
QoS-Driven Service Selection for Multi-Tenant SaaS

Qiang He, Jun Han, Yun Yang and John Grundy

Faulty of Information and Communication
Technologies

Swinburne University of Technology
Melbourne, Australia

{qhe, jhan, yyang, jgrundy}swin.edu.au

Hai Jin

Services Computing Technology and Systems Lab
Cluster and Grid Computing Lab

School of Computer Science and Technology
Huazhong University of Science and Technology

Wuhan, China
hjin@hust.edu.cn

Abstract—Cloud-based software applications (Software as a
Service - SaaS) for multi-tenant provisioning have become a
major development paradigm in Web engineering. Instead of
serving a single end-user, a multi-tenant SaaS provides
multiple end-users with the same functionality but with
potentially different quality-of-service (QoS) values. The
service selection for such a SaaS is a complex decision-making
process which involves a number of stakeholders with different
QoS requirements. SaaS developers need to compose services
with different QoS values to meet end-users’ different multi-
dimensional QoS constraints for the SaaS. Furthermore, they
also need to satisfy SaaS providers’ optimisation goals for the
SaaS, such as least resource cost and best system performance.
Existing QoS-aware service selection approaches are oriented
at a single tenant. They do not consider the characteristics of
multi-tenant SaaS and hence are ineffective and inefficient
when applied to compose multi-tenant SaaS. In this paper, we
introduce a novel QoS-driven approach for helping SaaS
developers select the services for composing multi-tenant SaaS,
which achieves SaaS providers’ optimisation goals while
fulfilling the end-users’ different levels of QoS constraints. The
proposed approach is evaluated using an example SaaS
synthetically generated based on a dataset of real-world Web
services. Experimental results show that our approach
significantly outperforms existing approaches in terms of both
effectiveness and performance.

Keywords-Cloud computing; SaaS; Service Composition;
Quality of Service; Multi-Tenancy; Optimisation

I. INTRODUCTION

Cloud computing provides on-demand provisioning of
software applications (Software as a Service - SaaS) [1],
which are built on compositions of services that are locally
or remotely accessed by an application engine (e.g., a BPEL
engine [2]). In order to offer cost-effective solutions to
multiple end-users, a SaaS must achieve multi-tenancy, i.e.,
the ability to satisfy multiple end-users in parallel based on a
single application instance [3]. These end-users (stakeholders
of the SaaS), although require the same functionality, usually
have (and often different) multi-dimensional QoS constraints
for the SaaS, e.g., response time, throughput and availability.
In addition, the SaaS provider (also a stakeholder) often has
its own optimisation goal for the SaaS, e.g. least resource
cost, best performance or maximised revenues [4]. Moreover,

in a cloud environment, the candidate services available
(both in-house and external) for composing SaaS often differ
in their QoS values. To compose a multi-tenant SaaS, the
developer needs to, from the available candidate services,
select appropriate services that meet all stakeholders’
requirements for the SaaS, including end-users’ QoS
constraints and SaaS provider’s optimisation goal.

The management of a multi-tenant SaaS involves work
on different levels, including data-centre level, infrastructure
level and application level [5]. In this research we focus on
QoS management for SaaS on the application level. The QoS
delivered to an end-user can be guaranteed by creating an
execution plan using the services with the “right” QoS values.
Existing approaches to QoS guarantee and optimisation [6-9]
target single-end-user systems - they optimise the quality of
a SaaS for only a single end-user. However, a multi-tenant
SaaS needs to serve multiple end-users that have potentially
different QoS constraints. A possible solution is to adopt one
of the existing single end-user oriented optimisation
approaches to optimise the QoS for the end-users one by one.
However, it is very difficult for such optimisation
approaches to achieve the SaaS provider’s optimisation goal
- while the QoS delivered to individual end-users are locally
optimal the overall quality of the SaaS might not be optimal.

According to [10], there has been a more than 130%
increase in the number of published Web services from
October 2006 to October 2007. The statistics published by
webservices.seekda.com, a Web service search engine, also
indicate an exponential growth in the number of published
Web services. In addition, the proliferation of cloud
computing is promoting this growth trend, further increasing
the number of available services for composing SaaS [8]. In
such a large-scale scenario, applying existing single-tenant-
oriented service selection approaches for composing multi-
tenant SaaS is very computationally expensive.

In order to address the above issues, this research aims to
provide novel techniques and tools to support service
selection for multi-tenant SaaS. This work is motivated by
the needs to:
• Help SaaS developers capture and model end-users’

multi-dimensional QoS constraints for the SaaS.
• Help SaaS developers model SaaS providers’ various

optimisation goals.

jgrundy
In proceedings of 5th IEEE Conference on Cloud computing (CLoud 2012), 24-29 June, Waikiki, Hawaii, USA, © IEEE 2012

jgrundy

• Help SaaS developers select the services for SaaS that
meet all their stakeholders’ QoS requirements.

• Help SaaS developers find near-optimal solutions for
multi-tenant SaaS efficiently in large-scale scenarios.
This paper introduces a novel QoS-driven approach,

named MSSOptimiser (Multi-tenant SaaS Optimiser), for
effective and efficient service selection for multi-tenant SaaS.
It takes as input the functional business process specification
of the SaaS, the stakeholders’ QoS requirements and the QoS
information of the available candidate services, and
generates as output the execution plans for the end-users that
are to be executed by the SaaS and meet all stakeholders’
QoS requirements. The novelty of MSSOptimiser lies in its
full support for composing a multi-tenant SaaS that meets
different QoS requirements of multiple stakeholders. The
major contributions of this paper include:
• We effectively capture and model the differences in end-

users’ multi-dimensional QoS constraints, in SaaS
providers’ optimisation goals and in the quality of the
candidate services. This is achieved by modelling the
problem of service selection for a multi-tenant SaaS as a
constraint optimisation problem (COP).

• For extremely large-scale scenarios where finding an
optimal solution to the SaaS optimisation problem is too
computationally expensive, we introduce a greedy
algorithm to help developers efficiently find a near-
optimal solution.

• To evaluate MSSOptimiser, we conduct extensive
experiments using a published real-world Web service
dataset which contains QoS information about over 2500
real-world Web services. The experiments have shown
that MSSOptimiser significantly outperforms existing
approaches in terms of both effectiveness and
performance.
The rest of this paper is organised as follows: Section II

presents an example to motive this research. Section III
introduces related work. Section IV introduces the
compositional quality model for SaaS quality evaluation.
Section V presents the mechanisms for SaaS optimisation
based on the compositional quality model. Section VI
demonstrates the effectiveness and performance of
MSSOptimiser. Section VII concludes the paper and outlines
future work.

II. MOTIVATING EXAMPLE

Figure 1 shows an example of multi-tenant SaaS that
finds the best used-car offers. Its functionality is represented
as a business process that includes five tasks (t1, …, t5). This
example originates from Alrifai et al. [8] and is adapted to
the characteristics of this research. The SaaS serves multiple
used-car dealers by processing their requests. The dealers
submit requests to the SaaS, specifying the criteria for
selecting the cars for their customers (e.g., brand, type and
model). In response to each request, the SaaS returns a list of
used cars with a loan offer and an insurance quote for each
car on the list. These dealers, although requesting the same
functionality of finding the best used-car offers, usually have
different multi-dimensional constraints for the quality of the

SaaS. For instance, one dealer may require a very fast
response time despite a high price for such a high-
performance SaaS, while another dealer is primarily
concerned about the throughput of the SaaS. The SaaS
provider, on the other hand, also has its own optimisation
goal for the SaaS. Two examples of such goals are 1) to
minimise the cost of resource usage for the SaaS, i.e., the
total cost of the services selected to serve the end-users, and
2) to maximise the overall SaaS performance regardless of
the cost of resource usage.

For each car dealer, an execution plan needs to be created
by selecting one service from each of the five sets of
functionally equivalent in-house (denoted by light grey
circles) and external (denoted by dark grey circles) candidate
services. The goal of composing this SaaS is to make sure
that the execution plans collectively achieve the SaaS
provider’s optimisation goal, while separately fulfilling
respective dealers’ QoS constraints. Similarly to other
research efforts [6-9, 11], in this research, we assume that
alternative functionally equivalent services are available and
can be categorised into different service classes based on
their functionalities.

III. RELATED WORK

In recent years, the problem of QoS-aware service
selection for composing software applications has received a
lot of attention from many researchers. To name a few, in [6,
12], Zeng et al. present AgFlow, a middleware platform that
enables QoS-driven composition of Web services. Integer
Programming (IP) is used to compute the optimal plan for
composite service executions from several execution paths
represented by Directed Acyclic Graph (DAG). Following
the work in [6, 12], in [7], Ardagna and Pernici formulate the
QoS-aware service selection problem as a Mixed Integer
Linear Programming (MILP) problem and adopt loops
peeling for optimisation. When a feasible solution does not
exist, a QoS negotiation algorithm is suggested to enlarge the
solution space of the optimisation problem. Berbner et al.
[13] design a Web service-based workflow engine named
WSQoSX, which aims at optimising QoS-aware service
composition under heavy load in real-time. A heuristic
algorithm is proposed. Firstly, linear programming is used to

Figure. 1. Multi-tenant SaaS.

relax the mixed integer programming formulation of the
service composition problem constructed by Zeng et al. in [6,
12]. Then a backtracking algorithm is used to construct a
feasible solution based on the result of the relaxed integer
problem. Alrifai et al. [8, 9] adopt a heuristic distributed
method to find the best Web services that meet local QoS
constraints generated by decomposing global QoS
constraints using integer linear programming. The work in
[11] models QoS-aware service selection as a 0-1 knapsack
problem as well as a multi-constraint optimal path problem.
Yu et al. present heuristic algorithms to find near-optimal
solutions in polynomial time. For different compositional
structures, e.g. sequence, parallel, branches and loops,
different algorithms are proposed. In [14], Wang et al. find
that optimal solutions can be found in polynomial time for
some specially structured service compositions. The
common and critical limitation of these existing approaches
when applied in cloud computing is that they only support
single-tenant SaaS - they try to optimise the QoS for only
one end-user. These approaches can be adopted to create
execution plans for multiple end-users one after another. The
result is that, although the created execution plans can locally
fulfil the QoS constraints of corresponding end-users, the
overall quality of the SaaS is usually sub-optimal, i.e., the
SaaS provider’s optimisation goal for the SaaS is not
achieved. Furthermore, applying these approaches to
compose multi-tenant SaaS is very computationally
expensive in large-scale scenarios.

To address the above issues, this paper presents
MSSOptimiser, an approach that supports service selection
for multi-tenant SaaS. MSSOptimiser can help SaaS
developers efficiently select appropriate services to compose
an optimal SaaS that fulfils the QoS constraints of multiple
end-users.

IV. COMPOSITIONAL QUALITY MODEL

In this section, we present the compositional structures
for representing the business processes of SaaS, the quality
and utility evaluation methods for SaaS.

A. Compositional Structures

Compositional structures describe the order in which the
tasks are implemented in the business process of a SaaS. In
this research, we consider four types of basic compositional
structures, i.e., sequence, branch, loop and parallel [7, 15],
which are included in BPMN [16] and addressed by BPEL [2]
- the de facto standards for specifying service-oriented
business processes.
• Sequence. In a sequence structure, the services are

executed one by one.
• Branch. In a branch structure, only one branch is

selected for execution. For every set of branches {b1, …,
bn}, the execution probability distribution

1
{ }

nb bp ..., p,

(0≤
ibp ≤1,

1
=1.0)

i

n

bi
p

=∑ is specified, where
ibp , i=1, …,

n, is the probability that bi is selected for execution.
• Loop. In a loop structure, the loop is executed for n (n≥0)

times. For every loop, the probability distribution {p0, …,

pMNI}, (0≤pi≤1,
=0

1.0)=
MNI

i ip∑ is specified, where pi, i=0,

…, MNI, is the probability that the loop iterates for i
times and MNI is the expected Maximum Number of
Iterations for the loop.

• Parallel. In a parallel structure, all the branches are
executed at the same time.

ibp , ip and MNI can be evaluated based on the SaaS’s
past executions or can be specified by the SaaS developer [6,
7]. In this research, we assume that for every loop, the MNI
is determined. Otherwise, if an upper bound for the number
of iterations for a loop does not exist, the QoS delivered by
the execution plan that contains the loop cannot be calculated
since the loop can iterate infinitely.

B. Quality Evaluation

The execution plan created for an end-user must meet the
end-user’s multi-dimensional QoS constraints. Thus, we
need to evaluate the QoS delivered by an execution plan,
considering all its execution paths. An execution path is a set
of services forming a sequential path from the initial service
to the final service of an execution plan. Take execution plan
1 in Figure 1 for example, there are two execution paths:
ep1=s1,1-s2,1-s3,1-s5,1 and ep2=s1,1-s2,1-s4,1-s5,1. For a SaaS S , let
eplk (k=1, 2, …) be its execution plans, epk,i (i=1, 2, …) be
eplk’s execution paths, sk,i,j (j=1, 2, …) be epk,i’s constituent
services, the QoS delivered by the execution plans and the
overall quality of the SaaS can be evaluated using the
aggregation functions presented in Table 1 [6]. For example,
the cost of execution plan 1 in Figure 1 can be calculated by

1 ,11
()

5
priceii

cost epl s .q
=

=∑ and the cost of the SaaS (given

 m=3) can be calculated by cost(S)=
3

1
()i

i
cost epl

=∑ .

In this paper, examples are based on a subset of QoS
parameters, including price (or cost) and response time,
which also have been the basis for QoS consideration in
other approaches [6-8]. Other QoS parameters can be
generalised as added dimensions in the quality model.

Numerical QoS parameters can be divided into two
categories: positive and negative QoS parameters. A positive
QoS parameter is a QoS parameter whose evaluation will
increase as its value increases, e.g., availability and
throughput. A QoS parameter is a negative QoS parameter
whose evaluation will decrease as its value increases, e.g.,
price (or cost) and response time. To accommodate non-
numerical QoS parameters (e.g., reputation) that are
expressed by a rating selected from {very high, high,

Figure 2. The loop peeling process.

medium, low, very low}, the approach proposed by Mumtaz
et al. in [17] is adopted. Based on a pre-defined semantics-
based hierarchical structure of all possible values of a non-
numerical QoS parameter, each level of the hierarchy is
associated with a numerical value. In this way, the utility of
the QoS parameter can be calculated and the QoS parameter
can be termed negative or positive. If the levels that are more
preferable to end-users are assigned with higher values, the
QoS parameter is treated as a positive QoS parameter, and
vice versa.

In the remainder of this paper, we use negative QoS
parameters and omit mostly repetitive yet similar
introduction for positive QoS parameters.

C. Utility Evaluation

Functionally equivalent services usually differ in
multiple QoS parameters. For example, the Insurance Quote
service provided by a service provider may have lower
response time but require higher price than the Insurance
Quote service provided by another service provider.
Selecting from these services by their QoS characteristics is
a multi-attribute decision making problem. For the purpose
of ranking and sorting the services in a same service class, a
method is needed to evaluate a given service based on its
multiple QoS parameters. In this research, we use the method
adopted in [6-9] for service utility evaluation.

Given the utility of the services, denoted by u(si), the
utility of an execution path epj composed by n (n≥1) services
s1, …, sn, can be calculated by:

1

() ()
n

j i
i

u ep u s
=

= ∑ (1)

Let efi be the execution frequency (i.e., execution
probability) of an execution path epi in an execution plan eplj.
The utility calculation of eplj must consider all its execution
paths according to their execution frequencies:

1

() ()
n

j i i
i

u epl ef u ep
=

= ⋅∑ (2)

The overall utility of the SaaS, denoted by u(S), that
consists of m (m≥1) execution plans can be calculated by:

1

() ()
m

i i
i

u w u epl
=

= ⋅∑S (3)

where wi is the SaaS provider’s preference and priority for

the ith end-user, [0,1]iw ∈ and
1

1
m

ii
w

=
=∑ . For example,

given m=3, the utility of the SaaS presented in Figure 1 is

calculated by: ()u S =w1·u(epl1)+w2·u(epl2)+w3·u(epl3).

V. SYSTEM OPTIMISATION

A multi-tenant SaaS requires that all end-users’ multi-
dimensional QoS constraints for the SaaS are fulfilled. Thus,
for each end-user, an execution plan needs to be created that
fulfils the end-user’s QoS constraints. Meanwhile, all the
execution plans must collectively achieve the SaaS
provider’s optimisation goal. In this section, we present the
optimisation formulation and techniques that support service
selection for such a multi-tenant SaaS.

A. Determining Execution Plans

Suppose the business process of a SaaS S consists of n
(n≥1) tasks. Assume there are n service classes Si, i=1, …, n,
each containing r (r≥1) available services si,j, j=1, …, r, that
provide the same functionality but potentially differ in t QoS
parameters qp, p=1, …, t, The problem of service selection
for S that serves m (m≥1) end-users is a constraint
optimisation problem that aims at finding the services for
creating m execution plans eplk, k=1, …, m, that fulfil
corresponding end-users’ t-dimensional QoS constraints ck,p,
k=1, …, m, p=1, …, t, while achieving the SaaS provider’s
optimisation goal objective(S). In this research, we assume
that r≥m, i.e., there are enough candidate services in each
service class to be selected exclusively for creating an
execution plan for each end-user. If r<m, more candidate
services need to be discovered through sources of services,
e.g., public UDDI registry and service search engine.

To model end-users’ different multi-dimensional QoS
constraints, we first model the service selection for a multi-
tenant SaaS as a constraint satisfaction problem (CSP),
which consists of a finite set of variables X={x1, …, xn}, with
respective domains D={D1, …, Dn} listing the possible
values for each variable, and a set of constraints C={c1, …, ct}
over X. A solution to a CSP is an assignment of a value to
each variable from its domain such that every constraint is
satisfied. The CSP model of the above problem can be
formally expressed as follows.

For m end-users, there are m×n×r 0-1 variables Xk,i,j (k=1,
1, …, m, i=1, …, n, j=1, …, r and Dk,i,j={0, 1}), Xk,i,j being 1
if the jth candidate service in the ith service class is selected to
create the execution plan for end-user k, 0 otherwise. The
constraints for the CSP model are:

1

1 [1,] [1,]
r

k ,i , j
j

X k m i n
=

= ∀ ∈ ∈∑ (4)

1

1 [1,] [1,]
m

k ,i, j
k

X i n j r
=

= ∀ ∈ ∈∑ (5)

11

[1,]
m r

k ,i , j
jk

X m i n
==

= ∀ ∈∑∑ (6)

 [1], [1,]k p k ,pepl .q c k , m p t< ∀ ∈ ∈ (7)

where eplk.qp is the pth QoS parameter of the execution plan for
end-user k and can be obtained by applying the QoS aggregation

TABLE I. QOS AGGREGATION FUNCTIONS

Quality Parameter Aggregation Function

Cost

()

k ,i , j k

pricek k ,i ,j
s epl

cost epl s q
∈

= ⋅∑

()= ()k

kepl

cost cost epl
∈
∑
S

S

Response Time

()= max ()j

i
ji k

ii

resTimek ep epl
s ep

resTime epl s q
∈

∈

⋅∑
 ()= average (())

k

k
epl

resTime resTime epl
∈S

S

Availability

()

i k

ik availability
s epl

availability epl s q
∈

= ⋅∏

()= average (())

k

k
epl

availability availability epl
∈S

S

Throughput

()= min (min ())
j

i ii

j
ik throughputep epl s ep

throughput epl s q
∈ ∈

⋅

()= ()k

kepl

throughput throughput epl
∈
∑
S

S

functions presented in Table 1.
Constraint family (4) guarantees that only one candidate

service is selected in each class for one end-user. Constraint
family (5) guarantees that one service can only be selected
for one end-user. Constraint family (6) ensures that a total of
m candidate services are selected in each service class.
Constraint family (7) ensures that each end-user’s t-
dimensional QoS constraints are fulfilled by the
corresponding execution plan.

Solving the above CSP can generate a solution consisting
of m execution plans that fulfil the corresponding end-users’
QoS constraints. Such a solution is called a feasible solution.
Very often, there are many feasible solutions that differ in
their QoS values, e.g., overall SaaS utility and overall cost.
Now we seek to achieve the SaaS provider’s optimisation
goal for the SaaS. Given an objective function that represents
the SaaS provider’s optimisation goal, the CSP is turned into
a constraint optimization problem (COP). In a COP, each
solution generated by solving the CSP is associated with a
ranking value for the objective function. The solution with
the optimal ranking value is the optimal solution to the COP.

System providers’ optimisation goals can be various,
which can be represented using different objective functions.
In this research, we use the objective functions for two
typical optimisation goals as examples: 1) to maximise the
overall SaaS utility; and 2) to minimise the overall cost of
resource usage for the SaaS.
• Maximising the overall SaaS utility. This optimisation

goal is to maximise the overall utility of the SaaS. The
objective function that captures this optimisation goal is
as follows:

1 1 1 1

(): maximise ()

m n r t

k ,p i , j p k ,i , j
k i j p

objective w u s .q X

= = = =

× ×∑∑∑∑S (8)

where wk,p is the weight that represents the kth end-user’s
preference and priority for the pth QoS parameter of the
SaaS.

• Minimising the overall cost of resource usage. This
optimisation goal is to minimise the total price of the
selected services. The objective function that captures
this optimisation goal is as follows:

1 1 1

(): minimise

m n r

i , j k ,i , j
k i j

objective s .price X

= = =

×∑∑∑S (9)

where si,j.price is the price of the jth candidate service in
the ith service class.
This COP can be solved by applying Integer

Programming techniques [6] (or the Mixed Integer
Programming technique [7, 8] if decimal variables are
involved). Based on the results from solving the COP,
execution plans can be created for the end-users, which
individually meet their QoS constraints and collectively
achieve the SaaS provider’s optimisation goal.

B. Find Near-Optimal Solutions

In service selection for multi-tenant SaaS, given n service
classes, each containing r candidate services, there are
()

m n

rP possible combinations of services for a SaaS that

serves m end-users. It is practically tractable only when the
number of candidate services is small. The pay-per-use
business model driven by cloud computing and SaaS enables
service providers to offer their services to end-users with
different QoS values and prices. As a result, the number of
candidate services available for SaaS is expected to grow
dramatically in the foreseeable future. In such scenarios,
using Integer Programming to find the optimal solution to
the COP described in Section V.A can be very
computationally expensive. The skyline technique [18] can
be applied to reduce the search space of the COP [8].
However, after pruning the non-skyline services, the number
of remaining candidate services may still be too large for the
SaaS optimisation problem to be solved efficiently. The
possible reasons are twofold. First, the QoS parameters of
the services are often anti-correlated. Second, in practice, the
number of skyline services increases rapidly with the
dimensionality of their QoS, i.e., the number of their QoS
parameters [19].

In such cases, MSSOptimiser provides a greedy
algorithm to help the SaaS developer find a near-optimal
solution to the SaaS optimisation problem efficiently. The
greedy algorithm always selects the most representative
candidate services that are more likely to be part of the
solution that achieves the optimisation goal. To serve m end-
users, m services need to be finally selected from each
service class to create m execution plans. Thus, the greedy
algorithm starts with selecting the first batch of m most
representative candidate services from each service class.
Then, the selected representative candidate services are
inserted into the search space of the COP (see Section V.A)
and the COP is solved. If no solution can be found using
these candidate services, another batch of the m most
representative candidate services are selected from each
service class and added to the search space of the COP. This
process is repeated until a solution is found or until it is
determined that a solution cannot be found, i.e., all the
skyline services have been considered and yet no solution
can be found.

The criterion for selecting the representative candidate
services is dependent on the SaaS provider’s optimisation
goal. For example, if the optimisation goal is to minimise the
overall cost of resource usage, the greedy algorithm will give
preferences to the candidate services with the lowest prices.
If the optimisation goal is to maximise the overall SaaS
utility, the greedy algorithm will always, from the remaining
candidate services, select the ones with the highest utility
values. However, the end-users of the SaaS usually have
different priorities and preferences for different QoS
parameters. Thus, a utility function is needed for evaluating
the average utility of a given service across all end-users.
Suppose there are m end-users, we average the weights that
represent individual end-users’ preferences and priorities for
different QoS parameters to calculate an average weight for
each of the t QoS parameters considered in the calculation of
the average utility:

1

1
m

ave,p i ,p
i

mw w
=

= ⋅∑ , p=1, …, t (10)

where wi,p ∈ [0, 1]
1

1
m

i,pi
w

=
=∑ and wi,p is the weight that

represents the ith end-user’s preference and priority for the
kth QoS parameter.

Then, the average utility of a given service si,j with t QoS
parameters across all end-users is calculated as:

1

() ()

t

ave i , j ave,p i , j p
p

u s w u s .q
=

= ×∑ (11)

C. Integrated Optimisation Methods

Combining the techniques introduced above, including
integer programing (Section V.A), skyline computation
(Section V.B) and greedy algorithm (Section V.B),
MSSOptimiser provides three different SaaS optimisation
methods: 1) Exact-Global. This optimisation method creates
execution plans for all end-users in one COP model,
considering all the services in each service class as candidate
services. This method is suitable for small-scale scenarios
where the skyline computation and the greedy algorithm are
unnecessary. 2) Skyline-Global. This optimisation method
creates execution plans for all end-users in one COP model,
giving preferences to the skyline services in each service
class as candidate services. This method is suitable for large-
scale scenarios where the optimisation problem can be
solved efficiently after pruning the non-skyline services. 3)
Greedy-Global. This optimisation method creates execution
plans for all end-users in one COP model, using the greedy
algorithm and giving preferences to the most representative
candidate services in each service class as candidate services.
This method is suitable for extremely large-scale scenarios
where the optimisation problem still cannot be solved
efficiently after pruning the non-skyline services.

VI. EXPERIMENTS

This section presents the experimental evaluation of our
approach, focusing on the comparison with existing
optimisation approaches in terms of effectiveness (measured
by the success rate of finding an optimisation solution) and
performance (measured by the computation time taken to
find an optimisation solution).

A. Prototype Implementation

We have implemented MSSOptimiser in Java using JDK
1.6.0 and Eclipse Java EE IDE. The prototype includes three
main modules: a skyline operator, a greedy representative
candidate services selector and an integer programming
problem solver. For solving the COPs, we used CPLEX
v12.2, a commercial solver developed by IBM. By
integrating the modules, the prototype realised the three SaaS
optimisation methods presented in Section V, i.e., Exact-
Global, Skyline-Global and Greed-Global. Given the
functional specification of the business process of a SaaS, the
quality information about the candidate services, a set of
end-users’ quality constraints and an optimisation objective,
the prototype, using the selected optimisation method,
generates the execution plans that separately fulfil the end-
users’ QoS constraints and collectively achieve the
optimisation objective.

B. Experimental Setup

We evaluated MSSOptimiser using the prototype and a
publicly available Web service dataset QWS [10], which
comprises measurements of nine QoS parameters of over
2500 real-world Web services. The information about the
services was collected from public UDDI registries, search
engines and service portals. Their QoS values were measured
using commercial benchmark tools. For large scenarios that
involved more than 2500 services, we created extra services
based on QWS. In the experiments, we considered a SaaS
whose business process consists of five tasks, as presented in
Figure 1. Accordingly, we randomly partitioned the services
in QWS into five categories as if they were the five classes of
candidate services corresponding to the five tasks. We added
a randomly generated price to each candidate service as an
additional QoS parameter. End-users’ QoS constraints were
randomly generated. To compare our approach with existing
approaches, we implemented the optimisation approaches
presented in [7] and [8]. Specifically, we compared our SaaS
optimisation methods with the following methods using
average results from 100 instances for each set of
experiments:

In the experiments, we utilised the example SaaS
presented in Figure 1. Accordingly, we randomly partitioned
the services in QWS into five categories as if they were the
five classes of candidate services corresponding to the five
tasks. End-users’ QoS constraints were randomly generated
according to normal distributions from intervals whose lower
and upper bounders are determined using the worst and best
QoS values of all candidate services in each service class. To
compare our approach with existing approaches, we
implemented the optimisation approaches presented in [7]
and [8] as they are also based on integer programming
techniques - as far as we understand the most popular and
representative techniques adopted in research on QoS-aware
service compositions. Specifically, we compared our SaaS
optimisation methods with the following methods using
average results from 100 instances for each set of
experiments: 1) Skyline-Local. This optimisation method
adopts the approach presented in [8], which creates
execution plans for the end-users one by one in different
COP models, giving preferences to the skyline services in
each service class as candidate services. 2) Exact-Local. This
optimisation method adopts the approach presented in [7],
which creates execution plans for the end-users one by one in
different COP models, considering all the services in each
service class as candidate services. 3) Greedy-Local. This
optimisation method adopts a greedy algorithm similar to the
method presented in [8], which creates execution plans for
the end-users one by one in different COP models, giving
preferences to the most representative candidate services in
each service class as candidate services.

The experiments were conducted on a machine with
AMD Athlon(tm) X4 640 3.00GHz CPU and 8 GB RAM,
running Windows 7 x64 Ultimate.

C. Experimental Results

In this section, we present the experimental results and
compare our global methods with their corresponding local

methods, i.e., Exact-Local vs. Exact Global, Skyline-Local
vs. Skyline-Global and Greedy-Local vs. Greedy-Global.

We first compare the effectiveness of the six optimisation
methods by their success rates of SaaS optimisation, i.e., the
percentage of scenarios where a solution could be found that
met all stakeholders’ QoS requirements. In this series of
experiments, we fixed the number of candidate services per
class at 100 and changed the number of end-users from 10 to
60 at steps of 10. As illustrated in Figure 3, the global
methods significantly outperform the local methods. The
global methods maintain a very high level of success rate
(above 90%) across all scenarios while the success rate
obtained by the local methods decrease quickly from 100%
to 0% as the number of end-users increases from 10 to 60.
The consistency of the success rates obtained by the
approaches in the global approaches family or the local
approaches family demonstrates that the skyline technique
and the greedy algorithm do not negatively impact the
effectiveness of the optimisation methods.

We also compared the SaaS utility obtained (when a
solution was found) by the six optimisation methods. The
SaaS utility, which is cumulative, increases as the number of
end-users increases (see formula (3)). Thus, we use the
utility per end-user, calculated by ()/u mS , where m is the

number of end-users, as the measurement for the evaluation
in this set of experiments. As presented in Figure 4, the
global methods beat the local methods. In particular, Exact-
Global and Skyline-Global yielded the highest utility per
end-user while the Greedy-Local and the Skyline-Local
methods yielded the lowest and second lowest utility per
end-user. However, the utility optimalities of the two greedy
methods, evaluated by ugreedy/uoptimal, where ugreedy and uoptimal

are the utility per end-user obtained by the greedy methods
and the optimal methods respectively, are all above 95% in
all scenarios when a solution can be found. In Figures 3 and
4 (as well as Figure 5 (b)), the data for the local optimisation
methods in scenarios where the number of end-users exceeds
50 are missing because in these scenarios no solution could

be found using local optimisation methods.
The optimisation of service selection for a multi-tenant

SaaS comes at a price - the computational overhead
measured by computation time. In large-scale scenarios, the
computational overhead of the optimisation methods is a
very important concern to SaaS developers. To compare the
computational overhead of the six different optimisation
methods, we conducted a series of experiments in different
scenarios, where the scales vary in three different aspects
that affect the computational overhead of the optimisation
methods:
• the number of QoS constraints, which determines the

number of each end-user’s QoS constraints for the COP;
• the number of end-users, which determines the number

of sets of end-users’ QoS constraints for the COP; and
• the number of candidate services per service class,

which determines the size of the original search space of
the COP.
As presented in Figures 5 (a), (b) and (c), the global

methods significantly beat corresponding local methods in
most cases. In particular, Greedy-Global clearly outperforms
all other methods across all scenarios. Skyline-Global,
showing a performance similar to Greedy-Local, beats the
remaining three methods. Thus, Greedy-Global is the best
option if performance is the priority, while Skyline-Global is
the best option if the SaaS being optimised to the fullest
extent is desirable.

In Figure 5 (a), as the number of QoS constraints exceeds
three, Skyline-Local and Skyline-Global start to significantly
outperform Exact-Local and Exact-Global respectively
because the number of skyline services starts to grow rapidly.
However, as the number of QoS constraints continues to
increase, the outperformance margins start to decrease. The
reason is that the number of skyline services in each service
class is approaching the totasl number of candidate services
in the service class, giving Skyline-Local and Skyline-Global

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10

Co
m

pu
ta

tio
n

 T
im

e
(M

ili
se

co
nd

)

Number of QoS Constraints

Excat-Local
Exact-Global
Skyline-Local
Skyline-Global
Greedy-Local
Greedy-Global

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

10 20 30 40 50 60

Co
m

pu
ta

tio
n

 T
im

e
(M

ili
se

co
nd

)

Number of End-users

Excat-Local
Exact-Global
Skyline-Local
Skyline-Global
Greedy-Local
Greedy-Global

 (a) (b)

10

100

1000

10000

100 200 300 400 500 600 700 800 900 1000

Co
m

pu
ta

tio
n

Ti
m

e
(M

ili
se

co
nd

)

Number of Services in Each Class

Excat-Local Excact-Global
Skyline-Local Skyline-Global
Greedy-Local Greedy-Global

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

Co
m

pu
ta

tio
n

Ti
m

e
(M

ili
se

co
nd

)

Overall Scale

Excat-Local
Excact-Global
Skyline-Local
Skyline-Global
Greedy-Local
Greedy-Global

 (c) (d)

Figure 5. Computation time: (a) vs. number of QoS constraints (b) vs. number
of end-users (c) vs. number of services in each class (d) vs. overall scale
(number of QoS constraints – number of end-users – number of candidate
services per class).

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60

Su
cc

es
s

Ra
te

 (%
)

Number of End-users

Excat-Local Exact-Global Skyline-Local
Skyline-Global Greedy-Local Greedy-Global

Figure 3. Successful rate vs. number of end-users.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

10 20 30 40 50 60

U
til

ity
 p

er
 C

lie
nt

Number of End-users

Excat-Local Exact-Global Skyline-Local
Skyline-Global Greedy-Local Greedy-Global

Figure 4. System utility vs. number of end-users.

less advantage over Exact-Local and Exact-Global.
Figure 5 (b) shows that Skyline-Global outperforms

Exact-Global until the number of end-users reaches 50. In
the scenarios with 50 and 60 end-users, the number of
skyline services is not enough for creating enough execution
plans for the end-users. In such cases, Skyline-Global had to
use all the services in each class as candidate services. The
situation of Skyline Local vs. Exact Local is the same.

Figure 5 (c) shows that the greedy methods perform
clearly better (especially Greedy-Global) than other methods
in scenarios where the number of candidate services per class
is significantly larger than the number of end-users (10 in
this series of experiments).

In order to compare the computational overhead of the
six optimisation methods against the three aspects combined,
i.e., the numbers of QoS parameters, end-users and candidate
services per class, we conducted a set of experiments where
the scale of the scenarios varies in all the above three aspects.
The results are presented in Figure 5 (d). Again, Greedy-
Global outperforms all other methods remarkably. Skyline-
Global, showing the second best performance, starts to
significantly outperform the other four methods as the
number of QoS constraints exceeds 3. The results from this
series of experiments show that Greedy-Global and Skyline-
Global are still the best two options.

VII. CONCLUSIONS

In this paper, we have proposed MSSOptimiser, a QoS-
driven approach which supports the service selection for
multi-tenant cloud-based software applications (Software as
a Service - SaaS). Using optimisation techniques,
particularly Integer Programming, it helps SaaS developers
determine the optimal services for a multi-tenant SaaS that
meet different stakeholders’ QoS requirements, including the
optimisation goal of the SaaS provider and the different
levels of QoS constraints of different end-users. In large-
scale scenarios where the SaaS optimisation problem is
computationally expensive, MSSOptimiser provides a
greedy algorithm to find a near-optimal solution efficiently.
We have evaluated MSSOptimiser using an example SaaS
synthetically generated based on a large real-world Web
services dataset, and compared the effectiveness and
performance of the proposed approach to existing
approaches. The evaluation has shown that the proposed
SaaS optimisation methods outperform existing methods
significantly in terms of both effectiveness and performance.
In particular, Skyline-Global showed the best effectiveness at
very reasonable computational overhead and Greedy-Global
showed remarkably high performance with less than 5%
sacrifice in utility optimality.

In future work, we plan to apply the proposed approach
to realise SaaS re-optimisation for runtime SaaS adaptation.
In addition, we intend to investigate the scalability of the
proposed approach in scenarios where the number of end-
users is very large.

ACKNOWLEDGMENTS

This work is funded by the Australian Research Council
in collaboration with CA Labs.

REFERENCES

[1] A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm, "What's Inside
the Cloud? An Architectural Map of the Cloud Landscape," in 1st
International Workshop on Software Engineering Challenges for
Cloud Computing (ICSE CLOUD2009), Washington, DC, USA, 2009,
pp. 23-31.

[2] OASIS. (2007). Web Services Business Process Execution Language
Version 2.0. Available: http://docs.oasis-open.org/wsbpel/2.0/wsbpel-
v2.0.pdf

[3] F. Chong and G. Carraro, "Architecture Strategies for Catching the
Long Tail," MSDN Library, 2006.

[4] D. Ardagna, B. Panicucci, and M. Passacantando, "A Game Theoretic
Formulation of the Service Provisioning Problem in Cloud Systems,"
in 20th International Conference on World Wide Web, Hyderabad,
India, 2011, pp. 177-186.

[5] J. Fiaidhi, I. Bojanova, J. Zhang, and L.-J. Zhang, "Enforcing
Multitenancy for Cloud Computing Environments," IT Professional
vol. 14, pp. 16-18, 2012.

[6] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang, "QoS-Aware Middleware for Web Services Composition,"
IEEE Transactions on Software Engineering, vol. 30, pp. 311-327,
2004.

[7] D. Ardagna and B. Pernici, "Adaptive Service Composition in
Flexible Processes," IEEE Transactions on Software Engineering, vol.
33, pp. 369-384, 2007.

[8] M. Alrifai, D. Skoutas, and T. Risse, "Selecting Skyline Services for
QoS-based Web Service Composition," in 19th International
Conference on World Wide Web (WWW2010), Raleigh, North
Carolina, USA, 2010, pp. 11-20.

[9] M. Alrifai and T. Risse, "Combining Global Optimization with Local
Selection for Efficient QoS-Aware Service Composition," in 18th
International Conference on World Wide Web (WWW2009), Madrid,
Spain, 2009, pp. 881-890.

[10] E. Al-Masri and Q. H. Mahmoud, "Investigating Web Services on the
World Wide Web," in 17th International Conference on World Wide
Web (WWW2008), 2008, pp. 795-804.

[11] T. Yu, Y. Zhang, and K.-J. Lin, "Efficient Algorithms for Web
Services Selection with End-to-End QoS Constraints," ACM
Transactions on the Web, vol. 1, 2007.

[12] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z. Sheng,
"Quality Driven Web Services Composition," in 12th International
Conference on World Wide Web (WWW2003), Budapest, Hungary,
2003, pp. 411-421.

[13] R. Berbner, M. Spahn, N. Repp, O. Heckmann, and R. Steinmetz,
"Heuristics for QoS-aware Web Service Composition," in IEEE
International Conference on Web Services (ICWS2006), Chicago,
Illinois, USA, 2006, pp. 72-82.

[14] J. Wang, J. Wang, B. Chen, and N. Gu, "Minimum Cost Service
Composition in Service Overlay Networks," World Wide Web, vol. 14,
pp. 75-103, 2011.

[15] W.-L. Wang, D. Pan, and M.-H. Chen, "Architecture-based Software
Reliability Modeling," Journal of Systems and Software, vol. 79, pp.
132-146, 2006.

[16] Object Management Group. (2011). Business Process Model And
Notation (BPMN) Version 2.0. Available:
http://www.omg.org/spec/BPMN/2.0/PDF/

[17] S. Mumtaz, A. Villazon, and T. Fahringer, "Grid Allocation and
Reservation - Grid Capacity Planning with Negotiation-based
Advance Reservation for Optimized QoS," in ACM/IEEE Conference
on High Performance Networking and Computing (SC2006), Tampa,
FL, USA, 2006.

[18] S. Börzsönyi, D. Kossmann, and K. Stocker, "The Skyline Operator,"
in International Conference on Data Engineering (ICDE2001),
Washington, DC, USA, 2001, pp. 421-430.

[19] C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and Z. Zhang,
"Finding k-Dominant Skylines in High Dimensional Space," in ACM
SIGMOD International Conference on Management of Data
(SIGMOD2006), Chicago, Illinois, USA, 2006, pp. 503-514.

