
Supporting Virtualization-Aware Security Solutions using a Systematic Approach
to Overcome the Semantic Gap

Amani S. Ibrahim, James Hamlyn-Harris, John Grundy and Mohamed Almorsy
Centre for Computing and Engineering Software Systems

Swinburne University of Technology
Melbourne, Australia

[aibrahim, jhamlynharris, jgrundy, malmorsy]@swin.edu.au

Abstract—A prerequisite to implementing virtualization-aware
security solutions is to solve the “semantic gap” problem.
Current approaches require a deep knowledge of the kernel
data to manually solve the semantic gap. However, kernel data
is very complex; an Operating System (OS) kernel contains
thousands of data structures that have direct and indirect
(pointer) relations between each other with no explicit integrity
constraints. This complexity makes it impractical to use
manual methods. In this paper, we present a new solution to
systematically and efficiently solve the semantic gap for any
OS, without any prior knowledge of the OS. We present: (i)
KDD, a tool that systematically builds a precise kernel data
definition for any C-based OS such as Windows and Linux.
KDD generates this definition by performing points-to analysis
on the kernel’s source code to disambiguate the pointer
relations. (ii) SVA, a security appliance that solves the
semantic gap based on the generated definition, to
systematically and externally map the virtual machines’
physical memory and extract the runtime dynamic objects.
We have implemented prototypes for KDD and SVA, and have
performed different experiments to prove their effectiveness.

Keywords - Kernel data structures; semantic gap; points-to
analysis; IaaS; virtualization-aware security solutions.

I. INTRODUCTION
Infrastructure-as-a-Service (IaaS) is characterized by the

concept of resource virtualization that enables running
multiple Virtual Machines (VMs) on the same physical
server. These VMs are hosted by the Cloud Provider (CP),
but controlled by the Cloud Consumer (CC), making security
a shared responsibility between CC and CP. This makes
VMs a real source of security threats on the virtual
infrastructure of the IaaS platform [1]. Recently, Common
Vulnerabilities and Exposures (CVE) has reported multiple
resource sharing exploits in the Xen and ESX hypervisors [2,
3], caused by hosted VMs. Thus, the hosted VMs cannot be
trusted from the CPs’ perspective to host their supported
security software, as VMs can be compromised easily.

Although in-guest security solutions have the ability to
get high-level information about the Operating System (OS),
they are unreliable, opaque to the user and can be subverted
by advanced malware, even if the security software is
installed in ring 0. This raises the need for new
Virtualization-Aware Security Solutions (V-ASSs) that can
provide security for VMs, without installing any security

software inside the VM. The virtualization supported by IaaS
helps utilizing the Virtual Machine Introspection (VMI)
techniques [4] that enable monitoring the hosted VMs
externally at the hypervisor level. However, only hardware
bytes (e.g. physical memory pages) can be observed in this
way. This is in contrast to the internal view of the VM,
where we can view high-level entities such as processes, I/O
requests, and system calls, causing a “semantic gap”
problem. Current research [5-7] has depended on
researchers’ knowledge of the OS’s kernel data to manually
solve the semantic gap, as solving the semantic gap requires
a deep understanding of the kernel data to accurately map
between the underlying hardware memory layout and kernel
data structures layout. Kernel data structures are very
complex; an OS kernel contains thousands of data structures
with direct and indirect (pointer-based) relations between
each other, with no explicit integrity constraints. In Linux
and Windows, based on our observations, we found that
nearly 40% of the inter-data structure relations are pointer-
based (indirect) relations, and 35% of these pointer-based
relations are generic pointers (e.g. null pointers that do not
have values, and void pointers that do not have associated
type declarations in the source code). Generic pointers get
their values/types only at runtime according to the different
calling contexts. These complexities result in an inability to
cover all kernel data structures and thus reduce the efficiency
of the V-ASSs, making the manual approach inadequate.

In this paper, we address the problem of how to
systematically and accurately solve the semantic gap for any
OS, whatever the memory layout of the hardware, and
without any prior knowledge with the OS. We present: (i)
KDD (Kernel Data Disambiguator); a tool that
systematically generates a precise kernel data definition for
any C-based OS (e.g. Windows and Linux), to enable
accurate mapping of a VM’s physical memory. KDD takes
the source code of OS’s kernel as input and outputs an
accurate kernel data definition that reflects direct relations
between structures and resolves the ambiguities of the
pointer-based relations. KDD performs static points-to
analysis on kernel’s source code, to infer the appropriate
candidate types/values for generic pointers. We designed
and implemented a new points-to analysis algorithm that has
the ability to provide interprocedural context-sensitive and
field-sensitive points-to analysis for large programs that

jgrundy
In proceedings of 5th IEEE Conference on Cloud computing (CLoud 2012), 24-29 June, Waikiki, Hawaii, USA, © IEEE 2012

jgrundy

contains millions lines of code e.g. kernels. We have
implemented a prototype system for KDD and evaluated it
on Linux kernel v3.0.22 and Windows Research Kernel1
(WRK), in order to prove its effectiveness. (ii) SVA
(Security Virtual Appliance); a V-ASS that systematically
solves the semantic gap based on the generated kernel data
definition, to map the physical memory of VMs efficiently.
SVA utilizes VMI technique to provide fine-grained
inspection of the VM’s physical memory, at hypervisor
level without installing any supporting code inside the VM.
SVA actively reconstructs the dynamically changing kernel
data structure instances (kernel dynamic objects), in order to
enable effective and systematic protection for kernel data
structures. We have implemented a proof-of-concept
prototype for SVA and evaluated it to prove its efficiency.

In section II, we give a background of VMI, pointer
problems in OSs, and we review key related work. Section
III and IV discuss in details KDD and SVA, respectively. In
section V we explore the implementation and evaluation
details of KDD and SVA. Section VI discusses the pros and
cons of our system. Finally, we summarize our conclusions.

II. BACKGROUND
VMI enables isolating the security solution from the

other server workload by deploying it in a dedicated VM.
This makes it difficult for hackers to detect the installed
security software. Moreover, external monitoring gives the
security software complete control over the hosted VMs
including OS, hardware, and running software. To make
VMI useful for security monitoring, it is necessary to
translate the hardware bytes to actual running OS
information. Such translation requires accurate mapping
between kernel data structures layout, and the hardware
memory layout. Such mapping is not a trivial-task for C-
based OSs e.g. Windows and Linux. These use structures
heavily to model objects and manage memory, and also use
pointers extensively to simulate call-by-reference semantics,
avoid expensive copying of large objects, implement lists,
trees and other complex data structures, and as references to
objects allocated dynamically on the heap [8]. This makes
the analysis of kernel data challenging; further complicated
by the fact that kernel data is implementation-dependant.
Therefore, imprecise analysis will result in improper
assumptions about kernel indirect relations.

A. Generic Pointers
For a better illustration to pointers problem in C-based

OSs, we will use the code snippet in figure 1. We discuss in
this example the context of two problems we need to
address: (i) void pointers; the problem with void * is that
the target object can only be identified during system
runtime. From our example, UniqueProcessId is void *,

1 Windows is commodity OS; WRK is the only available source code for it.
WRK packages core XP x64/Server 2003 kernel. This NT kernel is nearly
the same in all Windows versions from Windows 2000 to 7 except Vista.

however if we analyze the code, we find that it indirectly
points to another data structure, _ExHandle via the function
ExHandler(). We need to identify offline the set of locations
that such void * could point to during runtime to enable
accurate mapping for the VM’s memory. (ii) Null Pointers;
these are used for example to implement doubly-linked lists
(DLs) which are heavily used in OS kernels. A DL is data
structure that contains two null * fields of type DL that are
used to point to the previous and next objects structured at
the same list. The C definition makes a DL points to itself,
but actually during system runtime it points to a specific
object type according to the calling context. Procedure
Updatelinks, from our example, is widely used in OSs to
update a DL that contains dynamic objects. The problem is
that the objects structured in a DL can be recognized only
during runtime. Identifying the object type that a DL may
hold during offline analysis helps significantly in mapping
physical memory correctly.

typedef struct _LIST_ENTRY {

struct _LIST_ENTRY *Flink;
struct _LIST_ENTRY *Blink;

} LIST_ENTRY, *PLIST_ENTRY, *RESTRICTED_POINTER;
typedef struct _EPROCESS {

void* UniqueProcessId;
LIST_ENTRY ActiveProcessLinks;

} EPROCESS, *PEPROCESS;
typedef struct _ExHandle {

int* handle;
} ExHandl;
LIST_ENTRY PsActiveProcessHead;
PEPROCESS ActiveProcess;
PEPROCESS AllocatePrMemory(){

return (PEPROCESS) malloc(sizeof(EPROCESS));
}
void CreateProcess(PEPROCESS p_ptr) {

p_ptr = (PEPROCESS)AllocatePrMemory();
ActiveProcess = p_ptr;
p_ptr->UniqueProcessId=ExHandler(ActiveProcess);
updatelinks(&ptr->ActiveProcessLinks,
&PsActiveProcessHead);
…

}
void* ExHandler() {

_ExHandle tempHandle;
tempHandle.handle = CreateHandler();
…
return tempHandle.handle;

}
void updatelinks(PLIST_ENTRY src, PLIST_ENTRY tgt) {
src->Flink = tgt->Flink; tgt->Blink = src->Blink;

}
…

Figure 1. Example in C showing the generic pointers problem.

B. Points-to Analysis
The goal of points-to analysis is to statically compute a

set of locations to which a pointer may point to during
runtime. Points-to analysis of C programs mainly differ in
how we group alias information. There are two main
algorithms to group alias information: Andersen’s [9] and
Steensgaard’s [10]. Figure 2 shows a C code fragment and
the points-to sets computed by those algorithms. Anderson’s
approach creates a node for each variable and the node may

have different edges, Steensgaard’s groups alias sets in one
node and each node just have one edge. Andersen’s is the
slowest but the most precise and Steensgaard’s is the fast
but imprecise. Based on these approaches there are different
types of analysis aspects that make the tradeoff between
performance and precision: (i) Field-Sensitivity;
distinguishing the different fields inside objects. (ii)
Context-Sensitivity; distinguishing heap objects created
through different call sites. Context-sensitive algorithms are
precise, but slow in performance and complicated to be
implemented. (iii) Flow-Sensitivity; considering the effects
of pointer assignments with respect to the call-graph.

i=&p; i=&y; j=&r;
i=j; p=&a; q=&b; z=&c;

i j

p q r

a b c

i j

p,q,r

p,q,r

Figure 2. Alias information grouping by Steensgaard and Andersen.

Points-to analysis has been widely used in memory error
detection, program understanding and complier optimization
[11-13]. However, none of these approaches meet our
requirements in analysing the kernel, as these approaches do
not scale to the enormous size and complexity of OS’s
kernel. They also sacrifice precision for performance. In
KDD, precision is an important factor; we want the most
precise points-to sets to be computed. As the analysis is done
offline and just once for each kernel version, performance is
not such an important factor. KDD performs the analysis
based on the Abstract Syntax Tree (AST) as a high-level
representation for the kernel source code. AST captures
essential structure that reflects the semantic structure of a
program code while omitting unnecessary syntactic details.

C. Related Work
To the best of our knowledge, all current VMI research

has depended on manual efforts to build a kernel data
definition to solve the semantic gap. XenAccess [7] depends
on the manual efforts to build a data definition to overcome
the semantic gap for specific data structures. PsycoTrace
[14] follows a similar approach, and the same for KvmSec
[15] and VIX Tools [6]. X-Spy [16], VMwatcher [17] and
SIM [18] install security code inside the VMs to get the
internal view. Security research targeting VMs hosted in the
IaaS platform is relatively limited. Most of current
approaches [19, 20] depend on deploying traditional in-
guest security solutions inside the VMs. However, some
researchers [1, 21] have discussed the complexities of the
IaaS platform and the challenges of implementing security
solutions for it. Virtual Appliance technology has had little
attention to date in academic research. However, it is used
widely by security vendors e.g. McAfee to deploy the
security solutions for IaaS platforms.

Pointer analysis algorithms for C programs have been
studied intensively over the last two decades [11-13]. Their
use has predominantly been for compiler optimizations and
their main goal has thus been performance. Some work has

attempted performing field and context sensitivity analysis
on large programs [22, 23]. However none has been shown
to scale to large programs e.g. OS’s kernel code with a high
precision rate. Yu et al. [23] proposed a context and field
sensitive pointer analysis based on the static single
assignment (SSA) form that gets the points-to information
for variables only, but not for structures. Hardekopf et al.
[24] proposed a flow-sensitive pointer analysis approach but
they did not consider the generic pointers problems of the
indirect dereferencing. Heintze [12] proposed a field-
sensitive, context-insensitive pointer analysis algorithm that
is based on dynamic transitive closure. This assumes that an
edge between two variables must be a non-null path (which
does not solve the generic pointers problem). Several
pointer analysis algorithms are context-sensitive [13, 25].
However, these algorithms are used during program
compilation to name objects by allocation site, not by the
access path, which do not solve the null pointers ambiguity.

III. SEMANTIC GAP DISAMBIGUATOR
KDD performs static analysis on a kernel’s source code

to generate a kernel data definition that reflects both direct
and indirect relations. KDD also generates a unique
signature for each kernel version based on the generated
definition to be used in inferring the kernel version, in order
to enable systematic mapping of the physical memory. KDD
takes the kernel’s source code as input and outputs a
directed type-graph that represents the kernel data
definition. KDD has two main analysis phases to build the
type-graph: direct relations and indirect relation analysis.
These steps are discussed below.

A. Direct Relations Analysis
This phase generates an initial type-graph that reflects the

direct relations between structures that have clear type
definitions. KDD performs a compiler-pass approach to
extract the data structures (type definitions) by looking for
type aliases for typedef, and extracts fields within the
structures. It then builds an initial type-graph that reflects
the direct relations. Nodes are data structures and edges are
data members of the structures, as shown in figure 3.

EPROCESS

KPROCESSP_Lock

D_Header

PCBPLock

Header

ETHREAD

ForkInProgress

Figure 3. Direct-relations type-graph.

B. Indirect Relations Analysis
Indirect inclusion-based relations e.g. generic pointer

dereferencing cannot be computed from AST directly. To
solve this problem, we have developed a new points-to
analysis algorithm to statically analyze the kernel’s source
code, in order to get an approximation for every generic
pointer dereferencing based on Anderson’s approach. We
consider all forms of assignments. Data structures are

flattened on a scalar field. Kernel’s objects are represented
by their allocation site according to the calling context.

The graph nodes have four types and edges also have
four types. Nodes; represent global and local variables,
structures, fields, array elements, procedure argument\
parameters and returns. A node may be: (i) Variable Node;
represents variables. (ii) Field Reference Node; represents
structure’s fields. (iii) Function Call Node; represents a
function name and an index; index = -1 if the node
represents a function return, otherwise index = i, where i is
the index of formal-in argument. (iv) Cast Node; represents
explicit casting where the type of the node is the typecast
and the name is the casted variable or function. Edges;
directed edges across nodes representing calls, returns and
assignments. An edge may be: (i) points-to edge; represents
points-to relations between two nodes according to the edge
direction. (ii) Inlist edge; represents a points-to relation
between two nodes but on a local scope, thus if ׌� node A
has inlist edge to node B, then B א� pts(A) where pts(A)
means the points-to set of A. (iii) Outlist edge; is not a
relation edge, but represents a directed path between two
nodes that is used to perform the interprocedural and
context-sensitive analysis. (iv) Parent-Child edge;
represents relation between parent and child.

The type-graph of the indirect relations is created and
refined by our points-to analysis algorithm in a three step
process discussed below.

1) Intraprocedural Analysis
The goal of this analysis is to compute a local type-

graph but without information about caller or callees. KDD
takes the AST file as input and outputs an initial graph that
contains nodes, as follows: (i) Variables; create node for
each variable declaration and check the function scope to
find out if it is a local or global variable. (i) Procedure
definition; create node for each formal-in parameter. (ii)
Procedure call; create nodes for each formal-in argument, in
addition to a dummy node for each formal-in argument
represented by its relative position (index) in the procedure.
These dummy nodes will be used later to create an implicit
assignment relation between the formal-in arguments and
formal-in parameters. For example, given G(x, y), we create
two nodes for x and y and other two dummy nodes G:1 and
G:2. (iii) Assignments; create nodes for the left and right
hand sides. (iv) Return; create one node for the return
statement itself and one for the returned value.

Meanwhile, KDD builds the initial edges by computing
the transfer function (TF) as described in table 1. TF is a
formal description for the relation between the nodes
created for each of the previous entities. In our example,
consider the call to Updatelinks, where the formal-in
parameters are (src, tgt), and the passed arguments are
(ActiveProcessLinks, PsActiveProcessHead). Updatelinks
contains also explicit assignment statements (srcÆ Flink =
tgtÆFlink; tgtÆBlink = srcÆBlink). KDD computes the
transfer function for those statements as shown in figure
4(a) and 4(b), respectively. For the return node, given this

fragment of code UniqueThreadId = ExHandler(), the
computed TF is shown in figure 4(c).

Table 1. Transfer function description.

 Code Local Points-to Sets

pr
oc

ed
ur

e

Description; relation between formal-in parameters and the dummy
nodes that hold the indexes of the parameters. Edges; inlist edge
between each formal-in parameter node and its relevant dummy node,
and outlist edge from the dummy node to its relevant formal-in
parameter node.

proc(p) pts (proc:1) ل pts(p)

A
ss

ig
nm

en
t

Description; relation between left and right hand sides of the
assignment statement. Edges; inlist edge from left hand side to right
hand side, and outlist edge from the right hand side to left hand side.

p=&q loc (q) א pts(p)
p=q pts (p) ل pts(q)
p=*q ׊ v א pts(q) : pts (p) ل pts(v)
p*=q ׊ v א pts(p) : pts (v) ل pts(q)

C
al

l

Description; relation between the formal-in arguments nodes and
dummy nodes. Edges; inlist edge between each argument node and its
relevant dummy node.

proc(q); pts(q) ل pts (proc:1)

R
et

ur
n

Description; relation between left hand side, the procedure return node
and the returned value node. Edges; inlist edge between the left hand
side and the return node, inlist edge between return node and retuned
value node and outlist edge between return node and the left hand side.

p = fn() {return q] pts (p) ل pts(q)

ActiveProcessLinks

Updatelinks : 1

src

PsActiveProcessHead

Updatelinks : 2

tgt

 (a)

SrcÆ Flink tgtÆ Flink

Points-To Edge

OutList Edge

UniqueProcessId

ExHandler:-1

handle

 (b) (c)
Figure 4. Intraprocedural analysis result graph; solid arrows inlist edges,

dashed arrows outlist edges, dashed ovals dummy nodes.

2) Interproceural Analysis
We perform an interprocedural analysis that enables

performing the analysis across different files to perform
whole-program analysis. We refine the initial type-graph by
incorporating interprocedural information from the callees
of each procedure. The result of this phase is a graph that
computes calling effects (returns, arguments and
parameters), but without any calling context information.
This is done by propagating the local points-to sets (inlist
edges) computed at the intraprocedural analysis step to their
use sites consistently with argument index in the call site. ׊�
N has the form N(Procedure Name : index), we create
implicit assignment (inlist edge) relation and outlist edge
between the caller and callee and then delete the dummy
node, as shown in figure 5. Thus we could be able to map
between procedure arguments and parameters.

PsActiveProcessHead

Updatelinks : 2

tgt

X

Figure 5. Interprocedural analysis.

3) Context-Sensitive Points-To Analysis
The key in achieving context-sensitivity is to obtain the

return of procedures according to the given arguments
combined with the call site. This step is performed in three
sub-steps discussed below.

a) Points-to Analysis. We build a Procedure
Dependency Graph (PDG). This enhances the analysis by
providing the appropriate analysis sequence that results in
precise points-to analysis. We start with the top node that
does not have any dependencies, and thus we guarantee that
each node got its inlist nodes already analyzed before
proceeding with the node itself. We expand the local
dereferencing of the pointers to get the points-to relations
between the caller and callee. We propagate the points-to set
of each node into its successors accumulating to the bottom
node. For the acyclic points-to relations, pointers are
analyzed iteratively until their points-to sets are fully
traversed. For recursions, we analyze pointers in each
recursion cycle individually.

b) Graph Unification. Consider this line of code from
our example Updatelinks(&ptr->ActiveProcessLinks,
&PsActiveProcessHead). We pass an object type to the
procedure; however the Updatelinks procedure manipulates
the object’s fields e.g. Flink and Blink. To solve this
problem, we apply a unification algorithm, as follows: given
node A with points-to set S and T א S, if T has child-relation
edge with f; we copy f to A, create a child-relation edge
between f and A, and also create points-to edge from A.f to
T.f, as shown in figure 6.

PsActiveProcessHead ActiveProcessLinks

src tgt

Flink Blink Flink Blink

Flink Blink Flink Blink

Figure 6. Graph unification: highlighted nodes are the newly copied

children nodes. Red arrow shows child-relation edge.
c) Context-Sensitivity. To achieve context-sensitivity,

we used the computed transfer function for each procedure
and apply its calling contexts, to bind the output of the
function call according to the calling site. The points-to
edge here is a tuple ۦn, v, cۧ represents a pointer n points to
variable v at context c, where the context is defined by a
sequence of functions and their call-sites to find out valid
call paths between nodes. Performing context-sensitive
analysis solves two problems: the calling context and the
indirect (implicit) relations between nodes. These indirect
relations are calculated for each two nodes that are in the

same function scope but not included in one points-to
relation. Such that, ׊ two nodes v and n where v א pts(n),
and v and n has different function scope, check the function
scope of n and x where x א pts(v), if the function scope is
the same then create a points-to edge between n and x.
Figure 7 shows the final context-sensitive analysis for the
Updatelinks example. We find an indirect points-to relation
between PsActiveProcessHead and ActiveProcessLinks.

PsActiveProcessHead ActiveProcessLinks

src tgt

Flink Blink Flink Blink

Flink Blink Flink Blink

Figure 7. Context-Sensitive Analysis.

C. Kernel Version Checker
To solve the semantic gap efficiently, we need to know

the exact kernel version of the running OS kernel where
such detailed information is not available for CPs. We used
the generated kernel data definition to create a unique
signature for each kernel build to infer the kernel version
systematically. To do this, we need to pick a data structure
that has a different signature for each kernel build, and also
it should be a robust structure (structure that should present
all the time in the kernel execution). From our observations
in Windows 2 (XP SP2 and SP3) and Linux (v3.0.22 and v
3.1.10), we found that no structure is distinctive across the
different kernel builds; however the offsets of the members
change in each build. On the other hand, Brendan et al. [26]
found that process structure with some specific fields in it
should exist during system runtime and modifying their
values will crash the structure. Based on that, we generate a
signature for each kernel build. This signature contains the
process structure (EPROCESS in Windows and task_struct
in Linux) with specific data members (that had been
discussed in [26]) combined with their offsets. At runtime,
we pick the first loaded process in the processes DL (which
is the system process that presents all the time in the kernel
execution and termination causes system crash).

IV. MAPPING PHYSICAL MEMORY
SVA uses our generated type-graph (TG) to

systematically overcome the semantic gap for the VMs
hosted in an IaaS platform. SVA is a virtual appliance that
utilizes VMI to externally, extract all the high-level
information of VM’s OS by mapping the hardware bytes to
useful high-level information. A high-level representation of
this analysis process is shown in Figure 8. Whenever a
hosted VM is powered on, SVA is notified by the
hypervisor. SVA then creates a separate thread for each VM

2 We used Windows debugging tools to find the data members’ offsets in
the different kernel versions, as there is no source code for those versions.

(to enable protecting multiple concurrent VMs using one
instance of SVA) using the thread pool manager. SVA first
checks the control registers of the VM’s processor to get the
memory layout of the VM’s hardware (there are four main
paging modes supported by the hardware that are controlled
by the control registers CR0 and CR4), and also performs
the kernel version inference check to load the appropriate
TG. SVA then starts solving the semantic gap through the
Semantic Gap Builder (SGB) by traversing the memory
starting from the OS global variables (global variables have
static physical addresses in any OS) and then following
pointer dereferencing until it covers all memory objects,
based on KDD’s type-graph. For the Windows, we can get
the global variables addresses from Microsoft Symbols [27]
and for Linux, the addresses can be obtained from the kernel
symbol table file. As VMs including SVA does not have
direct access to the server’s physical memory, we use the
hypervisor (using VMI APIs) to read these physical memory
pages into the Memory Pages Buffer (MPB). SVA then
installs memory access or timer-based triggers on the
memory page(s) that needs to be monitored/ protected
according to the applied defence mechanisms (Defence
Modules) using the memory access handler (MAH).
Whenever a memory access to such pages occurs, the
hypervisor (via VMI APIs) notifies the MAH, and the
hypervisor suspends execution. MAH then loads the
requested memory page(s) to the Defence Modules or the
SGB to extract kernel data structure updates.

Thread Pool Manager

SGB

Defense Modules

Hypervisor

TGs MPB

VMs

SVA
MAH

Figure 8. SVA High-level Architecture.

V. IMPLEMENTATION AND EVALUATION
We implemented KDD using C# and a modified version

of pycparser [28]. KDD uses pycparser to generate the AST
files of the kernel’s source code. As pycparser cannot
process C directive statements, we developed a C
preprocessing tool that solves the directives problem. The
preprocessing tool: (i) replaces the #include with the entire
contents of the requested file. (ii) Replaces #define with any
occurrence of the identifier in the rest of the code by the
replacement value. KDD starts by the preprocessing tool
that takes the kernel’s source code as input and outputs a
processed C files. Pycparser then generates AST files and
KDD applies our points-to analysis algorithm on those files
to generate the type-graph.

Our implementation and evaluation platform for KDD is
2.2GH core i5 processor with 12 GB RAM. KDD scales to
the very large size of such OSs. Table 2 shows the amount
of type definitions (data structures/object types), global

variables and generic pointers used in the Linux kernel (~ 6
million LOC) and WRK (~ 3.5 million LOC) that have been
analysed by KDD. KDD needed 46 hours to analyze the
WRK and 72 hours to analyze the Linux kernel. As our
analysis was performed offline and just once or each kernel
version, the performance overhead of analyzing kernels was
acceptable and would not present any problem for any
security application that can use KDD. We tried to use a
commercial points-to analysis tool, CodeSurfer [29] (the
only points-to analysis tool in the market that provides field
and context sensitive analysis) to analyze kernels to
compare results and performance. However, CodeSurfer
could not perform the analysis as it ran out of memory after
several days of operation.

To evaluate the effectiveness of KDD results, we
performed a comparison between the pointer-based relations
inferred by KDD and the manual efforts of security experts
to solve these indirect relations in both Linux kernel v3.0.22
and WRK. We manually compared 74 generic pointer
structure/ global variable from WRK and 65 from Linux
kernel. Table 3 shows the results for few structures (space
limits) showing that KDD successfully concluded the
candidate target type for them with 100% soundness. KDD
is sound if the points-to set for each variable contains all its
actual runtime targets, and is imprecise if the inferred set is
larger than necessary. Imprecise results could be sound e.g.
if pts(p) = {a,c,b} while the actual runtime targets are a and
b, then KDD is sound but not precise. KDD is 100% sound
as it performs points-to analysis on all program variables
not just declared pointers, in order to cover all runtime
targets whilst omitting unnecessary local variables. Because
of the huge size of the kernel, we could not measure the
precision for nearly 60% of the members we used in our
experiment, where there is no description for these pointer-
based members in the manual efforts. We measured the
precision for the well-known objects that had been analyzed
manually to be around 96% in both Linux kernel and WRK.

To test the effectiveness of our kernel version inference
approach, we used the Windows debugging tools [27] (to
get offsets for the different kernel builds) combined with our
generated type-graph (to solve the pointer relations) to
generate unique kernel signatures for Windows XP SP2,
SP3 and 64bit using the EPROCESS structure with the data
members discussed in [26]. We succeeded in identifying the
kernel version for three memory images for SP2, SP3 and
64bit using our kernel version inference approach. We
implemented a prototype of SVA using the VMsafe APIs
(specifically vCompute APIs) on VMware ESX hypervisor.
Table 2. Kernel source code initial analysis. 1st column shows the number
of type definitions; 2nd column presents the number of global variables and
DL column shows the number of doubly linked lists. AST column shows

AST files size in gigabyte.

 TD GV Void * Null * DL AST
Linux 11249 24857 5424 6157 8327 1.6
WRK 4747 1858 1691 2345 1316 0.9

Table 3. Comparison results between the output of KDD and some facts about the kernel data indirect relations for both Linux and WRK.
 Structure / GV Computed Points-to Sets

L
in

ux

thread_group
(structure)

task_struct.thread_group:[task_struct.group_leader.thread_group; thread_group.next: [list_head.next,
task_struct.thread_group.next, task_struct.group_leader.thread_group]; thread_group.next: [list_head.next,
task_struct.thread_group.next, task_struct.group_leader.thread_group] - Context: Thread

journal_info (void*) journal_info:[btrfs_trans_handle, gfs2_trans, nilfs_transaction_info]
cg_list (structure) cg_list: [list_head, css_set.tasks, css_set __rcu.task] - Context: task_struct
btrace_seq (void*) blktrace_seq, unsigned int

W
in

do
w

s

PsActiveProcessHead
(global variable)

PsActiveProcessHead: [List_Entry, ActiveProcessLinks]
PsActiveProcessHead.Flink: [ActiveProcessLinks.Flink, ActivePr cessLinks.Flink], PsActiveProcessHead.Blink:
[ActiveProcessLinks.Blink, ActiveProcessLinks.Blink] - Context: EPROCESS

ThreadListHead
(structure)

ThreadListHead: [List_Entry], ThreadListHead.Flink: [List_Entry.Flink], ThreadListHead.Blink: [List_Entry.Blink] -
Context: ETHREAD

LdtInformation (void*) LdtInformation: [PVOID, PROCESS_LDT_INFORMATION]
DirectoryTableBase
(unsigned integer)

DirectoryTableBase: [MmCreateProcessAddressSpace:-1], DirectoryTableBase[0]: [PageDirectoryIndex, ULONG64],
DirectoryTableBase[1]: [HyperSpaceIndex, ULONG64]

Our evaluation and implementation platform for SVA is a
2.8 GHz Intel Xeon with 6GB RAM, running ESX 4.1.
Figure 9 shows the deployment model of SVA. ESX server
hosts SVA and two VMs. SVA is configured with 2GB
RAM and deployed as a virtual appliance, running Ubuntu
Linux 8.04 Server JeOS, and hosts the vCompute APIs and
our code. Our code is normal Linux C program written
using vCompute and Posix Threads APIs. SVA is isolated
from other server network workloads in a separate virtual
network using a virtual switch (vSwitch). Hosted VMs are
running Windows XP 64-bit and 32-bit. The objective of
this experiment is to prove the effectiveness of KDD and
SVA in solving the semantic gap accurately and
systematically with sound points-to sets for pointer-based
relations, not to detect threats where we utilize a traditional
memory traversal technique that is vulnerable to object
hiding attacks. SVA traversed the physical memory of the
two hosted VM’s based on: (i) the generated type-graph
from KDD, to solve pointer relations, and (ii) Microsoft
Symbols, to get members offsets for the two kernel versions
(as WRK is the only available source code for Windows
OSs). For mapping VMs that are running Linux OS, we just
need our generated type-graph only to map the physical
memory (because we have the source code of each kernel
version to be analysed by KDD).

ESX 4.1 Hypervisor
VMsafe APIs (vCompute)

vSwitch 1vSwitch 2

SVAVM1VM2

Figure 9. SVA Deployment model.

SVA correctly constructed all the running instances of the
data structures at a given memory snapshot using our
generated type-graph. The performance overhead of SVA to
map the physical memory (all the running objects) was
around 12.5 minutes for a memory image of ~ 4GB. To
validate that SVA bridged the semantic gap accurately, we
compared the external view of mapping the physical
memory to runtime objects using SVA with the internal
view of the VM using the Windows debugging tools. We

compared 43 different object types with their instances. We
started from the global variable PsActiveProcessHead then
followed pointer dereferencing until we covered 43 different
objects with their running instances. SVA successfully
mapped the correctly identified objects with a low rate of
false positives (around 1.5% in traversing balanced trees).

VI. DISCUSSION
Our experiments have shown that SVA using KDD is

able to solve the semantic gap for any C-based OS
efficiently and systematically. Performing static analysis for
the kernel source code to extract robust type definitions for
the kernel data has several advantages not just limited to
solving the semantic gap: (i) Systematic Security; enables
implementing systematic security solutions that are able to
systematically protect the overall kernel data without the
need to understand the kernel data layout. (ii) Performance
Overhead; minimize the performance overhead in any
further security module, where a major part of the analysis
process is done offline. If no static analysis were done,
every pointer dereferencing would have to be instrumented,
which increase the performance overhead. (iii) Zero-Day
Threats; maximize the likelihood of detecting zero-day
threats that target generic or obscure data structures.

To the best of our knowledge, there is no similar research
in the area of systematically solving the semantic gap,
however KOP [30] has an initiative in systematically
computing a type-graph for the kernel data, but KOP is
limited in: (i) it uses medium-level intermediate
representation (MIR) which complicates the analysis and
results in improper points-to sets. MIR is extremely big in
size, omits very important information such as declarations,
data types and type casting, and creates a lot of temporary
variables that are allocated identically to source code
variables and thus are not easily distinguishable from source
code variables (ii) the points-to sets of KOP is not highly
precise and sound compared to KDD, as KOP depends on
the Heintze points-to analysis algorithm [12] which is used
in compilers for fast aliasing. (iii) KOP could not solve the
type ambiguities for DLs. Compared to KOP (used 32GB
RAM); KDD has improved performance by around 40%.

Performance also could be improved by increasing the used
RAM and processing capabilities. To the best of our
knowledge, KDD is the only tool that can scale to produce a
detailed, highly accurate type-graph for a large-scale C
program such as an OS kernel. This scalability and high
performance was achieved by using AST as the basis for
points-to analysis. The compact and syntax-free AST
improves the time and memory usage efficiency of the
analysis. Instrumenting AST is more efficient than
instrumenting the machine code (MIR or low-level
intermediate representation) because many intermediate
computations are saved from hashing.

SUMMARY
The complexity of kernel data makes it impractical to

use manual methods to solve the semantic gap problem. In
this paper, we presented a new approach that provides a
systematic and efficient solution of the semantic gap
problem for any C-based OS, without any prior knowledge
with the OS. Our experiments showed that KDD efficiently
disambiguates the pointer-based relations including generic
pointers with high rate of soundness and precision, and
enables building an accurate type-graph that reflects the
direct and indirect relations of kernel data. SVA, based on
the generated type-graph, actively overcomes the semantic
gap and reconstructs the running dynamic kernel objects in
the VM’s physical memory.

ACKNOWLEDGEMENT
Funding provided for this research by the FRST SPPI

project and Swinburne University of Technology is
gratefully acknowledged. We also thank Swinburne
University of Technology for their scholarship support for
the first and fourth authors.

REFERENCES
[1] A. S. Ibrahim, J. Hamlyn-Harris, and J. Grundy, "Emerging Security

Challenges of Cloud Virtual Infrastructure," in Proc. of 2010 Asia
Pacific Cloud Workshop co-located with APSEC2010, Sydney,
Australia, 2010.

[2] Common Vulnerabilities and Exposures, "XEN : Security
Vulnerabilities " Accessed: Sep 2011, Available: www.cvedetails.
com/vulnerability-list/vendor_id-6276/XEN.html.

[3] Common Vulnerabilities and Exposures, "ESX : Security
Vulnerabilities " Accessed: Sep 2011, Available: www.cvedetails.
com/vulnerability-list/vendor_id-252/product_id-14181/Vmware-
ESX.html.

[4] T. Garfinkel and M. Rosenblum, "Virtual Machine Introspection
Based Architecture for Intrusion Detection," in Proc. of 2003 NDSS,
2003, pp. 191-206.

[5] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee,
"Virtuoso: Narrowing the Semantic Gap in Virtual Machine
Introspection," in Proc. of 2011 IEEE S&P, 2011, pp. 297-312.

[6] K. Nance, M. Bishop, and B. Hay, "Virtual Machine Introspection:
Observation or Interference?," J. of IEEE S&P, pp. 32-37, 2008.

[7] B. D. Payne, M. Carbone, M. Sharif, et al., "Lares: An Architecture
for Secure Active Monitoring Using Virtualization," in Proc. of IEEE
Symposium on S&P, Oakland, CA, 2008, pp. 233-247.

[8] M. Mock, D. C. Atkinson, C. Chambers, et al., "Program Slicing with
Dynamic Points-To Sets," IEEE Trans. Softw. Eng., vol. 31, pp. 657-
678, 2005.

[9] L. Andersen, "Program Analysis and Specialization for the C
Programming Language," PhD Thesis, Copenhagen University, 1994.

[10] B. Steensgaard, "Points-to analysis in almost linear time," in Proc. of
23rd POPL, Florida, United States, 1996, pp. 32-41.

[11] D. J. Pearce, P. Kelly, and C. Hankin, "Efficient field-sensitive pointer
analysis for C," in Proc. of 5th ACM SIGPLAN-SIGSOFT workshop
on Program analysis for software tools and engineering, Washington
DC, USA, 2004, pp. 37-42.

[12] N. Heintze and O. Tardieu, "Ultra-fast aliasing analysis using CLA: a
million lines of C code in a second," in Proc. of ACM SIGPLAN 2001
PLDI, Utah, USA, 2001, pp. 254-263.

[13] C. Lattner, A. Lenharth, and V. Adve, "Making context-sensitive
points-to analysis with heap cloning practical for the real world," in
Proc. of 2007 ACM SIGPLAN PLDI, USA, 2007, pp. 278-289.

[14] F. Baiardi, D. Maggiari, and D. Sgandurra, "PsycoTrace: Virtual and
Transparent Monitoring of a Process Self," in Proc. of17th PDP,
Weimar, 2009, pp. 393-397.

[15] F. Lombardi and R. D. Pietro, "KvmSec: a security extension for
Linux kernel virtual machines," in Proc. of 2009 ACM symposium on
Applied Computing, Honolulu, Hawaii, 2009, pp. 2029-2034.

[16] B. Jansen, H. Ramasamy, and M. Schunter, "Architecting Dependable
and Secure Systems Using Virtualization," Architecting Dependable
Systems, pp. 124-149, 2008.

[17] X. Jiang, X. Wang, and D. Xu, "Stealthy malware detection through
vmm-based "out-of-the-box" semantic view reconstruction," in Proc.
of 14th ACM CCS, Virginia, USA, 2007, pp. 128-138.

[18] Monirul I. Sharif, Wenke Lee, Weidong Cui, et al., "Secure in-VM
monitoring using hardware virtualization," in Proc of The 16th ACM
CCS, Chicago, Illinois, USA, 2009, pp. 477-487.

[19] A. Dastjerdi and K. A. Bakar, "Distributed Intrusion Detection in
Clouds Using Mobile Agents," in Proc. of Third International
Conference on Advanced Engineering Computing and Applications in
Sciences, 2009, pp. 175-180.

[20] J. Tiejun and W. Xiaogang, "The Construction and Realization of the
Intelligent NIPS Based on the Cloud Security," in Proc. of 1st
International Conference on Information Science and Engineering,
Nanjing 2009, pp. 1885 - 1888.

[21] M. Christodorescu, R. Sailer, and D. L. Schales, "Cloud security is not
(just) virtualization security," in Proc. of 2009 ACM workshop on
Cloud computing security, Illinois, USA, 2009, pp. 97-102.

[22] B. Hardekopf and C. Lin, "The ant and the grasshopper: fast and
accurate pointer analysis for millions of lines of code," in Proc. of
2007 ACM SIGPLAN PLDI, California, USA, 2007, pp. 290-299.

[23] H. Yu, J. Xue, W. Huo, X. Feng, and Z. Zhang, "Level by level:
making flow- and context-sensitive pointer analysis scalable for
millions of lines of code," in Proc. of 8th annual IEEE/ACM CGO,
Ontario, Canada, 2010, pp. 218-229.

[24] B. Hardekopf and C. Lin, "Semi-sparse flow-sensitive pointer
analysis," in Proc. of 36th POPL, GA, USA, 2009, pp. 226-238.

[25] R. Ghiya, D. Lavery, and D. Sehr, "On the importance of points-to
analysis and other memory disambiguation methods for C programs,"
in Proc. of ACM SIGPLAN 2001 PLDI, Utah, US, 2001, pp. 47-58.

[26] B. Dolan-Gavitt, A. Srivastava, et al. "Robust signatures for kernel
data structures," in Proc. of16th CCS, USA, 2009, pp. 566-577.

[27] Microsoft, "Debugging Tools For Windows," Accessed Dec 2010,
Available: msdn.microsoft.com/en-us/windows/hardware/gg463009.

[28] E. Bendersky, "pycparser: C parser and AST generator written in
Python " 2011, Available at http://code.google.com/p/pycparser/.

[29] GrammaTech. (Accessed: Nov 2011, www.grammatech.com/
products/codesurfer/overview.html). CodeSurfer®.

[30] M. Carbone, W. Cui, L. Lu, and W. Lee, "Mapping kernel objects to
enable systematic integrity checking," in Proc of 16th ACM CCS,
Chicago, USA, 2009, pp. 555-565.

