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Abstract—A prerequisite to implementing virtualization-aware 
security solutions is to solve the “semantic gap” problem. 
Current approaches require a deep knowledge of the kernel 
data to manually solve the semantic gap. However, kernel data 
is very complex; an Operating System (OS) kernel contains 
thousands of data structures that have direct and indirect 
(pointer) relations between each other with no explicit integrity 
constraints. This complexity makes it impractical to use 
manual methods. In this paper, we present a new solution to 
systematically and efficiently solve the semantic gap for any 
OS, without any prior knowledge of the OS. We present: (i) 
KDD, a tool that systematically builds a precise kernel data 
definition for any C-based OS such as Windows and Linux. 
KDD generates this definition by performing points-to analysis 
on the kernel’s source code to disambiguate the pointer 
relations. (ii) SVA, a security appliance that solves the 
semantic gap based on the generated definition, to 
systematically and externally map the virtual machines’ 
physical memory and extract the runtime dynamic objects.  
We have implemented prototypes for KDD and SVA, and have 
performed different experiments to prove their effectiveness. 

Keywords - Kernel data structures; semantic gap; points-to 
analysis; IaaS; virtualization-aware security solutions. 

I.  INTRODUCTION 
Infrastructure-as-a-Service (IaaS) is characterized by the 

concept of resource virtualization that enables running 
multiple Virtual Machines (VMs) on the same physical 
server. These VMs are hosted by the Cloud Provider (CP), 
but controlled by the Cloud Consumer (CC), making security 
a shared responsibility between CC and CP. This makes 
VMs a real source of security threats on the virtual 
infrastructure of the IaaS platform [1]. Recently, Common 
Vulnerabilities and Exposures (CVE) has reported multiple 
resource sharing exploits in the Xen and ESX hypervisors [2, 
3], caused by hosted VMs. Thus, the hosted VMs cannot be 
trusted from the CPs’ perspective to host their supported 
security software, as VMs can be compromised easily. 

Although in-guest security solutions have the ability to 
get high-level information about the Operating System (OS), 
they are unreliable, opaque to the user and can be subverted 
by advanced malware, even if the security software is 
installed in ring 0. This raises the need for new 
Virtualization-Aware Security Solutions (V-ASSs) that can 
provide security for VMs, without installing any security 

software inside the VM. The virtualization supported by IaaS 
helps utilizing the Virtual Machine Introspection (VMI) 
techniques [4] that enable monitoring the hosted VMs 
externally at the hypervisor level. However, only hardware 
bytes (e.g. physical memory pages) can be observed in this 
way. This is in contrast to the internal view of the VM, 
where we can view high-level entities such as processes, I/O 
requests, and system calls, causing a “semantic gap” 
problem. Current research [5-7] has depended on 
researchers’ knowledge of the OS’s kernel data to manually 
solve the semantic gap, as solving the semantic gap requires 
a deep understanding of the kernel data to accurately map 
between the underlying hardware memory layout and kernel 
data structures layout. Kernel data structures are very 
complex; an OS kernel contains thousands of data structures 
with direct and indirect (pointer-based) relations between 
each other, with no explicit integrity constraints. In Linux 
and Windows, based on our observations, we found that 
nearly 40% of the inter-data structure relations are pointer-
based (indirect) relations, and 35% of these pointer-based 
relations are generic pointers (e.g. null pointers that do not 
have values, and void pointers that do not have associated 
type declarations in the source code). Generic pointers get 
their values/types only at runtime according to the different 
calling contexts. These complexities result in an inability to 
cover all kernel data structures and thus reduce the efficiency 
of the V-ASSs, making the manual approach inadequate. 

In this paper, we address the problem of how to 
systematically and accurately solve the semantic gap for any 
OS, whatever the memory layout of the hardware, and 
without any prior knowledge with the OS. We present: (i) 
KDD (Kernel Data Disambiguator); a tool that 
systematically generates a precise kernel data definition for 
any C-based OS (e.g. Windows and Linux), to enable 
accurate mapping of a VM’s physical memory. KDD takes 
the source code of OS’s kernel as input and outputs an 
accurate kernel data definition that reflects direct relations 
between structures and resolves the ambiguities of the 
pointer-based relations. KDD performs static points-to 
analysis on kernel’s source code, to infer the appropriate 
candidate types/values for generic pointers. We designed 
and implemented a new points-to analysis algorithm that has 
the ability to provide interprocedural context-sensitive and 
field-sensitive points-to analysis for large programs that 
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contains millions lines of code e.g. kernels. We have 
implemented a prototype system for KDD and evaluated it 
on Linux kernel v3.0.22 and Windows Research Kernel1 
(WRK), in order to prove its effectiveness. (ii) SVA 
(Security Virtual Appliance); a V-ASS that systematically 
solves the semantic gap based on the generated kernel data 
definition, to map the physical memory of VMs efficiently. 
SVA utilizes VMI technique to provide fine-grained 
inspection of the VM’s physical memory, at hypervisor 
level without installing any supporting code inside the VM. 
SVA actively reconstructs the dynamically changing kernel 
data structure instances (kernel dynamic objects), in order to 
enable effective and systematic protection for kernel data 
structures. We have implemented a proof-of-concept 
prototype for SVA and evaluated it to prove its efficiency.   

In section II, we give a background of VMI, pointer 
problems in OSs, and we review key related work. Section 
III and IV discuss in details KDD and SVA, respectively. In 
section V we explore the implementation and evaluation 
details of KDD and SVA. Section VI discusses the pros and 
cons of our system. Finally, we summarize our conclusions. 

II. BACKGROUND 
VMI enables isolating the security solution from the 

other server workload by deploying it in a dedicated VM. 
This makes it difficult for hackers to detect the installed 
security software. Moreover, external monitoring gives the 
security software complete control over the hosted VMs 
including OS, hardware, and running software. To make 
VMI useful for security monitoring, it is necessary to 
translate the hardware bytes to actual running OS 
information. Such translation requires accurate mapping 
between kernel data structures layout, and the hardware 
memory layout. Such mapping is not a trivial-task for C-
based OSs e.g. Windows and Linux. These use structures 
heavily to model objects and manage memory, and also use 
pointers extensively to simulate call-by-reference semantics, 
avoid expensive copying of large objects, implement lists, 
trees and other complex data structures, and as references to 
objects allocated dynamically on the heap [8]. This makes 
the analysis of kernel data challenging; further complicated 
by the fact that kernel data is implementation-dependant. 
Therefore, imprecise analysis will result in improper 
assumptions about kernel indirect relations. 

A. Generic Pointers 
For a better illustration to pointers problem in C-based 

OSs, we will use the code snippet in figure 1. We discuss in 
this example the context of two problems we need to 
address: (i) void pointers; the problem with void * is that 
the target object can only be identified during system 
runtime. From our example, UniqueProcessId is void *, 

                                                           
1 Windows is commodity OS; WRK is the only available source code for it. 
WRK packages core XP x64/Server 2003 kernel. This NT kernel is nearly 
the same in all Windows versions from Windows 2000 to 7 except Vista.  

however if we analyze the code, we find that it indirectly 
points to another data structure, _ExHandle via the function 
ExHandler(). We need to identify offline the set of locations 
that such void * could point to during runtime to enable 
accurate mapping for the VM’s memory. (ii) Null Pointers; 
these are used for example to implement doubly-linked lists 
(DLs) which are heavily used in OS kernels. A DL is data 
structure that contains two null * fields of type DL that are 
used to point to the previous and next objects structured at 
the same list. The C definition makes a DL points to itself, 
but actually during system runtime it points to a specific 
object type according to the calling context. Procedure 
Updatelinks, from our example, is widely used in OSs to 
update a DL that contains dynamic objects. The problem is 
that the objects structured in a DL can be recognized only 
during runtime. Identifying the object type that a DL may 
hold during offline analysis helps significantly in mapping 
physical memory correctly. 

  
typedef struct _LIST_ENTRY { 

struct _LIST_ENTRY *Flink; 
struct _LIST_ENTRY *Blink; 

} LIST_ENTRY, *PLIST_ENTRY, *RESTRICTED_POINTER; 
typedef struct _EPROCESS { 

void* UniqueProcessId; 
LIST_ENTRY ActiveProcessLinks; 

} EPROCESS, *PEPROCESS; 
typedef struct _ExHandle { 

int* handle; 
} ExHandl; 
LIST_ENTRY PsActiveProcessHead;    
PEPROCESS ActiveProcess; 
PEPROCESS AllocatePrMemory(){ 

return (PEPROCESS) malloc(sizeof(EPROCESS));       
} 
void CreateProcess(PEPROCESS p_ptr) { 

p_ptr = (PEPROCESS)AllocatePrMemory();     
ActiveProcess = p_ptr; 
p_ptr->UniqueProcessId=ExHandler(ActiveProcess); 
updatelinks(&ptr->ActiveProcessLinks, 
&PsActiveProcessHead); 
…  

} 
void* ExHandler() { 

_ExHandle tempHandle; 
tempHandle.handle = CreateHandler(); 
… 
return tempHandle.handle; 

} 
void updatelinks(PLIST_ENTRY src, PLIST_ENTRY tgt) { 
src->Flink = tgt->Flink; tgt->Blink = src->Blink; 

} 
… 

Figure 1. Example in C showing the generic pointers problem. 

B. Points-to Analysis 
The goal of points-to analysis is to statically compute a 

set of locations to which a pointer may point to during 
runtime. Points-to analysis of C programs mainly differ in 
how we group alias information. There are two main 
algorithms to group alias information: Andersen’s [9] and 
Steensgaard’s [10]. Figure 2 shows a C code fragment and 
the points-to sets computed by those algorithms. Anderson’s 
approach creates a node for each variable and the node may 



have different edges, Steensgaard’s groups alias sets in one 
node and each node just have one edge. Andersen’s is the 
slowest but the most precise and Steensgaard’s is the fast 
but imprecise. Based on these approaches there are different 
types of analysis aspects that make the tradeoff between 
performance and precision: (i) Field-Sensitivity; 
distinguishing the different fields inside objects. (ii) 
Context-Sensitivity; distinguishing heap objects created 
through different call sites. Context-sensitive algorithms are 
precise, but slow in performance and complicated to be 
implemented. (iii) Flow-Sensitivity; considering the effects 
of pointer assignments with respect to the call-graph. 

i=&p; i=&y; j=&r;
i=j; p=&a; q=&b; z=&c;

i j

p q r

a b c

i j

p,q,r

p,q,r
 

Figure 2. Alias information grouping by Steensgaard and Andersen. 

Points-to analysis has been widely used in memory error 
detection, program understanding and complier optimization 
[11-13]. However, none of these approaches meet our 
requirements in analysing the kernel, as these approaches do 
not scale to the enormous size and complexity of OS’s 
kernel. They also sacrifice precision for performance. In 
KDD, precision is an important factor; we want the most 
precise points-to sets to be computed. As the analysis is done 
offline and just once for each kernel version, performance is 
not such an important factor. KDD performs the analysis 
based on the Abstract Syntax Tree (AST) as a high-level 
representation for the kernel source code. AST captures 
essential structure that reflects the semantic structure of a 
program code while omitting unnecessary syntactic details. 

C. Related Work 
To the best of our knowledge, all current VMI research 

has depended on manual efforts to build a kernel data 
definition to solve the semantic gap. XenAccess [7] depends 
on the manual efforts to build a data definition to overcome 
the semantic gap for specific data structures. PsycoTrace 
[14] follows a similar approach, and the same for KvmSec 
[15] and VIX Tools [6]. X-Spy [16], VMwatcher [17] and 
SIM [18] install security code inside the VMs to get the 
internal view. Security research targeting VMs hosted in the 
IaaS platform is relatively limited. Most of current 
approaches [19, 20] depend on deploying traditional in-
guest security solutions inside the VMs. However, some 
researchers [1, 21] have discussed the complexities of the 
IaaS platform and the challenges of implementing security 
solutions for it. Virtual Appliance technology has had little 
attention to date in academic research. However, it is used 
widely by security vendors e.g. McAfee to deploy the 
security solutions for IaaS platforms. 

Pointer analysis algorithms for C programs have been 
studied intensively over the last two decades [11-13]. Their 
use has predominantly been for compiler optimizations and 
their main goal has thus been performance. Some work has 

attempted performing field and context sensitivity analysis 
on large programs [22, 23]. However none has been shown 
to scale to large programs e.g. OS’s kernel code with a high 
precision rate. Yu et al. [23] proposed a context and field 
sensitive pointer analysis based on the static single 
assignment (SSA) form that gets the points-to information 
for variables only, but not for structures. Hardekopf et al. 
[24] proposed a flow-sensitive pointer analysis approach but 
they did not consider the generic pointers problems of the 
indirect dereferencing. Heintze [12] proposed a field-
sensitive, context-insensitive pointer analysis algorithm that 
is based on dynamic transitive closure. This assumes that an 
edge between two variables must be a non-null path (which 
does not solve the generic pointers problem). Several 
pointer analysis algorithms are context-sensitive [13, 25]. 
However, these algorithms are used during program 
compilation to name objects by allocation site, not by the 
access path, which do not solve the null pointers ambiguity. 

III. SEMANTIC GAP DISAMBIGUATOR   
KDD performs static analysis on a kernel’s source code 

to generate a kernel data definition that reflects both direct 
and indirect relations. KDD also generates a unique 
signature for each kernel version based on the generated 
definition to be used in inferring the kernel version, in order 
to enable systematic mapping of the physical memory. KDD 
takes the kernel’s source code as input and outputs a 
directed type-graph that represents the kernel data 
definition. KDD has two main analysis phases to build the 
type-graph: direct relations and indirect relation analysis. 
These steps are discussed below.  

A. Direct Relations Analysis 
This phase generates an initial type-graph that reflects the 

direct relations between structures that have clear type 
definitions. KDD performs a compiler-pass approach to 
extract the data structures (type definitions) by looking for 
type aliases for typedef, and extracts fields within the 
structures. It then builds an initial type-graph that reflects 
the direct relations. Nodes are data structures and edges are 
data members of the structures, as shown in figure 3. 
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Figure 3. Direct-relations type-graph. 

B. Indirect Relations Analysis 
Indirect inclusion-based relations e.g. generic pointer 

dereferencing cannot be computed from AST directly. To 
solve this problem, we have developed a new points-to 
analysis algorithm to statically analyze the kernel’s source 
code, in order to get an approximation for every generic 
pointer dereferencing based on Anderson’s approach. We 
consider all forms of assignments. Data structures are 



flattened on a scalar field. Kernel’s objects are represented 
by their allocation site according to the calling context. 

The graph nodes have four types and edges also have 
four types. Nodes; represent global and local variables, 
structures, fields, array elements, procedure argument\ 
parameters and returns. A node may be: (i) Variable Node; 
represents variables. (ii) Field Reference Node; represents 
structure’s fields. (iii) Function Call Node; represents a 
function name and an index; index = -1 if the node 
represents a function return, otherwise index = i, where i is 
the index of formal-in argument. (iv) Cast Node; represents 
explicit casting where the type of the node is the typecast 
and the name is the casted variable or function. Edges; 
directed edges across nodes representing calls, returns and 
assignments. An edge may be: (i) points-to edge; represents 
points-to relations between two nodes according to the edge 
direction. (ii) Inlist edge; represents a points-to relation 
between two nodes but on a local scope, thus if � node A 
has inlist edge to node B, then B א� pts(A) where pts(A) 
means the points-to set of A. (iii) Outlist edge; is not a 
relation edge, but represents a directed path between two 
nodes that is used to perform the interprocedural and 
context-sensitive analysis. (iv) Parent-Child edge; 
represents relation between parent and child.  

The type-graph of the indirect relations is created and 
refined by our points-to analysis algorithm in a three step 
process discussed below. 

1) Intraprocedural Analysis 
The goal of this analysis is to compute a local type-

graph but without information about caller or callees. KDD 
takes the AST file as input and outputs an initial graph that 
contains nodes, as follows: (i) Variables; create node for 
each variable declaration and check the function scope to 
find out if it is a local or global variable. (i) Procedure 
definition; create node for each formal-in parameter. (ii) 
Procedure call; create nodes for each formal-in argument, in 
addition to a dummy node for each formal-in argument 
represented by its relative position (index) in the procedure. 
These dummy nodes will be used later to create an implicit 
assignment relation between the formal-in arguments and 
formal-in parameters. For example, given G(x, y), we create 
two nodes for x and y and other two dummy nodes G:1 and 
G:2. (iii) Assignments; create nodes for the left and right 
hand sides. (iv) Return; create one node for the return 
statement itself and one for the returned value. 

Meanwhile, KDD builds the initial edges by computing 
the transfer function (TF) as described in table 1. TF is a 
formal description for the relation between the nodes 
created for each of the previous entities. In our example, 
consider the call to Updatelinks, where the formal-in 
parameters are (src, tgt), and the passed arguments are 
(ActiveProcessLinks, PsActiveProcessHead). Updatelinks 
contains also explicit assignment statements (srcÆ Flink = 
tgtÆFlink; tgtÆBlink = srcÆBlink). KDD computes the 
transfer function for those statements as shown in figure 
4(a) and 4(b), respectively. For the return node, given this 

fragment of code UniqueThreadId = ExHandler(), the 
computed  TF is shown in figure 4(c).  

Table 1. Transfer function description. 

 Code Local Points-to Sets 

pr
oc

ed
ur

e 

Description; relation between formal-in parameters and the dummy 
nodes that hold the indexes of the parameters. Edges; inlist edge 
between each formal-in parameter node and its relevant dummy node, 
and outlist edge from the dummy node to its relevant formal-in 
parameter node. 

proc(p) pts (proc:1) ل pts(p) 

A
ss

ig
nm

en
t 

Description; relation between left and right hand sides of the 
assignment statement. Edges; inlist edge from left hand side to right 
hand side, and outlist edge from the right hand side to left hand side. 

p=&q loc (q) א pts(p) 
p=q pts (p) ل pts(q) 
p=*q  v א  pts(q) : pts (p) ل pts(v) 
p*=q  v א  pts(p) : pts (v) ل pts(q) 

C
al

l 

Description; relation between the formal-in arguments nodes and 
dummy nodes. Edges; inlist edge between each argument node and its 
relevant dummy node. 

proc(q); pts(q) ل pts (proc:1) 

R
et

ur
n 

Description; relation between left hand side, the procedure return node 
and the returned value node. Edges; inlist edge between the left hand 
side and the return node, inlist edge between return node and retuned 
value node and outlist edge between return node and the left hand side. 

p = fn() {return q] pts (p) ل pts(q) 
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                           (b)                                                       (c) 
Figure 4. Intraprocedural analysis result graph; solid arrows inlist edges, 

dashed arrows outlist edges, dashed ovals dummy nodes. 
 

2) Interproceural Analysis 
We perform an interprocedural analysis that enables 

performing the analysis across different files to perform 
whole-program analysis. We refine the initial type-graph by 
incorporating interprocedural information from the callees 
of each procedure. The result of this phase is a graph that 
computes calling effects (returns, arguments and 
parameters), but without any calling context information. 
This is done by propagating the local points-to sets (inlist 
edges) computed at the intraprocedural analysis step to their 
use sites consistently with argument index in the call site. �
N has the form N(Procedure Name : index), we create 
implicit assignment (inlist edge) relation and outlist edge 
between the caller and callee and then delete the dummy 
node, as shown in figure 5. Thus we could be able to map 
between procedure arguments and parameters. 



PsActiveProcessHead

Updatelinks : 2

tgt
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Figure 5. Interprocedural analysis. 

3) Context-Sensitive Points-To Analysis 
The key in achieving context-sensitivity is to obtain the 

return of procedures according to the given arguments 
combined with the call site. This step is performed in three 
sub-steps discussed below. 

a) Points-to Analysis. We build a Procedure 
Dependency Graph (PDG). This enhances the analysis by 
providing the appropriate analysis sequence that results in 
precise points-to analysis. We start with the top node that 
does not have any dependencies, and thus we guarantee that 
each node got its inlist nodes already analyzed before 
proceeding with the node itself. We expand the local 
dereferencing of the pointers to get the points-to relations 
between the caller and callee. We propagate the points-to set 
of each node into its successors accumulating to the bottom 
node. For the acyclic points-to relations, pointers are 
analyzed iteratively until their points-to sets are fully 
traversed. For recursions, we analyze pointers in each 
recursion cycle individually. 

b) Graph Unification. Consider this line of code from 
our example Updatelinks(&ptr->ActiveProcessLinks, 
&PsActiveProcessHead). We pass an object type to the 
procedure; however the Updatelinks procedure manipulates 
the object’s fields e.g. Flink and Blink. To solve this 
problem, we apply a unification algorithm, as follows: given 
node A with points-to set S and T א S, if T has child-relation 
edge with f; we copy f to A, create a child-relation edge 
between f and A, and also create points-to edge from A.f to 
T.f, as shown in figure 6. 

PsActiveProcessHead ActiveProcessLinks

src tgt

Flink Blink Flink Blink

Flink Blink Flink Blink

 
Figure 6. Graph unification: highlighted nodes are the newly copied 

children nodes. Red arrow shows child-relation edge. 
c) Context-Sensitivity. To achieve context-sensitivity, 

we used the computed transfer function for each procedure 
and apply its calling contexts, to bind the output of the 
function call according to the calling site. The points-to 
edge here is a tuple ۦn, v, cۧ represents a pointer n points to 
variable v at context c, where the context is defined by a 
sequence of functions and their call-sites to find out valid 
call paths between nodes. Performing context-sensitive 
analysis solves two problems: the calling context and the 
indirect (implicit) relations between nodes. These indirect 
relations are calculated for each two nodes that are in the 

same function scope but not included in one points-to 
relation. Such that,  two nodes v and n where v א pts(n), 
and v and n has different function scope, check the function 
scope of n and x where x א pts(v), if the function scope is 
the same then create a points-to edge between n and x. 
Figure 7 shows the final context-sensitive analysis for the 
Updatelinks example. We find an indirect points-to relation 
between PsActiveProcessHead and ActiveProcessLinks. 

PsActiveProcessHead ActiveProcessLinks

src tgt

Flink Blink Flink Blink

Flink Blink Flink Blink

 
Figure 7. Context-Sensitive Analysis. 

 

C. Kernel Version Checker 
To solve the semantic gap efficiently, we need to know 

the exact kernel version of the running OS kernel where 
such detailed information is not available for CPs. We used 
the generated kernel data definition to create a unique 
signature for each kernel build to infer the kernel version 
systematically. To do this, we need to pick a data structure 
that has a different signature for each kernel build, and also 
it should be a robust structure (structure that should present 
all the time in the kernel execution). From our observations 
in Windows 2 (XP SP2 and SP3) and Linux (v3.0.22 and v 
3.1.10), we found that no structure is distinctive across the 
different kernel builds; however the offsets of the members 
change in each build. On the other hand, Brendan et al. [26] 
found that process structure with some specific fields in it 
should exist during system runtime and modifying their 
values will crash the structure. Based on that, we generate a 
signature for each kernel build. This signature contains the 
process structure (EPROCESS in Windows and task_struct 
in Linux) with specific data members (that had been 
discussed in [26]) combined with their offsets. At runtime, 
we pick the first loaded process in the processes DL (which 
is the system process that presents all the time in the kernel 
execution and termination causes system crash). 

IV. MAPPING PHYSICAL MEMORY 
SVA uses our generated type-graph (TG) to 

systematically overcome the semantic gap for the VMs 
hosted in an IaaS platform. SVA is a virtual appliance that 
utilizes VMI to externally, extract all the high-level 
information of VM’s OS by mapping the hardware bytes to 
useful high-level information. A high-level representation of 
this analysis process is shown in Figure 8. Whenever a 
hosted VM is powered on, SVA is notified by the 
hypervisor. SVA then creates a separate thread for each VM 

                                                           
2 We used Windows debugging tools to find the data members’ offsets in 
the different kernel versions, as there is no source code for those versions.  



(to enable protecting multiple concurrent VMs using one 
instance of SVA) using the thread pool manager. SVA first 
checks the control registers of the VM’s processor to get the 
memory layout of the VM’s hardware (there are four main 
paging modes supported by the hardware that are controlled 
by the control registers CR0 and CR4), and also performs 
the kernel version inference check to load the appropriate 
TG. SVA then starts solving the semantic gap through the 
Semantic Gap Builder (SGB) by traversing the memory 
starting from the OS global variables (global variables have 
static physical addresses in any OS) and then following 
pointer dereferencing until it covers all memory objects, 
based on KDD’s type-graph. For the Windows, we can get 
the global variables addresses from Microsoft Symbols [27] 
and for Linux, the addresses can be obtained from the kernel 
symbol table file. As VMs including SVA does not have 
direct access to the server’s physical memory, we use the 
hypervisor (using VMI APIs) to read these physical memory 
pages into the Memory Pages Buffer (MPB). SVA then 
installs memory access or timer-based triggers on the 
memory page(s) that needs to be monitored/ protected 
according to the applied defence mechanisms (Defence 
Modules) using the memory access handler (MAH). 
Whenever a memory access to such pages occurs, the 
hypervisor (via VMI APIs) notifies the MAH, and the 
hypervisor suspends execution. MAH then loads the 
requested memory page(s) to the Defence Modules or the 
SGB to extract kernel data structure updates. 

Thread Pool Manager

SGB

Defense Modules

Hypervisor

TGs MPB

VMs

SVA
MAH

 
Figure 8. SVA High-level Architecture. 

V. IMPLEMENTATION AND EVALUATION 
We implemented KDD using C# and a modified version 

of pycparser [28]. KDD uses pycparser to generate the AST 
files of the kernel’s source code. As pycparser cannot 
process C directive statements, we developed a C 
preprocessing tool that solves the directives problem. The 
preprocessing tool: (i) replaces the #include with the entire 
contents of the requested file. (ii) Replaces #define with any 
occurrence of the identifier in the rest of the code by the 
replacement value. KDD starts by the preprocessing tool 
that takes the kernel’s source code as input and outputs a 
processed C files. Pycparser then generates AST files and 
KDD applies our points-to analysis algorithm on those files 
to generate the type-graph. 

Our implementation and evaluation platform for KDD is 
2.2GH core i5 processor with 12 GB RAM. KDD scales to 
the very large size of such OSs. Table 2 shows the amount 
of type definitions (data structures/object types), global 

variables and generic pointers used in the Linux kernel (~ 6 
million LOC) and WRK (~ 3.5 million LOC) that have been 
analysed by KDD. KDD needed 46 hours to analyze the 
WRK and 72 hours to analyze the Linux kernel. As our 
analysis was performed offline and just once or each kernel 
version, the performance overhead of analyzing kernels was 
acceptable and would not present any problem for any 
security application that can use KDD. We tried to use a 
commercial points-to analysis tool, CodeSurfer [29] (the 
only points-to analysis tool in the market that provides field 
and context sensitive analysis) to analyze kernels to 
compare results and performance. However, CodeSurfer 
could not perform the analysis as it ran out of memory after 
several days of operation. 

To evaluate the effectiveness of KDD results, we 
performed a comparison between the pointer-based relations 
inferred by KDD and the manual efforts of security experts 
to solve these indirect relations in both Linux kernel v3.0.22 
and WRK. We manually compared 74 generic pointer 
structure/ global variable from WRK and 65 from Linux 
kernel. Table 3 shows the results for few structures (space 
limits) showing that KDD successfully concluded the 
candidate target type for them with 100% soundness. KDD 
is sound if the points-to set for each variable contains all its 
actual runtime targets, and is imprecise if the inferred set is 
larger than necessary. Imprecise results could be sound e.g. 
if pts(p) = {a,c,b} while the actual runtime targets are a and 
b, then KDD is sound but not precise. KDD is 100% sound 
as it performs points-to analysis on all program variables 
not just declared pointers, in order to cover all runtime 
targets whilst omitting unnecessary local variables. Because 
of the huge size of the kernel, we could not measure the 
precision for nearly 60% of the members we used in our 
experiment, where there is no description for these pointer-
based members in the manual efforts. We measured the 
precision for the well-known objects that had been analyzed 
manually to be around 96% in both Linux kernel and WRK.  

To test the effectiveness of our kernel version inference 
approach, we used the Windows debugging tools [27] (to 
get offsets for the different kernel builds) combined with our 
generated type-graph (to solve the pointer relations) to 
generate unique kernel signatures for Windows XP SP2, 
SP3 and 64bit using the EPROCESS structure with the data 
members discussed in [26]. We succeeded in identifying the 
kernel version for three memory images for SP2, SP3 and 
64bit using our kernel version inference approach. We 
implemented a prototype of SVA using the VMsafe APIs 
(specifically vCompute APIs) on VMware ESX hypervisor.  
Table 2. Kernel source code initial analysis. 1st column shows the number 
of type definitions; 2nd column presents the number of global variables and 
DL column shows the number of doubly linked lists. AST column shows 

AST files size in gigabyte. 

 TD GV Void * Null * DL AST
Linux 11249 24857 5424 6157 8327 1.6 
WRK 4747 1858 1691 2345 1316 0.9 

 



Table 3. Comparison results between the output of KDD and some facts about the kernel data indirect relations for both Linux and WRK. 
 Structure / GV Computed Points-to Sets 

L
in

ux
 

thread_group 
(structure) 

task_struct.thread_group:[task_struct.group_leader.thread_group; thread_group.next: [list_head.next, 
task_struct.thread_group.next, task_struct.group_leader.thread_group]; thread_group.next: [list_head.next, 
task_struct.thread_group.next, task_struct.group_leader.thread_group] - Context: Thread 

journal_info (void*) journal_info:[btrfs_trans_handle, gfs2_trans, nilfs_transaction_info] 
cg_list (structure) cg_list: [list_head, css_set.tasks, css_set __rcu.task] - Context: task_struct 
btrace_seq (void*) blktrace_seq, unsigned int 

W
in

do
w

s 

PsActiveProcessHead 
(global variable) 

PsActiveProcessHead: [List_Entry, ActiveProcessLinks] 
PsActiveProcessHead.Flink: [ActiveProcessLinks.Flink, ActivePr cessLinks.Flink], PsActiveProcessHead.Blink:  
[ActiveProcessLinks.Blink, ActiveProcessLinks.Blink] - Context: EPROCESS  

ThreadListHead 
(structure) 

ThreadListHead: [List_Entry], ThreadListHead.Flink: [List_Entry.Flink], ThreadListHead.Blink: [List_Entry.Blink] -
Context: ETHREAD 

LdtInformation (void*) LdtInformation: [PVOID, PROCESS_LDT_INFORMATION] 
DirectoryTableBase 
(unsigned integer) 

DirectoryTableBase: [MmCreateProcessAddressSpace:-1], DirectoryTableBase[0]: [PageDirectoryIndex, ULONG64], 
DirectoryTableBase[1]: [HyperSpaceIndex, ULONG64] 

 

Our evaluation and implementation platform for SVA is a 
2.8 GHz Intel Xeon with 6GB RAM, running ESX 4.1. 
Figure 9 shows the deployment model of SVA. ESX server 
hosts SVA and two VMs. SVA is configured with 2GB 
RAM and deployed as a virtual appliance, running Ubuntu 
Linux 8.04 Server JeOS, and hosts the vCompute APIs and 
our code. Our code is normal Linux C program written 
using vCompute and Posix Threads APIs. SVA is isolated 
from other server network workloads in a separate virtual 
network using a virtual switch (vSwitch). Hosted VMs are 
running Windows XP 64-bit and 32-bit. The objective of 
this experiment is to prove the effectiveness of KDD and 
SVA in solving the semantic gap accurately and 
systematically with sound points-to sets for pointer-based 
relations, not to detect threats where we utilize a traditional 
memory traversal technique that is vulnerable to object 
hiding attacks. SVA traversed the physical memory of the 
two hosted VM’s based on: (i) the generated type-graph 
from KDD, to solve pointer relations, and (ii) Microsoft 
Symbols, to get members offsets for the two kernel versions 
(as WRK is the only available source code for Windows 
OSs). For mapping VMs that are running Linux OS, we just 
need our generated type-graph only to map the physical 
memory (because we have the source code of each kernel 
version to be analysed by KDD). 

ESX 4.1 Hypervisor
VMsafe APIs (vCompute)

vSwitch 1vSwitch 2

SVAVM1VM2

 
Figure 9. SVA Deployment model. 

SVA correctly constructed all the running instances of the 
data structures at a given memory snapshot using our 
generated type-graph. The performance overhead of SVA to 
map the physical memory (all the running objects) was 
around 12.5 minutes for a memory image of ~ 4GB. To 
validate that SVA bridged the semantic gap accurately, we 
compared the external view of mapping the physical 
memory to runtime objects using SVA with the internal 
view of the VM using the Windows debugging tools. We 

compared 43 different object types with their instances. We 
started from the global variable PsActiveProcessHead then 
followed pointer dereferencing until we covered 43 different 
objects with their running instances. SVA successfully 
mapped the correctly identified objects with a low rate of 
false positives (around 1.5% in traversing balanced trees).  

VI. DISCUSSION 
Our experiments have shown that SVA using KDD is 

able to solve the semantic gap for any C-based OS 
efficiently and systematically. Performing static analysis for 
the kernel source code to extract robust type definitions for 
the kernel data has several advantages not just limited to 
solving the semantic gap: (i) Systematic Security; enables 
implementing systematic security solutions that are able to 
systematically protect the overall kernel data without the 
need to understand the kernel data layout. (ii) Performance 
Overhead; minimize the performance overhead in any 
further security module, where a major part of the analysis 
process is done offline. If no static analysis were done, 
every pointer dereferencing would have to be instrumented, 
which increase the performance overhead. (iii) Zero-Day 
Threats; maximize the likelihood of detecting zero-day 
threats that target generic or obscure data structures.  

To the best of our knowledge, there is no similar research 
in the area of systematically solving the semantic gap, 
however KOP [30] has an initiative in systematically 
computing a type-graph for the kernel data, but KOP is 
limited in: (i) it uses medium-level intermediate 
representation (MIR) which complicates the analysis and 
results in improper points-to sets. MIR is extremely big in 
size, omits very important information such as declarations, 
data types and type casting, and creates a lot of temporary 
variables that are allocated identically to source code 
variables and thus are not easily distinguishable from source 
code variables (ii) the points-to sets of KOP is not highly 
precise and sound compared to KDD, as KOP depends on 
the Heintze points-to analysis algorithm [12] which is used 
in compilers for fast aliasing. (iii)  KOP could not solve the 
type ambiguities for DLs. Compared to KOP (used 32GB 
RAM); KDD has improved performance by around 40%. 



Performance also could be improved by increasing the used 
RAM and processing capabilities. To the best of our 
knowledge, KDD is the only tool that can scale to produce a 
detailed, highly accurate type-graph for a large-scale C 
program such as an OS kernel. This scalability and high 
performance was achieved by using AST as the basis for 
points-to analysis. The compact and syntax-free AST 
improves the time and memory usage efficiency of the 
analysis. Instrumenting AST is more efficient than 
instrumenting the machine code (MIR or low-level 
intermediate representation) because many intermediate 
computations are saved from hashing.  

SUMMARY 
The complexity of kernel data makes it impractical to 

use manual methods to solve the semantic gap problem. In 
this paper, we presented a new approach that provides a 
systematic and efficient solution of the semantic gap 
problem for any C-based OS, without any prior knowledge 
with the OS. Our experiments showed that KDD efficiently 
disambiguates the pointer-based relations including generic 
pointers with high rate of soundness and precision, and 
enables building an accurate type-graph that reflects the 
direct and indirect relations of kernel data. SVA, based on 
the generated type-graph, actively overcomes the semantic 
gap and reconstructs the running dynamic kernel objects in 
the VM’s physical memory.  
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