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Abstract—Cloud-based software applications (Software as a 
Service - SaaS) for multi-tenant provisioning have become a 
major development paradigm in Web engineering. Instead of 
serving a single end-user, a multi-tenant SaaS provides 
multiple end-users with the same functionality but with 
potentially different quality-of-service (QoS) values. The 
service selection for such a SaaS is a complex decision-making 
process which involves a number of stakeholders with different 
QoS requirements. SaaS developers need to compose services 
with different QoS values to meet end-users’ different multi-
dimensional QoS constraints for the SaaS. Furthermore, they 
also need to satisfy SaaS providers’ optimisation goals for the 
SaaS, such as least resource cost and best system performance. 
Existing QoS-aware service selection approaches are oriented 
at a single tenant. They do not consider the characteristics of 
multi-tenant SaaS and hence are ineffective and inefficient 
when applied to compose multi-tenant SaaS. In this paper, we 
introduce a novel QoS-driven approach for helping SaaS 
developers select the services for composing multi-tenant SaaS, 
which achieves SaaS providers’ optimisation goals while 
fulfilling the end-users’ different levels of QoS constraints. The 
proposed approach is evaluated using an example SaaS 
synthetically generated based on a dataset of real-world Web 
services. Experimental results show that our approach 
significantly outperforms existing approaches in terms of both 
effectiveness and performance. 

Keywords-Cloud computing; SaaS; Service Composition; 
Quality of Service; Multi-Tenancy; Optimisation 

I.  INTRODUCTION 

Cloud computing provides on-demand provisioning of 
software applications (Software as a Service - SaaS) [1], 
which are built on compositions of services that are locally 
or remotely accessed by an application engine (e.g., a BPEL 
engine [2]). In order to offer cost-effective solutions to 
multiple end-users, a SaaS must achieve multi-tenancy, i.e., 
the ability to satisfy multiple end-users in parallel based on a 
single application instance [3]. These end-users (stakeholders 
of the SaaS), although require the same functionality, usually 
have (and often different) multi-dimensional QoS constraints 
for the SaaS, e.g., response time, throughput and availability. 
In addition, the SaaS provider (also a stakeholder) often has 
its own optimisation goal for the SaaS, e.g. least resource 
cost, best performance or maximised revenues [4]. Moreover, 

in a cloud environment, the candidate services available 
(both in-house and external) for composing SaaS often differ 
in their QoS values. To compose a multi-tenant SaaS, the 
developer needs to, from the available candidate services, 
select appropriate services that meet all stakeholders’ 
requirements for the SaaS, including end-users’ QoS 
constraints and SaaS provider’s optimisation goal. 

The management of a multi-tenant SaaS involves work 
on different levels, including data-centre level, infrastructure 
level and application level [5]. In this research we focus on 
QoS management for SaaS on the application level. The QoS 
delivered to an end-user can be guaranteed by creating an 
execution plan using the services with the “right” QoS values. 
Existing approaches to QoS guarantee and optimisation [6-9] 
target single-end-user systems - they optimise the quality of 
a SaaS for only a single end-user. However, a multi-tenant 
SaaS needs to serve multiple end-users that have potentially 
different QoS constraints. A possible solution is to adopt one 
of the existing single end-user oriented optimisation 
approaches to optimise the QoS for the end-users one by one. 
However, it is very difficult for such optimisation 
approaches to achieve the SaaS provider’s optimisation goal 
- while the QoS delivered to individual end-users are locally 
optimal the overall quality of the SaaS might not be optimal. 

According to [10], there has been a more than 130% 
increase in the number of published Web services from 
October 2006 to October 2007. The statistics published by 
webservices.seekda.com, a Web service search engine, also 
indicate an exponential growth in the number of published 
Web services. In addition, the proliferation of cloud 
computing is promoting this growth trend, further increasing 
the number of available services for composing SaaS [8]. In 
such a large-scale scenario, applying existing single-tenant-
oriented service selection approaches for composing multi-
tenant SaaS is very computationally expensive. 

In order to address the above issues, this research aims to 
provide novel techniques and tools to support service 
selection for multi-tenant SaaS. This work is motivated by 
the needs to: 
• Help SaaS developers capture and model end-users’ 

multi-dimensional QoS constraints for the SaaS. 
• Help SaaS developers model SaaS providers’ various 

optimisation goals.  
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• Help SaaS developers select the services for SaaS that 
meet all their stakeholders’ QoS requirements. 

• Help SaaS developers find near-optimal solutions for 
multi-tenant SaaS efficiently in large-scale scenarios. 
This paper introduces a novel QoS-driven approach, 

named MSSOptimiser (Multi-tenant SaaS Optimiser), for 
effective and efficient service selection for multi-tenant SaaS. 
It takes as input the functional business process specification 
of the SaaS, the stakeholders’ QoS requirements and the QoS 
information of the available candidate services, and 
generates as output the execution plans for the end-users that 
are to be executed by the SaaS and meet all stakeholders’ 
QoS requirements. The novelty of MSSOptimiser lies in its 
full support for composing a multi-tenant SaaS that meets 
different QoS requirements of multiple stakeholders. The 
major contributions of this paper include: 
• We effectively capture and model the differences in end-

users’ multi-dimensional QoS constraints, in SaaS 
providers’ optimisation goals and in the quality of the 
candidate services. This is achieved by modelling the 
problem of service selection for a multi-tenant SaaS as a 
constraint optimisation problem (COP). 

• For extremely large-scale scenarios where finding an 
optimal solution to the SaaS optimisation problem is too 
computationally expensive, we introduce a greedy 
algorithm to help developers efficiently find a near-
optimal solution. 

• To evaluate MSSOptimiser, we conduct extensive 
experiments using a published real-world Web service 
dataset which contains QoS information about over 2500 
real-world Web services. The experiments have shown 
that MSSOptimiser significantly outperforms existing 
approaches in terms of both effectiveness and 
performance.  
The rest of this paper is organised as follows: Section II 

presents an example to motive this research. Section III 
introduces related work. Section IV introduces the 
compositional quality model for SaaS quality evaluation. 
Section V presents the mechanisms for SaaS optimisation 
based on the compositional quality model. Section VI 
demonstrates the effectiveness and performance of 
MSSOptimiser. Section VII concludes the paper and outlines 
future work. 

II. MOTIVATING EXAMPLE 

Figure 1 shows an example of multi-tenant SaaS that 
finds the best used-car offers. Its functionality is represented 
as a business process that includes five tasks (t1, …, t5). This 
example originates from Alrifai et al. [8] and is adapted to 
the characteristics of this research. The SaaS serves multiple 
used-car dealers by processing their requests. The dealers 
submit requests to the SaaS, specifying the criteria for 
selecting the cars for their customers (e.g., brand, type and 
model). In response to each request, the SaaS returns a list of 
used cars with a loan offer and an insurance quote for each 
car on the list. These dealers, although requesting the same 
functionality of finding the best used-car offers, usually have 
different multi-dimensional constraints for the quality of the 

SaaS. For instance, one dealer may require a very fast 
response time despite a high price for such a high-
performance SaaS, while another dealer is primarily 
concerned about the throughput of the SaaS. The SaaS 
provider, on the other hand, also has its own optimisation 
goal for the SaaS. Two examples of such goals are 1) to 
minimise the cost of resource usage for the SaaS, i.e., the 
total cost of the services selected to serve the end-users, and 
2) to maximise the overall SaaS performance regardless of 
the cost of resource usage. 

For each car dealer, an execution plan needs to be created 
by selecting one service from each of the five sets of 
functionally equivalent in-house (denoted by light grey 
circles) and external (denoted by dark grey circles) candidate 
services. The goal of composing this SaaS is to make sure 
that the execution plans collectively achieve the SaaS 
provider’s optimisation goal, while separately fulfilling 
respective dealers’ QoS constraints. Similarly to other 
research efforts [6-9, 11], in this research, we assume that 
alternative functionally equivalent services are available and 
can be categorised into different service classes based on 
their functionalities. 

III. RELATED WORK 

In recent years, the problem of QoS-aware service 
selection for composing software applications has received a 
lot of attention from many researchers. To name a few, in [6, 
12], Zeng et al. present AgFlow, a middleware platform that 
enables QoS-driven composition of Web services. Integer 
Programming (IP) is used to compute the optimal plan for 
composite service executions from several execution paths 
represented by Directed Acyclic Graph (DAG). Following 
the work in [6, 12], in [7], Ardagna and Pernici formulate the 
QoS-aware service selection problem as a Mixed Integer 
Linear Programming (MILP) problem and adopt loops 
peeling for optimisation. When a feasible solution does not 
exist, a QoS negotiation algorithm is suggested to enlarge the 
solution space of the optimisation problem. Berbner et al. 
[13] design a Web service-based workflow engine named 
WSQoSX, which aims at optimising QoS-aware service 
composition under heavy load in real-time. A heuristic 
algorithm is proposed. Firstly, linear programming is used to 

  
Figure. 1. Multi-tenant SaaS. 



relax the mixed integer programming formulation of the 
service composition problem constructed by Zeng et al. in [6, 
12]. Then a backtracking algorithm is used to construct a 
feasible solution based on the result of the relaxed integer 
problem. Alrifai et al. [8, 9] adopt a heuristic distributed 
method to find the best Web services that meet local QoS 
constraints generated by decomposing global QoS 
constraints using integer linear programming. The work in 
[11] models QoS-aware service selection as a 0-1 knapsack 
problem as well as a multi-constraint optimal path problem. 
Yu et al. present heuristic algorithms to find near-optimal 
solutions in polynomial time. For different compositional 
structures, e.g. sequence, parallel, branches and loops, 
different algorithms are proposed. In [14], Wang et al. find 
that optimal solutions can be found in polynomial time for 
some specially structured service compositions. The 
common and critical limitation of these existing approaches 
when applied in cloud computing is that they only support 
single-tenant SaaS - they try to optimise the QoS for only 
one end-user. These approaches can be adopted to create 
execution plans for multiple end-users one after another. The 
result is that, although the created execution plans can locally 
fulfil the QoS constraints of corresponding end-users, the 
overall quality of the SaaS is usually sub-optimal, i.e., the 
SaaS provider’s optimisation goal for the SaaS is not 
achieved. Furthermore, applying these approaches to 
compose multi-tenant SaaS is very computationally 
expensive in large-scale scenarios. 

To address the above issues, this paper presents 
MSSOptimiser, an approach that supports service selection 
for multi-tenant SaaS. MSSOptimiser can help SaaS 
developers efficiently select appropriate services to compose 
an optimal SaaS that fulfils the QoS constraints of multiple 
end-users. 

IV. COMPOSITIONAL QUALITY MODEL 

In this section, we present the compositional structures 
for representing the business processes of SaaS, the quality 
and utility evaluation methods for SaaS. 

A. Compositional Structures 

Compositional structures describe the order in which the 
tasks are implemented in the business process of a SaaS. In 
this research, we consider four types of basic compositional 
structures, i.e., sequence, branch, loop and parallel [7, 15], 
which are included in BPMN [16] and addressed by BPEL [2] 
- the de facto standards for specifying service-oriented 
business processes.  
• Sequence. In a sequence structure, the services are 

executed one by one. 
• Branch. In a branch structure, only one branch is 

selected for execution. For every set of branches {b1, …, 
bn}, the execution probability distribution

1
{ }

nb bp ..., p,  

(0≤
ibp ≤1, 

1
=1.0)

i

n

bi
p

=∑ is specified, where
ibp , i=1, …, 

n, is the probability that bi is selected for execution. 
• Loop. In a loop structure, the loop is executed for n (n≥0) 

times. For every loop, the probability distribution {p0, …, 

pMNI}, (0≤pi≤1, 
=0

1.0)=
MNI

i ip∑ is specified, where pi, i=0, 

…, MNI, is the probability that the loop iterates for i 
times and MNI is the expected Maximum Number of 
Iterations for the loop. 

• Parallel. In a parallel structure, all the branches are 
executed at the same time.  

ibp , ip and MNI can be evaluated  based on the SaaS’s 
past executions or can be specified by the SaaS developer [6, 
7]. In this research, we assume that for every loop, the MNI 
is determined. Otherwise, if an upper bound for the number 
of iterations for a loop does not exist, the QoS delivered by 
the execution plan that contains the loop cannot be calculated 
since the loop can iterate infinitely. 

B. Quality Evaluation 

The execution plan created for an end-user must meet the 
end-user’s multi-dimensional QoS constraints. Thus, we 
need to evaluate the QoS delivered by an execution plan, 
considering all its execution paths. An execution path is a set 
of services forming a sequential path from the initial service 
to the final service of an execution plan. Take execution plan 
1 in Figure 1 for example, there are two execution paths: 
ep1=s1,1-s2,1-s3,1-s5,1 and ep2=s1,1-s2,1-s4,1-s5,1. For a SaaS S , let 
eplk (k=1, 2, …) be its execution plans, epk,i (i=1, 2, …) be 
eplk’s execution paths, sk,i,j (j=1, 2, …) be epk,i’s constituent 
services, the QoS delivered by the execution plans and the 
overall quality of the SaaS can be evaluated using the 
aggregation functions presented in Table 1 [6]. For example, 
the cost of execution plan 1 in Figure 1 can be calculated by 

1 ,11
( )

5
priceii

cost epl s .q
=

=∑  and the cost of the SaaS (given 

 m=3) can be calculated by cost(S )=
3

1
( )i

i
cost epl

=∑ . 

In this paper, examples are based on a subset of QoS 
parameters, including price (or cost) and response time, 
which also have been the basis for QoS consideration in 
other approaches [6-8]. Other QoS parameters can be 
generalised as added dimensions in the quality model. 

Numerical QoS parameters can be divided into two 
categories: positive and negative QoS parameters. A positive 
QoS parameter is a QoS parameter whose evaluation will 
increase as its value increases, e.g., availability and 
throughput. A QoS parameter is a negative QoS parameter 
whose evaluation will decrease as its value increases, e.g., 
price (or cost) and response time. To accommodate non-
numerical QoS parameters (e.g., reputation) that are 
expressed by a rating selected from {very high, high, 

 
Figure 2. The loop peeling process. 



medium, low, very low}, the approach proposed by Mumtaz 
et al. in [17] is adopted. Based on a pre-defined semantics-
based hierarchical structure of all possible values of a non-
numerical QoS parameter, each level of the hierarchy is 
associated with a numerical value. In this way, the utility of 
the QoS parameter can be calculated and the QoS parameter 
can be termed negative or positive. If the levels that are more 
preferable to end-users are assigned with higher values, the 
QoS parameter is treated as a positive QoS parameter, and 
vice versa. 

In the remainder of this paper, we use negative QoS 
parameters and omit mostly repetitive yet similar 
introduction for positive QoS parameters. 

C. Utility Evaluation 

Functionally equivalent services usually differ in 
multiple QoS parameters. For example, the Insurance Quote 
service provided by a service provider may have lower 
response time but require higher price than the Insurance 
Quote service provided by another service provider. 
Selecting from these services by their QoS characteristics is 
a multi-attribute decision making problem. For the purpose 
of ranking and sorting the services in a same service class, a 
method is needed to evaluate a given service based on its 
multiple QoS parameters. In this research, we use the method 
adopted in [6-9] for service utility evaluation. 

Given the utility of the services, denoted by u(si), the 
utility of an execution path epj composed by n (n≥1) services 
s1, …, sn, can be calculated by: 

 
1

( ) ( )
n

j i
i

u ep u s
=

= ∑  (1) 

Let efi be the execution frequency (i.e., execution 
probability) of an execution path epi in an execution plan eplj. 
The utility calculation of eplj must consider all its execution 
paths according to their execution frequencies: 

 
1

( ) ( )
n

j i i
i

u epl ef u ep
=

= ⋅∑  (2) 

The overall utility of the SaaS, denoted by u( S ), that 
consists of m (m≥1) execution plans can be calculated by: 

 
1

( ) ( )
m

i i
i

u w u epl
=

= ⋅∑S  (3) 

where wi is the SaaS provider’s preference and priority for 

the ith end-user, [0,1]iw ∈ and
1

1
m

ii
w

=
=∑ . For example, 

given m=3, the utility of the SaaS presented in Figure 1 is 

calculated by: ( )u S =w1·u(epl1)+w2·u(epl2)+w3·u(epl3). 

V. SYSTEM OPTIMISATION 

A multi-tenant SaaS requires that all end-users’ multi-
dimensional QoS constraints for the SaaS are fulfilled. Thus, 
for each end-user, an execution plan needs to be created that 
fulfils the end-user’s QoS constraints. Meanwhile, all the 
execution plans must collectively achieve the SaaS 
provider’s optimisation goal. In this section, we present the 
optimisation formulation and techniques that support service 
selection for such a multi-tenant SaaS. 

A. Determining Execution Plans 

Suppose the business process of a SaaS S  consists of n 
(n≥1) tasks. Assume there are n service classes Si, i=1, …, n, 
each containing r (r≥1) available services si,j, j=1, …, r, that 
provide the same functionality but potentially differ in t QoS 
parameters qp, p=1, …, t, The problem of service selection 
for S  that serves m (m≥1) end-users is a constraint 
optimisation problem that aims at finding the services for 
creating m execution plans eplk, k=1, …, m, that fulfil 
corresponding end-users’ t-dimensional QoS constraints ck,p, 
k=1, …, m, p=1, …, t, while achieving the SaaS provider’s 
optimisation goal objective(S). In this research, we assume 
that r≥m, i.e., there are enough candidate services in each 
service class to be selected exclusively for creating an 
execution plan for each end-user. If r<m, more candidate 
services need to be discovered through sources of services, 
e.g., public UDDI registry and service search engine. 

To model end-users’ different multi-dimensional QoS 
constraints, we first model the service selection for a multi-
tenant SaaS as a constraint satisfaction problem (CSP), 
which consists of a finite set of variables X={x1, …, xn}, with 
respective domains D={D1, …, Dn} listing the possible 
values for each variable, and a set of constraints C={c1, …, ct} 
over X. A solution to a CSP is an assignment of a value to 
each variable from its domain such that every constraint is 
satisfied. The CSP model of the above problem can be 
formally expressed as follows.   

For m end-users, there are m×n×r 0-1 variables Xk,i,j (k=1, 
1, …, m, i=1, …, n, j=1, …, r and Dk,i,j={0, 1}), Xk,i,j being 1 
if the jth candidate service in the ith service class is selected to 
create the execution plan for end-user k, 0 otherwise. The 
constraints for the CSP model are: 

 
1

1 [1, ] [1, ]
r

k ,i , j
j

X k m i n
=

= ∀ ∈ ∈∑  (4) 

 
1

1 [1, ] [1, ]
m

k ,i, j
k

X i n j r
=

= ∀ ∈ ∈∑  (5) 
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k ,i , j
jk
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==
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 [1 ], [1, ]k p k ,pepl .q c k , m p t< ∀ ∈ ∈   (7) 

where eplk.qp is the pth QoS parameter of the execution plan for 
end-user k and can be obtained by applying the QoS aggregation 

TABLE I.  QOS AGGREGATION FUNCTIONS 

Quality Parameter Aggregation Function 

Cost 

( )

k ,i , j k

pricek k ,i ,j
s epl

cost epl s q
∈

= ⋅∑  

( )= ( )k

kepl

cost cost epl
∈
∑
S

S  

Response Time 

( )= max ( )j

i
ji k

ii

resTimek ep epl
s ep

resTime epl s q
∈

∈

⋅∑
 ( )= average ( ( ))

k

k
epl

resTime resTime epl
∈S

S  

Availability 

( )

i k

ik availability
s epl

availability epl s q
∈

= ⋅∏  

( )= average ( ( ))

k

k
epl

availability availability epl
∈S

S  

Throughput 

( )= min ( min ( ))
j

i ii

j
ik throughputep epl s ep

throughput epl s q
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⋅

 
( )= ( )k

kepl

throughput throughput epl
∈
∑
S
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functions presented in Table 1.  
Constraint family (4) guarantees that only one candidate 

service is selected in each class for one end-user. Constraint 
family (5) guarantees that one service can only be selected 
for one end-user. Constraint family (6) ensures that a total of 
m candidate services are selected in each service class. 
Constraint family (7) ensures that each end-user’s t-
dimensional QoS constraints are fulfilled by the 
corresponding execution plan. 

Solving the above CSP can generate a solution consisting 
of m execution plans that fulfil the corresponding end-users’ 
QoS constraints. Such a solution is called a feasible solution. 
Very often, there are many feasible solutions that differ in 
their QoS values, e.g., overall SaaS utility and overall cost. 
Now we seek to achieve the SaaS provider’s optimisation 
goal for the SaaS. Given an objective function that represents 
the SaaS provider’s optimisation goal, the CSP is turned into 
a constraint optimization problem (COP). In a COP, each 
solution generated by solving the CSP is associated with a 
ranking value for the objective function. The solution with 
the optimal ranking value is the optimal solution to the COP. 

System providers’ optimisation goals can be various, 
which can be represented using different objective functions. 
In this research, we use the objective functions for two 
typical optimisation goals as examples: 1) to maximise the 
overall SaaS utility; and 2) to minimise the overall cost of 
resource usage for the SaaS. 
• Maximising the overall SaaS utility. This optimisation 

goal is to maximise the overall utility of the SaaS. The 
objective function that captures this optimisation goal is 
as follows: 

1 1 1 1

( ): maximise ( )

m n r t

k ,p i , j p k ,i , j
k i j p

objective w u s .q X

= = = =

× ×∑∑∑∑S  (8) 

where wk,p is the weight that represents the kth end-user’s 
preference and priority for the pth QoS parameter of the 
SaaS. 

• Minimising the overall cost of resource usage. This 
optimisation goal is to minimise the total price of the 
selected services. The objective function that captures 
this optimisation goal is as follows: 

                
1 1 1

( ): minimise

m n r

i , j k ,i , j
k i j

objective s .price X

= = =

×∑∑∑S  (9) 

where si,j.price is the price of the jth candidate service in 
the ith service class. 
This COP can be solved by applying Integer 

Programming techniques [6] (or the Mixed Integer 
Programming technique [7, 8] if decimal variables are 
involved). Based on the results from solving the COP, 
execution plans can be created for the end-users, which 
individually meet their QoS constraints and collectively 
achieve the SaaS provider’s optimisation goal. 

B. Find Near-Optimal Solutions 

In service selection for multi-tenant SaaS, given n service 
classes, each containing r candidate services, there are 
( )

m n

rP possible combinations of services for a SaaS that 

serves m end-users. It is practically tractable only when the 
number of candidate services is small. The pay-per-use 
business model driven by cloud computing and SaaS enables 
service providers to offer their services to end-users with 
different QoS values and prices. As a result, the number of 
candidate services available for SaaS is expected to grow 
dramatically in the foreseeable future. In such scenarios, 
using Integer Programming to find the optimal solution to 
the COP described in Section V.A can be very 
computationally expensive. The skyline technique [18] can 
be applied to reduce the search space of the COP [8]. 
However, after pruning the non-skyline services, the number 
of remaining candidate services may still be too large for the 
SaaS optimisation problem to be solved efficiently. The 
possible reasons are twofold. First, the QoS parameters of 
the services are often anti-correlated. Second, in practice, the 
number of skyline services increases rapidly with the 
dimensionality of their QoS, i.e., the number of their QoS 
parameters [19].  

In such cases, MSSOptimiser provides a greedy 
algorithm to help the SaaS developer find a near-optimal 
solution to the SaaS optimisation problem efficiently. The 
greedy algorithm always selects the most representative 
candidate services that are more likely to be part of the 
solution that achieves the optimisation goal. To serve m end-
users, m services need to be finally selected from each 
service class to create m execution plans. Thus, the greedy 
algorithm starts with selecting the first batch of m most 
representative candidate services from each service class. 
Then, the selected representative candidate services are 
inserted into the search space of the COP (see Section V.A) 
and the COP is solved. If no solution can be found using 
these candidate services, another batch of the m most 
representative candidate services are selected from each 
service class and added to the search space of the COP. This 
process is repeated until a solution is found or until it is 
determined that a solution cannot be found, i.e., all the 
skyline services have been considered and yet no solution 
can be found. 

The criterion for selecting the representative candidate 
services is dependent on the SaaS provider’s optimisation 
goal. For example, if the optimisation goal is to minimise the 
overall cost of resource usage, the greedy algorithm will give 
preferences to the candidate services with the lowest prices. 
If the optimisation goal is to maximise the overall SaaS 
utility, the greedy algorithm will always, from the remaining 
candidate services, select the ones with the highest utility 
values. However, the end-users of the SaaS usually have 
different priorities and preferences for different QoS 
parameters. Thus, a utility function is needed for evaluating 
the average utility of a given service across all end-users. 
Suppose there are m end-users, we average the weights that 
represent individual end-users’ preferences and priorities for 
different QoS parameters to calculate an average weight for 
each of the t QoS parameters considered in the calculation of 
the average utility: 

 
1

1
m

ave,p i ,p
i

mw w
=

= ⋅∑ , p=1, …, t (10) 



where wi,p ∈ [0, 1]
1

1
m

i,pi
w

=
=∑  and wi,p is the weight that 

represents the ith end-user’s preference and priority for the 
kth QoS parameter. 

Then, the average utility of a given service si,j with t QoS 
parameters across all end-users is calculated as: 

 
1

( ) ( )

t

ave i , j ave,p i , j p
p

u s w u s .q
=

= ×∑  (11) 

C. Integrated Optimisation Methods 

Combining the techniques introduced above, including 
integer programing (Section V.A), skyline computation 
(Section V.B) and greedy algorithm (Section V.B), 
MSSOptimiser provides three different SaaS optimisation 
methods: 1) Exact-Global. This optimisation method creates 
execution plans for all end-users in one COP model, 
considering all the services in each service class as candidate 
services. This method is suitable for small-scale scenarios 
where the skyline computation and the greedy algorithm are 
unnecessary. 2) Skyline-Global. This optimisation method 
creates execution plans for all end-users in one COP model, 
giving preferences to the skyline services in each service 
class as candidate services. This method is suitable for large-
scale scenarios where the optimisation problem can be 
solved efficiently after pruning the non-skyline services. 3) 
Greedy-Global. This optimisation method creates execution 
plans for all end-users in one COP model, using the greedy 
algorithm and giving preferences to the most representative 
candidate services in each service class as candidate services. 
This method is suitable for extremely large-scale scenarios 
where the optimisation problem still cannot be solved 
efficiently after pruning the non-skyline services. 

VI. EXPERIMENTS 

This section presents the experimental evaluation of our 
approach, focusing on the comparison with existing 
optimisation approaches in terms of effectiveness (measured 
by the success rate of finding an optimisation solution) and 
performance (measured by the computation time taken to 
find an optimisation solution). 

A. Prototype Implementation 

We have implemented MSSOptimiser in Java using JDK 
1.6.0 and Eclipse Java EE IDE. The prototype includes three 
main modules: a skyline operator, a greedy representative 
candidate services selector and an integer programming 
problem solver. For solving the COPs, we used CPLEX 
v12.2, a commercial solver developed by IBM. By 
integrating the modules, the prototype realised the three SaaS 
optimisation methods presented in Section V, i.e., Exact-
Global, Skyline-Global and Greed-Global. Given the 
functional specification of the business process of a SaaS, the 
quality information about the candidate services, a set of 
end-users’ quality constraints and an optimisation objective, 
the prototype, using the selected optimisation method, 
generates the execution plans that separately fulfil the end-
users’ QoS constraints and collectively achieve the 
optimisation objective. 

B. Experimental Setup 

We evaluated MSSOptimiser using the prototype and a 
publicly available Web service dataset QWS [10], which 
comprises measurements of nine QoS parameters of over 
2500 real-world Web services. The information about the 
services was collected from public UDDI registries, search 
engines and service portals. Their QoS values were measured 
using commercial benchmark tools. For large scenarios that 
involved more than 2500 services, we created extra services 
based on QWS. In the experiments, we considered a SaaS 
whose business process consists of five tasks, as presented in 
Figure 1. Accordingly, we randomly partitioned the services 
in QWS into five categories as if they were the five classes of 
candidate services corresponding to the five tasks. We added 
a randomly generated price to each candidate service as an 
additional QoS parameter. End-users’ QoS constraints were 
randomly generated. To compare our approach with existing 
approaches, we implemented the optimisation approaches 
presented in [7] and [8]. Specifically, we compared our SaaS 
optimisation methods with the following methods using 
average results from 100 instances for each set of 
experiments: 

In the experiments, we utilised the example SaaS 
presented in Figure 1. Accordingly, we randomly partitioned 
the services in QWS into five categories as if they were the 
five classes of candidate services corresponding to the five 
tasks. End-users’ QoS constraints were randomly generated 
according to normal distributions from intervals whose lower 
and upper bounders are determined using the worst and best 
QoS values of all candidate services in each service class. To 
compare our approach with existing approaches, we 
implemented the optimisation approaches presented in [7] 
and [8] as they are also based on integer programming 
techniques - as far as we understand the most popular and 
representative techniques adopted in research on QoS-aware 
service compositions. Specifically, we compared our SaaS 
optimisation methods with the following methods using 
average results from 100 instances for each set of 
experiments: 1) Skyline-Local. This optimisation method 
adopts the approach presented in [8], which creates 
execution plans for the end-users one by one in different 
COP models, giving preferences to the skyline services in 
each service class as candidate services. 2) Exact-Local. This 
optimisation method adopts the approach presented in [7], 
which creates execution plans for the end-users one by one in 
different COP models, considering all the services in each 
service class as candidate services. 3) Greedy-Local. This 
optimisation method adopts a greedy algorithm similar to the 
method presented in [8], which creates execution plans for 
the end-users one by one in different COP models, giving 
preferences to the most representative candidate services in 
each service class as candidate services. 

The experiments were conducted on a machine with 
AMD Athlon(tm) X4 640 3.00GHz CPU and 8 GB RAM, 
running Windows 7 x64 Ultimate. 

C. Experimental Results 

In this section, we present the experimental results and 
compare our global methods with their corresponding local 



methods, i.e., Exact-Local vs. Exact Global, Skyline-Local 
vs. Skyline-Global and Greedy-Local vs. Greedy-Global. 

We first compare the effectiveness of the six optimisation 
methods by their success rates of SaaS optimisation, i.e., the 
percentage of scenarios where a solution could be found that 
met all stakeholders’ QoS requirements. In this series of 
experiments, we fixed the number of candidate services per 
class at 100 and changed the number of end-users from 10 to 
60 at steps of 10. As illustrated in Figure 3, the global 
methods significantly outperform the local methods. The 
global methods maintain a very high level of success rate 
(above 90%) across all scenarios while the success rate 
obtained by the local methods decrease quickly from 100% 
to 0% as the number of end-users increases from 10 to 60. 
The consistency of the success rates obtained by the 
approaches in the global approaches family or the local 
approaches family demonstrates that the skyline technique 
and the greedy algorithm do not negatively impact the 
effectiveness of the optimisation methods. 

We also compared the SaaS utility obtained (when a 
solution was found) by the six optimisation methods. The 
SaaS utility, which is cumulative, increases as the number of 
end-users increases (see formula (3)). Thus, we use the 
utility per end-user, calculated by ( )/u mS , where m is the 

number of end-users, as the measurement for the evaluation 
in this set of experiments. As presented in Figure 4, the 
global methods beat the local methods. In particular, Exact-
Global and Skyline-Global yielded the highest utility per 
end-user while the Greedy-Local and the Skyline-Local 
methods yielded the lowest and second lowest utility per 
end-user. However, the utility optimalities of the two greedy 
methods, evaluated by ugreedy/uoptimal, where ugreedy and uoptimal  

are the utility per end-user obtained by the greedy methods 
and the optimal methods respectively, are all above 95% in 
all scenarios when a solution can be found. In Figures 3 and 
4 (as well as Figure 5 (b)), the data for the local optimisation 
methods in scenarios where the number of end-users exceeds 
50 are missing because in these scenarios no solution could 

be found using local optimisation methods. 
The optimisation of service selection for a multi-tenant 

SaaS comes at a price - the computational overhead 
measured by computation time. In large-scale scenarios, the 
computational overhead of the optimisation methods is a 
very important concern to SaaS developers. To compare the 
computational overhead of the six different optimisation 
methods, we conducted a series of experiments in different 
scenarios, where the scales vary in three different aspects 
that affect the computational overhead of the optimisation 
methods: 
• the number of QoS constraints, which determines the 

number of each end-user’s QoS constraints for the COP; 
• the number of end-users, which determines the number 

of sets of end-users’ QoS constraints for the COP; and 
• the number of candidate services per service class, 

which determines the size of the original search space of 
the COP. 
As presented in Figures 5 (a), (b) and (c), the global 

methods significantly beat corresponding local methods in 
most cases. In particular, Greedy-Global clearly outperforms 
all other methods across all scenarios. Skyline-Global, 
showing a performance similar to Greedy-Local, beats the 
remaining three methods. Thus, Greedy-Global is the best 
option if performance is the priority, while Skyline-Global is 
the best option if the SaaS being optimised to the fullest 
extent is desirable. 

In Figure 5 (a), as the number of QoS constraints exceeds 
three, Skyline-Local and Skyline-Global start to significantly 
outperform Exact-Local and Exact-Global respectively 
because the number of skyline services starts to grow rapidly. 
However, as the number of QoS constraints continues to 
increase, the outperformance margins start to decrease. The 
reason is that the number of skyline services in each service 
class is approaching the totasl number of candidate services 
in the service class, giving Skyline-Local and Skyline-Global 
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Figure 5. Computation time: (a) vs. number of QoS constraints (b) vs. number 
of end-users (c) vs. number of services in each class (d) vs. overall scale 
(number of QoS constraints – number of end-users – number of candidate 
services per class). 
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Figure  3. Successful rate vs. number of end-users. 
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Figure  4. System utility vs. number of end-users. 

 



less advantage over Exact-Local and Exact-Global. 
Figure 5 (b) shows that Skyline-Global outperforms 

Exact-Global until the number of end-users reaches 50. In 
the scenarios with 50 and 60 end-users, the number of 
skyline services is not enough for creating enough execution 
plans for the end-users. In such cases, Skyline-Global had to 
use all the services in each class as candidate services. The 
situation of Skyline Local vs. Exact Local is the same. 

Figure 5 (c) shows that the greedy methods perform 
clearly better (especially Greedy-Global) than other methods 
in scenarios where the number of candidate services per class 
is significantly larger than the number of end-users (10 in 
this series of experiments). 

In order to compare the computational overhead of the 
six optimisation methods against the three aspects combined, 
i.e., the numbers of QoS parameters, end-users and candidate 
services per class, we conducted a set of experiments where 
the scale of the scenarios varies in all the above three aspects. 
The results are presented in Figure 5 (d). Again, Greedy-
Global outperforms all other methods remarkably. Skyline-
Global, showing the second best performance, starts to 
significantly outperform the other four methods as the 
number of QoS constraints exceeds 3. The results from this 
series of experiments show that Greedy-Global and Skyline-
Global are still the best two options. 

VII. CONCLUSIONS 

In this paper, we have proposed MSSOptimiser, a QoS-
driven approach which supports the service selection for 
multi-tenant cloud-based software applications (Software as 
a Service - SaaS). Using optimisation techniques, 
particularly Integer Programming, it helps SaaS developers 
determine the optimal services for a multi-tenant SaaS that 
meet different stakeholders’ QoS requirements, including the 
optimisation goal of the SaaS provider and the different 
levels of QoS constraints of different end-users. In large-
scale scenarios where the SaaS optimisation problem is 
computationally expensive, MSSOptimiser provides a 
greedy algorithm to find a near-optimal solution efficiently. 
We have evaluated MSSOptimiser using an example SaaS 
synthetically generated based on a large real-world Web 
services dataset, and compared the effectiveness and 
performance of the proposed approach to existing 
approaches. The evaluation has shown that the proposed 
SaaS optimisation methods outperform existing methods 
significantly in terms of both effectiveness and performance. 
In particular, Skyline-Global showed the best effectiveness at 
very reasonable computational overhead and Greedy-Global 
showed remarkably high performance with less than 5% 
sacrifice in utility optimality. 

In future work, we plan to apply the proposed approach 
to realise SaaS re-optimisation for runtime SaaS adaptation. 
In addition, we intend to investigate the scalability of the 
proposed approach in scenarios where the number of end-
users is very large.  
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