
Experiences developing a thin-client, multi-device travel
planning application

John Grundy1, 2 and Weiguo Jin2
1Department of Electrical and Electronic Engineering and 2Department of Computer Science

University of Auckland, Private Bag 92019, Auckland, New Zealand
+64-9-3737-599 ext 8761
john-g@cs.auckland.ac.nz

ABSTRACT
Many applications now require access from diverse human-
computer interaction devices, such as desktop computers,
web browsers, PDAs, mobile phones, pagers and so on. We
describe our experiences developing a multi-device travel
planning application built from reusable components, many
of these developed from several different previous projects.
We focus on key user interface design and component
adaptation and integration issues as encountered in this
problem domain. We report on the results of a useability
evaluation of our prototype and our current research
directions addressing HCI and interface development
problems we encountered.

Keywords
Multi-device user interfaces, web-based applications,
groupware, adaptive user interfaces

INTRODUCTION
The advance of Internet technology stimulates and
accelerates the development of many new applications.
Computer Supported Collaborated Work, CSCW, is one
such application that leads to multiple-user collaboration
across time and space constraints. Using computer networks
as the computing infrastructure, groupware is a collection of
software components that inter-operate together to support
a group of users to achieving a shared set of tasks. In this
project, we explored some interesting issues in this area by
prototyping a thin-client, component-based travel planning
groupware system. This allows a travel agent and multiple
customers to collaboratively plan travel itineraries using a
range of heterogeneous web-based interfaces, including
web browsers, PDAs and mobile phones.
Group work occurs in all work places. It can take place
either within the same location or distributed locations
synchronously or asynchronously. A large number of
groupware applications have been developed, examples
including chat, email, ICQ, video and audio conferencing,
collaborative document editors and shared calendars [1, 4,
14]. Most of these systems are desktop interface-oriented
and generally have a limited range of functionality. It is
very challenging to engineer groupware and to sufficiently

integrate it with other applications that users require [5, 10].
One solution is the use of component-based technologies
that offer improved mechanisms for integrating reusable
parts of systems.
We built our travel planning system based on the following
scenario: multiple users are working together to plan a
travel itinerary - create and modify itineraries, search for
flights, hotels and rental cars, make and modify bookings
and so on. They are supported by groupware facilities,
which include communication, coordination and
collaboration facilities. Examples of these facilities would
ideally include synchronous video/audio, semi-synchronous
chat, asynchronous email/messaging, document annotation,
notification events, group awareness, and version control.
When developing this system we did not build it from
scratch. Instead we reused a set of reusable groupware
components (supporting as chat, email, notification and
annotation facilities) [5], a web-based travel planner
application, and an adaptable, multi-device interface
implementation technology [6]. All of these were developed
for previous, unrelated projects. We had a number of
successes and difficulties realising the collaborative travel
planning application using this approach, from both HCI
and user interface implementation perspectives.

MOTIVATION
In previous research projects we developed a number of
applications:
• A collaborative travel planner [7], including a web-

based version of this [5]. This had hard-coded
groupware capabilities as well as support for managing
travel itineraries (creating, searching, modifying,
booking etc).

• A set of multi-device groupware components, including
chat, email, note annotation, notification and to-do list
[7, 5]. These were designed to be reused in any thin-
client application that required such collaborative work
support.

• A technology allowing developers to specify
"adaptive" user interfaces, where one interface

jgrundy
2002 New Zealand Conference on Computer-Human Interaction, July 12-13, Hamilton, New Zealand.

specification can be adapted at run-time to different
device, user and task needs i.e. the interface layout and
composition changes depending on the device
requesting it, the user using that device, and the user's
current task [6].

We wanted to investigate combining these three research
threads to produce a collaborative travel planner that would
run on multiple devices, leverage our reusable groupware
components, and make use of our adaptable user interface
building technology to avoid multiple implementations of
the same interface for different devices. Adaptive user
interfaces ideally provide a way for developers to specify a
complex interface once and have the implementation of this
interface “adapted” to suit particular run-time display
device, user and user task characteristics. Ultimately there
is a trade-off between supporting easier interface
specification and implementation and the usability of the
resultant interfaces: a hard-coded, custom interface will
always at least potentially be “better” than an adapted one
from a single specification [15, 7].The aim of this research
is to see to what degree these adapted groupware and
application interfaces are deficient in terms of usability and
improve their implementation technology to address these
issues.

RELATED WORK
Many examples of groupware have been developed. Some
key examples include messaging systems (e.g. email, ICQ,
IRC), collaborative editing tools (e.g. Grove, DUPLEX,
CocoDoC) [4], meeting support systems (e.g. MS
Netmeeting™, TeamWave) [12], and workflow and work
co-ordination systems. To date most groupware is thick-
client (desktop) and custom-built for an application.
However, in recent times the use of software components to
build groupware [14, 10] and the use of “new” interaction
devices and technologies has become popular in groupware
research and applications. Examples of the later include the
use of virtual reality interfaces (e.g. CHIME) [3], web-
based user interfaces (e.g. MILOS, OzWeb and BSCW)
[10, 1], and mobile devices [9]. Integrating such groupware
with desktop applications is possible though limited, but
integrating them with other VE, web or mobile applications

more promising. A number of challenges present,
particularly with small-screen mobile device groupware and
applications and ideally all thin-client interfaces should
provide consistent interfaces.
Building adaptive interfaces that can be displayed on
multiple devices using current technologies is difficult and
such systems are hard-to-maintain. Various approaches
have been developed to support forms of user interface
adaptation. Proxies such as Web Clipping™ and Portal-to-
go services automatically convert e.g. HTML content to
WML content for wireless devices [2, 11]. Typically these
produce poor interfaces as the conversion is difficult for all
but simple web interfaces. Some systems take XML-
described interface content and transform it into different
HTML or WML formats depending on the requesting
device information [2, 13]. The degree of adaptation
supported is generally limited, and each interface type
requires complex scripting. Intelligent, adaptive and
component-based user interfaces often support user and
task adaptation [7]. However most existing approaches only
provide thick-client interfaces (i.e. that run in the client
device, not the server), and most provide no device
adaptation capabilities. Some recent proposals for multi-
device user interfaces [15] use generic, device-independent
user interface descriptions, but most do not typically
support user and task adaptation and many are application-
specific.

ARCHITECTURE

Our travel planning application and thin-client groupware
use the architecture illustrated in Figure 1. The travel
planner was built with a set of Java Server Pages providing
web browser (HTML) user interfaces to register, login,
create itineraries, search for flights, hotels etc and make and
confirm bookings. A four-tier architecture was used with a
set of business logic-implementing application server
objects accessed via CORBA. The groupware components
used a similar architecture but provided several alternative
web server interface implementations, allowing for web
browser, PDA and WAP client devices.

Client
Browsers/WAP

devices

Travel Planner
Web UIs

Groupware Web
& WAP UIs

Web Server(s)

Groupware
Clients

• Chat
• Email
• To-do list
• Notes
• Notifier

Travel Planner
Server Pages

http/wap

Application Server(s)

Groupware
Server(s)

Travel Planner
Application Server

CORBA/
RMI

SQL/
XML/

etc

Figure 1. Architecture of our thin-client groupware.

Web Server

AUIT Page
<auit:form>
 <auit:label>Hello</auit:label>
 <auit:paragraph/>
 <auit:label>Name:</auit:label>
 <auit:editfield id=customer field=name />
 <auit:table>
 ….
</auit:form>

Form tag
Label tag

Edit field tag

1. GET/POST
to AUIT JSP

2. To app
servers

3. Get tag text

4. Return text

5. Output to
devices

Figure 2. AUIT Page Processing.

The groupware components provided some simple access
points to the travel planner application via frames. These
allowed the users to add notes to travel planner interfaces
and to view and send messages while working with travel
planner interfaces.
The travel planner was not modified to support this
interaction and as it was not originally designed to work
with the groupware components, only limited user interface
and server integration existed between them [5]. We found
this to be a problem in terms of the level of user interface
consistency that could be achieved between the applications
and in terms of travel planner application events that could
be subscribed to and acted upon in the groupware
components. We wanted to provide a more seamless
integration between both web user interfaces and
application servers of both applications, while retaining
their implementations' independence.
We have recently developed a new technology allowing
developers to specify web-based user interface
implementations that will automatically adapt to different
display devices, users and user tasks, called AUIT [6]. This
provides a set of custom tag libraries for Java Server Pages
that allow developers to specify logical screen structure,
composition and layout. At run-time these tags are
interpreted and produce output for a Web or WAP browser
tailored to the display device characteristics and the
particular user using the device and the user's current work
task
We wanted to use AUIT to re-implement the travel planner
and groupware user interfaces, allowing the travel planner
to be seamlessly accessed from different devices and
support a degree of user and task adaptation. Similarly, we
wanted to provide groupware user interfaces that would
adapt to different devices without the need for a different
interface implementation for every possible display device.
The AUIT architecture is illustrated in Figure 2. User

interface implementations are implemented using a custom
Java Server Page tag library and these tags use device, user
and task information to construct appropriate page mark-up
output for page requests. Tags include page layout control
(groups, tables, rows and columns), data input/output (text
fields, pop-up lists, radio and checkboxes), navigation and
control (buttons and links), and page embellishment (labels,
lines, borders, images). The logical specification of a page
may be at run-time split into multiple physical mark-up
pages for small-screen devices, with navigation links
between the pages generated [6].

INTERFACE DESIGN AND IMPLEMENTATION

Figure 3 illustrates some of our prototype travel planner
interfaces, displayed in a web browser. These allow a user
to create and modify travel itineraries, search for hotel
rooms, rental cars, plane flights etc, and to view and print a
confirmed itinerary. The interfaces use a fairly basic page
layout and user interface elements. In (1), user John is
viewing a set of travel itinerary items. In (2), he is entering
search criteria to locate a required plane flight. In (3) he is
selecting from a list of possible flights. These interfaces
allow access to various groupware facilities provided by our
reusable groupware components. In addition, the groupware
components can subscribe to various travel planner
application events and act on these e.g. perform various
tasks based on event notifications received from the travel
planner.
A number of different groupware components are reused in
this travel planner. Some of the interfaces for these
functions are illustrated in Figure 4. In screen (1) user
Mark is reading a note annotation made by user John
against a travel plan item. The note information is stored
and maintained within the groupware Annotation
component.

(3)
(2)

(1)

Figure 3. Examples of web-based travel planner user interfaces.

(1)

(2)

(3)

Figure 4. Examples of web-based groupware interfaces.

The travel planner web server and application server
provide interfaces that allow the groupware components to
determine which user, itinerary and item are to be noted.
Access to the groupware facilities in the travel planner is
via reusable JavaScript-implemented menus and by multiple

frames grouping some groupware interfaces (such as notes,
messaging and awareness).

Figure 5. Examples of WAP interfaces.

In screen (2), Mark is viewing a list of received email
messages, some sent by John and some by a groupware
notification agent monitoring travel planner application
activity. The users can configure the notification agent with
their own desired events to be listened to and the way to
have these acted upon. Screen (3) shows Mark reading an
email message. Messages and notification events can be
annotated with notes just like travel planner application
information.
In addition to providing conventional web-based user
interfaces, our prototype provides equivalent WAP
implementations via the AUIT page implementation

technology. Some of these travel planner user interfaces are
shown at the top of Figure 5, accessed via a mobile phone
WAP client. The content of many of the different interfaces
has been split across multiple "cards" allowing management
of complex interface content. In these examples, user John
is accessing his itinerary information on a mobile device,
allowing him to both maintain this information and also
access it before and during his trip. Some examples of our
groupware component user interfaces in use by Mark via a
WAP display device are shown at the bottom of Figure 5.
Figure 6 shows an example of part of an AUIT-
implemented travel planner interface, the booking list
screen. The mark-up language used is generic and at run-
time is converted into HTML or WML for a display device.
An algorithm splits too-large screens into parts for display
on small devices.
<AUIT:template bgcolor="#EEEEFF">
 <AUIT:group width="800" height="600" >
 <AUIT:form method="post" action="online_booking2.jsp" name="update">
 <AUIT:grouptr cellheight="20" >
 <AUIT:grouptd cellwidth="150" colspan="3">
 <AUIT:layout face="Arial, Helvetica, sans-serif" size="3" color="#101077" bold="b">
 <AUIT:label text="John's Bookings:" allowcut="true"></AUIT:label></AUIT:layout>
 </AUIT:grouptd> </AUIT:grouptr>

 <AUIT:grouptr><AUIT:grouptd>
 <AUIT:break/>
 <AUIT:layout size="+1" color="red" bold="b"><AUIT:label text=
 "<%= booking_interface.getMessage() %>" /></AUIT:layout>
 </AUIT:grouptd></AUIT:grouptr>

 <AUIT:grouptr>
 <AUIT:grouptd><AUIT:layout size="+1" color="red" bold="b">
 <AUIT:label text="ID"></AUIT:label></AUIT:layout></AUIT:grouptd>
 <AUIT:grouptd><AUIT:layout size="+1" color="red" bold="b">
 <AUIT:label text="Booked"></AUIT:label></AUIT:layout></AUIT:grouptd>
…

 <% Vector bookings = booking_interface.getBookings(customer_data); %>
 <AUIT:iterator collection="<%=bookings%>" >
 <% BookingData booking = (BookingData)bookings.get(index.intValue()); %>
 <AUIT:grouptr>
 <AUIT:grouptd cellwidth="30">
 <AUIT:link direct="online_booking2" param="true">
 <AUIT:label text='<%=""+booking.getID()%>'></AUIT:label>
 <AUIT:param name="ID" value='<%=""+booking.getID()%>'></AUIT:param>
 </AUIT:link>
 </AUIT:grouptd>
 <AUIT:grouptd cellwidth="80">
 <AUIT:label text='<%=""+booking.getDateBooked()%>' allowcut="false"></AUIT:label>
 </AUIT:grouptd>
 <AUIT:grouptd cellwidth="60">
 <%
 String itinerary = "";
 …
 %>
 <AUIT:label text='<%= itinerary %>' allowcut="false"></AUIT:label>
 </AUIT:grouptd> </AUIT:grouptr>
 </AUIT:iterator>
…

Figure 6. Example of AUIT-implemented screen.

EXPERIENCES
We has previously carried out useability evaluations of our
travel planner application, groupware components and two
AUIT-implemented applications [5, 6, 7]. We now wanted
to assess our new combined prototype's useability. We
wanted to focus particularly on:
• determining if our integrated application provides a

suitable set of interfaces and functionality for
collaborative travel planning

• assessing the users' ability to navigate between screens
and between travel planner and groupware
functionality seamlessly

• assessing the effectiveness of our auto-adaptation to
device characteristics

We carried out a usability evaluation of our original travel
planner and groupware prototypes by surveying users, both
experienced and novice when using the applications in a
collaborative setting [5, 6]. We assessed our new prototype
by developing criteria to rate the original and new prototype
interfaces with respect to the above usability measures. The
key advantages of our new approach to engineering the
travel planner include the reuse of significant existing
software to minimise development effort, the aim of reusing
all groupware and adaptive user interface building
technology, and the approach to providing application
software with interfaces that allow other software to more
readily interact with them. Further work is required to
improve the reusability of the groupware and to help
designers develop the most suitable application interfaces.
In general, our evaluation indicated the interfaces provided
were both effective and efficient for the tasks they were
required to support.
The main problems we encountered in this research were
concerned with the ability to adequately generalise the
groupware component user interfaces and software
interfaces to enable them to be adequately integrated with
other application components. Similarly, we found we had
to hard-code links to groupware screens and frames to
contain parts of groupware interfaces in the travel planner
application. The AUIT custom tag library proved to be
useful for building interfaces that automatically supported
multiple devices. However the range of layout control
facilities and screen components proved less than adequate.
The small screen interface implementations had almost
always to be split at run-time, though access to multiple
screens via additional option links worked reasonably well.
Careful specification of the "priorities" and grouping of
screen components is needed, however, to ensure sensible
screen grouping results. We found our original groupware
component screen implementations to provide better
interaction and layout support than the AUIT-implemented
versions, due to being tuned to the particular device
characteristics. However, we feel some simple
improvements to our AUIT tags will enable better quality
interfaces to be produced that better approximate the device
hand-coded ones. The prototype's performance can be
rather slow, and we have found this to be due to some
inefficiencies in our AUIT screen formatting code.
We are currently making a number of extensions to the
AUIT custom tag library to provide better layout control,
more developer control over screen splitting choices based
on relative "importance" of screen elements, and to provide
faster interactive performance via caching. We are also
building a GUI design tool to allow much easier design,
implementation and testing of AUIT-based thin client
interfaces. We are redesigning the groupware components
to have improved component integration. This especially
focuses on allowing third party thin client applications to
integrate groupware functionality and the groupware to

integrate the third party application interface components.
In addition, the travel planner application we aim to further
generalise and provide complete separation from the
groupware components, allowing others' groupware support
to be used instead. One approach we are experimenting
with is to add further AUIT custom tags that allow the
interface developer to incorporate screens from other
applications within an AUIT-specified interface. This
would allow e.g. the note annotation and messaging
groupware interfaces to be incorporated within the travel
planner without hard-coding this relationship in the travel
planner or groupware interface implementations. We did
not use the AUIT user and task adaptation support features
in this work. However some interface functions and
information display is user and task-dependent in the travel
planner application. We could use these facilities to avoid
complex if-then-else constructs in the user interface
implementations and avoid having different
implementations of the same basic user interface for
different users.

SUMMARY
We have developed a prototype collaborative travel planner
from three separate applications: a web-based travel
planner; a set of hard-coded multi-device groupware
components; and a Java Server Page custom tag library that
allows developers to specify a user interface once that will
at run-time adapt to producing device-specific display
mark-up. This was moderately successful, with a range of
travel planner and groupware interfaces being re-engineered
and implemented to make use of this adaptive user interface
specification technology. The travel planner and groupware
components had minimal knowledge of each other, both in
terms of their user interface implementations and their
business logic component implementations. Evaluation of
the prototype showed it provides a reasonably good set of
interfaces to support collaborative travel planning using
multiple devices. However, we found that both applications
needed further generalisation to separate their interface
dependencies. In addition, we could use our adaptive
interface technology's support for user and task adaptation
in these two sets of interfaces.

REFERENCES
1. Appelt W. WWW based collaboration with the BSCW

system, Proceedings of the 26th Conference on Current
Trends in Theory and Practice of Informatics,
Springer-Verlag LNCS 1725, 1999, pp.66-78.

2. Chong, N.S.T., Sakauchi, M. e-CoBrowse: co-
navigating the Web with chat-pointers and add-ins -
problems and promises. Parallel and Distributed
Computing and Systems. vol.2, 2000, IASTED/ACTA
Press, pp.803-808.

3. Dossick, S.E. and Kaiser, G.E. CHIME: A Metadata-
Based Distributed Software Development
Environment. Joint Seventh European Software

Engineering Conference and Seventh ACM SIGSOFT
International Symposium on the Foundations of
Software Engineering, September 1999, pp. 464-475

4. Ellis, C.A., Gibbs, S.J. and Rein, G. Groupware: some
issues and experiences, Communications of the ACM,
vol. 34, no. 1, January 1991, pp. 39-58.

5. Grundy, J.C., Wang, X., Hosking, J.G., Building Multi-
device, Component-based, Thin-client Groupware:
Issues and Experiences, In Proceedings of the 3rd
Australasian User Interface Conference, Melbourne,
Australia, 28-30 Jan 2002, CRPIT Press.

6. Grundy, J.C. and Zhou, W., An architecture for
building multi-device thin-client web user interfaces, In
Proceedings of the 2002 International Conference on
Advanced Information Systems Engineering, Toronto,
Canada, Lecture Notes in Computer Science, Springer.

7. Grundy, J.C. and Hosking, J.G., Developing Adaptable
User Interfaces for Component-based Systems,
Interacting with Computers, Elsevier, May 2002.

8. Han, R., Perret, V., and Naghshineh, M. WebSplitter:
A unified XML framework for multi-device
collaborative web browsing, Proc. CSCW 2000,
Philadelphia, Dec 2-6 2000.

9. Hartmann S, Dirksen V. Optimization of internal
business processes through integration of mobile
commerce components. Information Management &
Consulting, vol.16, no.2, May 2001, pp.16-19.

10. Maurer F, Dellen B, Bendeck F, Goldmann S, Holz H,
Kotting B, Schaaf M. Merging project planning and
Web enabled dynamic workflow technologies. IEEE
Internet Computing, vol.4, no.3, May-June 2000,
pp.65-74.

11. Palm Corp. Web Clipping services, www.palm.com
(2001).

12. Roseman, M. and Greenberg, S. TeamRooms: network
places for collaboration, Proceedings of the ACM 1996
conference on Computer supported cooperative work,
1996, Pages 325 - 333.

13. Rossel M. Adaptive support: the Intelligent Tour
Guide. Proc. 1999 International Conference on
Intelligent User Interfaces. ACM Press.

14. Shuckman, C., Kirchner, L., Schummer, J. and Haake,
J.M. 1996. Designing object-oriented synchronous
groupware with COAST, Proceedings of the ACM
Conference on Computer Supported Cooperative
Work, ACM Press, November 1996, pp. 21-29.

15. Van der Donckt, J., Limbourg, Q., Florins, M., Oger,
F., and Macq, B. Synchronised, model-based design of
multiple user interfaces, Proc. 2001 Workshop on
Multiple User Interfaces over the Internet.

