controls for authentication
(LDAP-based, forms-based, SSO…) and authorization
(RBAC, ABAC…) are shown in Figure5.

Any update to a tenant’s security requirements or a
registration of new tenant with new security requirements
triggers the security enforcement point to modify the
system wrapper and add new interceptors into Galactic
methods – e.g. add interceptor to GetCustomers method as
shown in Figure6-1 - as specified in the tenants security
requirements. Thus only methods specified by tenants as
critical will be intercepted to weave security controls
required by Galactic tenants.

public IMethodReturn Invoke(IMethodInvocation input, GetNextHandlerDelegate getNext) {
EntitySecurity entity = LoadMethodSecurityAttributes(…);
if (entity == null || entity.HasSecurityRequirements() == false) {

return getNext().Invoke(input, getNext);
}

//logging Before Call
this.source.TraceInformation("Invoking {0}", input.Arguments[0].ToString());
//Check for Authentication
if (entity.GetAuthenticationMethod() != AuthenticationMethod.None) {

. . .
}
//Check for Authorization
if (entity.GetAuthorizationMethod() != AuthorizationMethod.None) {

. . .
}

}

. . .
<systemlevel>

<Entitylevel>1</Entitylevel>
. . .

<componentlevel>
<objectname>

. . .

<classlevel>

<objectname>
. . .

<methodlevel>
. . .

< ObjectName> GetCustomers </ObjectName>
<Authentication_Method>Forms</Authentication_Method>

<Authorization_Method>RBAC_Impersonate</Authorization_Method>
. . .

. . .

<extension type="Interception" />
<register type="PresentationLayer.CustomerBLL,

PresentationLayer ">
. . .

<interception>
<policy name="PolicyCustomersBLL">

<matchingRule name="MatchingRuleCustomersBLL“
Type="MemberNameMatchingRule">

<constructor>

<param name="nameToMatch" value="GetCustomers" />
<param name="nameToMatch"

value="GetCustomerByName" />
. . .

<callHandler name="callhandlerCustBLL"t
Type="SecurityKernel.SecurityCallHandler,
SecurityKernel">

. . .

1

2

3

Figure 6: Examples of security specification file, system wrapper
configuration, and security enforcement point

VI. IMPLEMENTATION
Our prototype implementation for TOSSMA uses

dynamic AOP to intercept the system execution at runtime
based on system interceptors’ document. TOSSMA
prototype and sample application were developed using C#.
Microsoft .Net does not implement AOP. We use “Unity -
application block” developed by the Patterns and Practices
team at Microsoft. Unity allows us to define interceptors on
certain components, classes, and methods through
application configuration files. Unity application requires a
method “Handler” to be called whenever a registered
component, class or method is requested. We developed the
security enforcement point as a class library, and used it as
the interception handler. Figure 6-3 shows a sample of the
security enforcement point. We adopt Yiihaw1 as a system
wrapper for existing applications. Yiihaw enables

1 www.itu.dk/~sestoft/papers/yiihaw-usage-guide.pdf

modifying application binaries (dll and exe files) to inject
the security aspects wherever specified by the application
tenants. A default aspect is weaved with critical points. It
simply calls the security enforcement point handler before
and after the method body. Figure 6-3 shows a sample of
the security enforcement point. Interception pointcuts’
signature is defined based on the tenant selected method or
component signatures captured by the security management
console. This console is developed using ASP.Net so it can
be deployed as a web application for the SaaS tenants
interested in securing their SaaS data, shown in Fig5. We
adopted the OWASP Enterprise Security APIs (ESAPI)
library as our security controls database2.

VII. DISCUSSION
A. Experimental Evaluation
In this section we summarize our experimental evaluation we have
performed to assess the capabilities of TOSSMA in capturing a
range of SaaS application security requirements for
different tenants, generating interceptors for the tenants
specified critical application entry points; and enforcing
such security requirements/controls at runtime based on the
intercepted request’ tenant.

Benchmark Applications: We have tested our
architecture with two newly developed applications
(GalacticERP and PetShop), where we use the Unity
application block as the system wrapper. We also tested
TOSSMA on two existing, third-party web applications
(SplendidCRM, KOOBOO). Table1 summarizes there
statistics (lines of code, no. files, classes, methods).

TABLE1: BENCHMARK APPLICATIONS STATISTICS
Benchmark KLOC Files Classes Methods

Galactic 16.2 99 101 473
PetShop 7.8 15 25 256
SplendidCRM 245 816 6177 6107
KOOBOO 112 1178 7851 5083

TABLE2: SECURITY CONTROLS USED BY TENANT1, TENANT2
Sec. Attribute Tenant(1) Control Tenant(2) Control
Authn. & ID Mgmt Forms-based LDAP
Authz. Forms-based LDAP
I/P santization ESAPI Validator ESAPI Validator
Audit ESAPI Auditor Private Auditor
Cryptography DES AES

Experimental Results: We validated our architecture
capabilities in enforcing authentication, authorization, input
validation, logging and cryptography on both new and
existing applications. Table2 shows two sets of security
controls we used to enforce different security attributes on
target systems defined by two different tenants. Results of
our experiments are shown in Table3. TOSSMA succeeded
in capturing and enforcing different security attributes
(identity management, authentication, authorization,
cryptography, digital signature, and input validation) for
multiple tenants at runtime on the same service instance.
However, it suffers from two key limitations. Supporting
cryptography is limited, as it currently requires the caller

2 https://www.owasp.org/index.php/ESAPI

and callee to use parameters of only type “string”. Thus we
could only apply it on methods with signatures that fit with
these requirements. This can be handled using web server
httpModules extensions (component level). Second,
applications with existing, built-in, security need to be
modified to disable existing security before using
TOSSMA. Otherwise they will keep enforcing the old as
well as the new security requirements.
TABLE3: VALIDATION RESULTS OF TOSSMA ON NEW AND EXISTING SAAS

Security
Requirements

New Development Existing Application
Galactic PetShop Splendid Kooboo

Identity Mgmt √ √ √ √
Authentication √ √ √ √
Authorization √ √ √ √
Input Validation √ √ √ √
Audit √ √ √ √
Cryptography √ √ ο ο

Performance Evaluation: The Performance overhead
of adopting TOSSMA architecture, to support multi-tenant
adaptable security, depends on the number of critical
system entries and the number of concurrent users currently
requesting critical system resources, as shown in Figure7
(time in msec). The performance overhead is measured on a
desktop PC with core2 duo processor and 4GB memory.
This performance overhead will impact only the tenant
secured resources. Thus, if the tenant does not enforce
security on resource X, then he will not suffer from any
performance overhead when using this resource, although
other tenants may be enforcing certain security on X. This
is crucial in managing tenants’ SLAs.

0

5

10

15

20

25

30

35

40

CP(1) CP(5) CP(10) CP(50) CP(100) CP(200)

Users 10 Users

Users 50 Users

Users 100 Users

Figure 7: Performance evaluation of TOSSMA

B. Threats to validity
Integrating any given SaaS application with TOSSMA

does not require any further code by the SaaS service
provider. Once the system architecture is available,
TOSSMA is able to integrate and secure the target system.
Efforts required by the system tenants to secure their data
are limited to security configuration activities including
selecting the critical system entities where security should
be enforced, and specifying security controls to be applied
at the selected system entities. These activities are done
visually through the security management console. Security
controls configurations are managed by security admins.

TOSSMA supports four different levels of security
specification (system, component, class/object, method).
The selection of the level of detail to apply interception on
depends on the criticality, architecture, environment, etc. of
the target system. In some situations like web applications,
we may need to intercept calls to the presentation layer only

while considering the other layers secured by default (not
accessible except from the presentation layer). In other
cases such as offering certain web services or using third
party services to deliver certain functions we may need to
have security enforced at the method level for certain
methods only. There is also a security and performance
trade-off. The more security validations and checks the
more resources required that impacts its performance.

TOSSMA enables service providers to implement
security controls required to support tenants’ data isolation
at any required system entry point. TOSSMA enforces
SaaS application provider security requirements/controls
before enforcing the tenants’ security requirements. Thus
tenants will not be able to read data of other tenants where
they are not authorized to read. SaaS application providers
can use TOSSMA as a plug-in of their applications.
Moreover, cloud providers can use it as a PaaS to manage
all the cloud hosted SaaS applications.

Overall, our approach provides a tenant-oriented SaaS
security management architecture, a toolset that supports
capturing application architecture and tenants security
requirements, and enforcing such security specifications on
a SaaS application at runtime without the need for bespoke
system customizations. It promotes security engineering
from application provider at design time to the end-user at
runtime. This allows tenants’ security engineers to consider
new security issues that arise during system operation and
have not been seen during the design phase. Our approach
works for both new systems and existing systems.

We are working on extending TOSSMA to support
capturing high-level security requirements (risks and
threats) and automatically generate security requirements,
mechanisms and the required security configurations
accordingly. We plan to automate the testing of security
controls integration into the specified system entry points.

VIII. RELATED WORK
The area of multi-tenant SaaS applications’ security

engineering is relatively new. Existing multi-tenancy security
solutions from industry and academia are under development.

Michael et al [11] discuss the limitations of security
solutions proposed by different commercial cloud platforms.
SalesForce.Com has introduced a simplified solution to
support their CRM integration with tenants’ security solutions.
They focus on the Identity and Access Management (IAM)
area only. Tenants who are interested in integrating with
SalesForce have to implement web services with a predefined
signature. Microsoft has introduced more advance extensible
security model - Windows Identity Foundation (WIF) to
enable the service providers to deliver applications with
extensible security. It requires service providers to use and
implement certain interfaces in system development. The java
Spring framework has an extension framework – Acegi. It
implements a set of security controls for identity management,
authentication, and authorization. It requires manual
configuration of the application to adopt these controls.
Moreover, it does not support for multi-tenant security.

Enabling applications to support multi-tenancy either
during application development or by adapting existing web

applications to support multi-tenancy has been investigated by
[12-15]. Cai et al. [4, 5] propose an approach to transform
existing web applications into multi-tenant SaaS applications.
They focus on the isolation problem by analyzing applications
to identify the possible isolation points that should be handled
by the application developers. Guo et al. [6] developed a
multi-tenancy enabling framework. The framework supports a
set of common services that provide security isolation,
performance isolation, etc. Their security isolation pattern
considers the case of different security requirements while still
using a predefined, built-in, security controls. It depends on
the tenant’s administration staff to manually configure security
policies and map their users and roles to the application
predefined roles. Pervez et al. [7] developed a SaaS
architecture that supports multi-tenancy, security and load
dissemination. The architecture is based on a set of services
that provide routing, logging, security. Their proposed security
service delivers predefined authentication and authorization
mechanisms. No control by service consumers on the security
mechanisms used. Moreover, no isolation is provided between
the authentication and authorization data of different tenants.

Xu et al. [9] propose a new hierarchical access control
model for the SaaS model. Their model adds higher levels to
the access control policy hierarchy to be able to capture new
roles such as service providers’ administrators (super and
regional) and tenants’ administrators. Service provider
administrators delegate the authorization to the tenants’
administrators to grant access rights to their corresponding
resources. Zhong et al. [8] propose a framework that tackles
the trust problem between service consumers, service
providers and cloud providers on being able to inspect or
modify data under processing in memory. Their framework
delivers a trusted execution environment based on encrypting
and decrypting data before and after processing inside the
execution environment while protecting the computing module
from being access from outside the execution environment.
Menzel et al. [16] propose a model-driven platform to
compose SaaS applications as a set of services. Their
approach focuses on enabling cloud consumers to compose
their system instances and define their security requirements to
be enforced on the composed web services. However, tenants’
instances must be deployed on separate VMs. Moreover, there
is no means to update or reconfigure the defined security.

These efforts deliver security using specific solutions and
architectures. However, they do not give tenants control on
their assets security, do not support multi-tenant security, and
do not support runtime enforcement.

IX. SUMMARY
TOSSMA is a new tenant-oriented, SaaS application security
management architecture. It promotes security engineering
from system-oriented security to tenants-oriented security.
This enables multi-tenant SaaS applications to easily capture
different tenants’ security requirements and enforce such
requirements using the security controls selected by the SaaS
tenants. Security controls are weaved with the application at
runtime without a need for re-engineering or developers’
involvement. TOSSMA mitigates four main problems in
multi-tenant cloud applications: the loss of security control
over cloud hosted assets by letting each tenant secure their
data based on the importance and the risks they consider; the

integration of the SaaS application security with the tenant’s
already existing and enforced security mechanisms; the
customization of SaaS applications security to mitigate new
vulnerabilities; and providing isolation between tenants’ data
by extending applications to enforce authorization at critical
methods. We have developed a prototype for TOSSMA using
.Net. We have evaluated our approach on four applications
(Galactic, PetShop, SplendidCRM, and KOOBOO). We
conducted performance evaluation of TOSSMA with different
SaaS applications’ sizes and number of concurrent users.

ACKNOWLEDGEMENT
Funding provided for this research by Swinburne University of

Technology and FRST SPPI project is gratefully acknowledged.
We also thank Swinburne University of Technology for their
scholarship support for the first and third authors

REFERENCES
[1] M. Almorsy, J. Grundy, and I. Mueller, "An analysis of the cloud

computing security problem," presented at the Asia Pacific Cloud
Workshop, APSEC2010, Sydney, Australia, 2010.

[2] Cloud Security Alliance, "Domain 10: Guidance for Application
Security V2.1," July 2010.

[3] W. Sun, X. Zhang, et al, "Software as a Service: Configuration and
Customization Perspectives," in Proc.2008 4th IEEE World
Congress on Services Part II, 2008, pp. 18-25.

[4] H. Cai, N. Wang, et al, "A Transparent Approach of Enabling SaaS
Multi-tenancy in the Cloud," in Proc.2010 6th IEEE World
Congress on Services, 2010, pp. 40-47.

[5] H. Cai, K. Zhang, et al, "An End-to-End Methodology and Toolkit
for Fine Granularity SaaS-ization," in Proc. 2009 IEEE Int. Conf.
on Cloud Computing, 2009, pp. 101-108.

[6] C. Guo, W. Sun, et al, "A Framework for Native Multi-Tenancy
Application Development and Management," in Proc. 9th IEEE Int.
Conf. on E-Commerce Technology, pp. 551-558.

[7] Z. Pervez, S. Lee, et al, "Multi-tenant, secure, load disseminated
SaaS architecture," in Proc. 12th Int. Conf. on Advanced
communication technology, South Korea, 2010, pp. 214-219.

[8] C. Zhong, Y. Xia, H. Yu, "Construction of a Trusted SaaS
Platform," in Proc. 2010 5th IEEE Int. Symposium on Service
Oriented System Engineering, 2010, pp. 244-251.

[9] T. J. Jing Xu, H. Dongjian, et al, "Research and implementation on
access control of management-type SaaS," in Proc. IEEE Int. Conf.
on Information Management and Engineering, 2010, pp. 388-392.

[10] B. Wang, H. He, et al, "Open Identity Management Framework for
SaaS Ecosystem," in Proc. IEEE Int. Conf. on e-Business
Engineering, 2009, pp. 512-517.

[11] M. Brock and A. Goscinski, "Toward a Framework for Cloud
Security," Algorithms and Architectures for Parallel Processing."
vol. 6082, C.-H. Hsu, L. Yang, J. Park, and S.-S. Yeo, Eds., ed:
Springer Berlin / Heidelberg, 2010, pp. 254-263.

[12] R. Mietzner, F. Leymann, et al, "Defining Composite Configurable
SaaS Application Packages Using SCA, Variability Descriptors and
Multi-tenancy," in Proc. 3rd Int. Conf. Internet and
WebApplications and Services, 2008, pp. 156-161.

[13] D. Wang, Y. Zhang, et al, "Research and Implementation of a New
SaaS Service Execution Mechanism with Multi-Tenancy Support,"
in Proc. IEEE Int. Conf. on Information Science and Engineering,
2009, pp. 336-339.

[14] B. S. Zhang, X. Tang, et al, "From isolated tenancy hosted
application to multi-tenancy: Toward a systematic migration
method for web application," in Proc. IEEE Int. Conf. on Software
Engineering and Service Sciences, 2010, pp. 209-212.

[15] R. Chinchani, A. Iyer, et al, "A target-centric formal model for
insider threat and more," TR2004-16, Buffalo University, US2004.

[16] M. Menzel, R. Warschofsky, et al, "The Service Security Lab: A
Model-Driven Platform to Compose and Explore Service Security
in the Cloud," in Proc. World Congress on Services , 2010, pp. 115-
122.

